
IEEE Communications Magazine • February 2013120 0163-6804/13/$25.00 © 2013 IEEE

INTRODUCTION

Today’s enterprise information technology (IT)
environments must be highly responsive and
agile in order to support rapidly changing busi-
ness requirements. Cloud computing platforms
offer a new IT consumption model that enables
enterprises to procure computing resources on
an as-needed basis and delegate management of
the infrastructure to the cloud service provider.

As the number and variety of applications
and workloads moving to the cloud grows, cloud
service providers have expanded their offerings
to include a variety of services beyond basic vir-
tual servers, storage volumes, and network con-
nectivity. Commercial cloud platforms today
support a variety of server types (e.g., specialized
processing with graphics processing units
[GPUs]), multiple storage models (e.g., object,

block, or key-value stores), and creation of virtu-
al networks with fine-grained access controls.

Cloud networking features, in particular, have
developed rapidly recently. For example, over
just a brief period, Amazon’s AWS has evolved
from providing basic IP connectivity for cloud
servers to offering a “virtual private cloud”
(VPC), which allows a customer to organize its
cloud servers into different subnets with access
control rules to govern the traffic that may pass
between them. AWS, Microsoft Azure, and
other cloud providers also offer virtual private
network (VPN) services to securely connect
cloud instances back to an on-premises data cen-
ter.

The OpenStack open source cloud computing
platform has also benefited from increased
emphasis on networking features, with the Quan-
tum network manager now an integral part of
the platform [1]. Quantum initially provided a
simple virtual Ethernet switch abstraction with
virtual ports that could be associated with virtual
interfaces on virtual servers. Each cloud project
or tenant could then create its own virtual net-
work instance. More recently, the Quantum net-
working model in OpenStack has added subnets
and IP address management features, with
planned extensions for access controls and other
more advanced features.

Both AWS and OpenStack (and others) are
examples of network- or device-centric cloud net-
working models in which users are presented
with network-layer constructs such as switches,
subnets, and access control lists (ACLs), which
they then must configure to create a virtual
topology for their cloud application. Moreover,
in this model, networking is configured and
managed largely independent of other elements
of the cloud workload like application images
and virtual server groups. This model mimics the
traditional siloed nature of IT management in
which application and server teams typically
have a responsibility distinct from the network
administrators, and correspondingly little under-
standing or control of the network.

While cloud management systems bring all of
the virtual IT resources under a single view, the
model for managing the network is still primarily
designed to provide a virtualized version of simi-
lar components and functions as the physical
network in the customer’s data center. In con-

ABSTRACT

As the number and variety of applications
and workloads moving to the cloud grows, net-
working capabilities have become increasingly
important. Over a brief period, networking sup-
port offered by both cloud service providers and
cloud controller platforms has developed rapidly.
In most of these cloud networking service mod-
els, however, users must configure a variety of
network-layer constructs such as switches, sub-
nets, and ACLs, which can then be used by their
cloud applications. In this article, we argue for a
service-level network model that provides high-
er-level connectivity and policy abstractions that
are integral parts of cloud applications. More-
over, the emergence of the software-defined net-
working (SDN) paradigm provides a new
opportunity to closely integrate application pro-
visioning in the cloud with the network through
programmable interfaces and automation. We
describe the architecture and implementation of
Meridian, an SDN controller platform that sup-
ports a service-level model for application net-
working in clouds. We discuss some of the key
challenges in the design and implementation,
including how to efficiently handle dynamic
updates to virtual networks, orchestration of net-
work tasks on a large set of devices, and how
Meridian can be integrated with multiple cloud
controllers.

SOFTWARE DEFINED NETWORKS

Mohammad Banikazemi, David Olshefski, Anees Shaikh, John Tracey, and Guohui Wang,

IBM T. J. Watson Research Center

Meridian: An SDN Platform for
Cloud Network Services

SHAIKH LAYOUT_Layout 1 1/28/13 3:42 PM Page 120

IEEE Communications Magazine • February 2013 121

trast, we describe in this article (and in prior
work [2]) a service-level model of cloud network-
ing, in which connectivity and associated policies
and functions are more fully integrated into the
process of provisioning and managing cloud
applications. With the emergence of DevOps [3]
in the cloud, in which application development
and IT infrastructure and operations are much
more tightly integrated, we believe networking
services and capabilities should be exposed using
higher-level abstractions than the device-centric
view used in traditional networking.

The emergence of the software-defined net-
working (SDN) paradigm provides a new oppor-
tunity to more seamlessly integrate application
provisioning in the cloud with the network
through programmable interfaces and automa-
tion. With cloud applications demanding greater
control over the network, SDNs are a natural fit,
whether in infrastructure as a service (IaaS) or
platform as a service (PaaS) clouds, private or
public. A number of SDN solutions have been
proposed for creating virtual networks in multi-
tenant clouds based on standard protocols such
as OpenFlow (e.g., in [2]), or using encapsula-
tion and overlay networks (e.g., as described in
[4, 5]), and commercial solutions such as [6].

These SDN-based cloud networking solutions
have their respective advantages (e.g., in terms
of scalability, flexibility, or performance), but
they support only certain types of network envi-
ronments, or specific models of cloud network
orchestration. For example, with overlay virtual-
ization, network tunnels and policies are man-
aged at the edge of the data center in
software-based virtual switches located in hyper-
visors. This is a well suited solution for very
large-scale environments that only require multi-
tenancy and logical isolation, but does not allow
finer-grained control over network paths to
achieve goals such as fast failover or traffic pri-
oritization. OpenFlow provides this level of fine-
grained control through its programmable
interface for packet handling and forwarding in
physical and virtual switches, but full exploita-
tion of this flexibility is made challenging by a
number of practical issues such as hardware flow
table limitations or controller performance [7].
And for legacy environments that use traditional
switches, virtual networks for cloud application
may be implemented simply as virtual LANs
(VLANs).

Similarly, there are a variety of cloud orches-
tration platforms that each provide their own
model and application programming interface
(API) for virtual networks. With an SDN-based
approach, we have an opportunity to provide a
common service model and programming inter-
face for these cloud controllers. This makes it
possible to ensure some consistency in the way
virtual networking is configured for applications
deployed in the cloud.

In the remainder of this article, we describe
Meridian, an SDN-based framework that sup-
ports a service-level model for application net-
working and can exploit multiple options for
implementing virtual networks on the underlying
physical network. We discuss the SDN controller
architecture in the context of cloud networking
services, and how the architecture lends itself to

deployment on different types of underlying net-
work environments. In addition, we describe
some key issues arising in Meridian’s implemen-
tation, in particular orchestration of network
tasks, and dynamic updates to the virtual net-
work topology, as well as our experience in
implementing Meridian to work with multiple
cloud orchestration platforms. Our focus is on
the use of Meridian in the context of enterprise
applications that require flexible virtual network
services to support a variety of application
topologies.

SDN ARCHITECTURE FOR
CLOUD NETWORKING

The Meridian cloud networking platform archi-
tecture design is inspired by the emerging con-
ceptual models of SDN described, for example,
in [8, 9]. A high-level view of Meridian’s archi-
tecture is shown in Fig. 1a. It is organized as
three main logical layers: network model and
APIs, network orchestration, and interfaces to
underlying network devices. Network applica-
tions are at the top of the stack, as consumers of
the APIs. Below, we briefly describe the function
of each of the layers in turn.

ABSTRACT API LAYER
The goal of the abstract API layer is to present
applications with a network model and associat-
ed APIs that expose only the information need-
ed to interact with the network. For example,
the single switch model described earlier is a
simple model for a provisioning system that just
needs to establish connectivity by logically “plug-
ging in” virtual server interfaces. For a more
sophisticated cloud orchestrator that executes a
complex placement algorithm, a more complete
view of the topology may be necessary in order
to place VMs on hosts that are well connected
or proximal in the network. Similarly, a control
application that manages access to network stor-
age may require a topology view that exposes
multiple paths with annotations of utilization or
latency with APIs to request redundant high-
bandwidth paths.

In Meridian we provide network services to
the higher-layer cloud orchestration application
using both a declarative and query API. The API
allows the cloud controllers to request policy-
based connectivity between logical groups of vir-
tual servers. That is, it can “declare” how it
wants the virtual network for a multi-virtual
machine (VM) application to be constructed,
along with policies for controlling access, priori-
tizing traffic, or traversing middleboxes. The
query part of the API supports requests for
abstract topology views, or gathering perfor-
mance metrics and status for specific parts of the
network.

NETWORK ORCHESTRATION PLATFORM
The network orchestration layer plays several
important roles in the SDN architecture. First, it
must perform a logical-to-physical translation of
commands issued through the abstraction layer
above. Applications interact with a logical view
of the network using high-level APIs. The

The Meridian cloud

networking platform

architecture design is

inspired by the

emerging conceptual

models of software-

defined networking.

It is organized as

three main logical

layers: network

model and APIs,

network orchestra-

tion, and interfaces

to underlying

network devices.

SHAIKH LAYOUT_Layout 1 1/28/13 3:42 PM Page 121

IEEE Communications Magazine • February 2013122

orchestration layer must convert these API calls
into the appropriate series of commands on the
underlying network. For example, connecting a
VM interface to a logical switch port may in fact
require creation of forwarding and access con-
trol rules across several physical switches in the
network. Second, the orchestration layer pro-
vides a set of network-wide services to applica-
tions, such as views of the topology, notifications
of changes in link availability or utilization, and
path computation according to different routing
algorithms. Finally, as its name implies, the
orchestration layer provides coordination and
arbitration between network requests issued by
applications, and mapping of those requests onto
the network. This may require selecting between
multiple mechanisms available to achieve a given
operation, for example, setting up a virtual net-
work using an overlay, or using traditional
VLANs.

The Meridian orchestration layer provides a
number of key services to support cloud net-
working, including a global annotated view of
the data center topology for applications that
require it, different routing algorithms (e.g.,
standard shortest-path and quality of service
[QoS]-based), support for service insertion using
virtualized middleboxes, and a planner module
that can schedule network configuration or con-
trol tasks. These services are described in more
detail later.

APPLICATIONS
The SDN architecture shown in Fig. 1a is intend-
ed to support a wide variety of applications that
need to control or otherwise interact with the
network. We consider two broad categories of
applications when designing the interfaces in the
abstraction layer and the services in the orches-
tration layer. Network control applications are
standalone modules that perform relatively low-
level network functions such as path computa-
tion and optimization, fine-grained access
control, and traffic monitoring and diagnostic
operations. Network integration points are appli-
cation modules that provide integration func-
tions that connect higher-level business or IT
processes to the network. For example, an enter-
prise application provisioning process that auto-

matically deploys application servers and storage
could use the corresponding network integration
point to request automated configuration of
appropriate firewall rules and traffic prioritiza-
tion to support the new application.

With Meridian, our focus is to create an inte-
gration point that can effectively connect a vari-
ety of cloud orchestration applications to the set
of virtual networking services. In our experience,
this requires the Meridian cloud integration
application to be separated into a common mod-
ule that provides an identical set of functions
and interfaces to any higher-layer cloud plat-
form, and in some cases, a platform-specific
component that extends and directs networking
operations to Meridian. With OpenStack’s
Quantum network manager, for example, it is
relatively easy to extend it to use Meridian ser-
vices through its plugin architecture and extensi-
ble API layer. In other cases, adding support for
Meridian required source-level access to the
platform to add or modify the networking-relat-
ed modules.

NETWORK DRIVER LAYER
The lowest layer of the SDN architecture con-
sists of “plug-ins” or “drivers” that enable the
controller to interface with various network
technologies or tools. The orchestration layer
uses these drivers to issue commands on specific
devices, or collect information from the network
to build and update its view of the network. In
an OpenFlow-capable network, for example,
one such driver could provide an interface to an
OpenFlow controller that allows insertion of
flow rules in physical or virtual switches. Simi-
larly, another module could provide access to
data maintained by a traditional network man-
agement system that performs topology discov-
ery or provides notification of link or device
availability.

In Meridian, we have implemented a logical
driver that interfaces to OpenFlow devices to
create virtual networks and accompanying ser-
vices. We are also working on drivers to enable
virtual network creation using overlays and to
access comprehensive topology data gathered by
network management tools such as IBM Tivoli
Network Manager (ITNM).

Figure 1. a) Meridian SDN cloud networking platform architecture; b) Meridian service model.

Virtnet
application virtual network

Filters/ACLs

Attach services to a segment

Service

Application
Middleware

OS
VM

Endpoint
(managed, vNIC, VM, etc.)

Segment
bidirectional virtual link

(b)(a)

Group
logical grouping of endpointsOpenFlow

controller
Virtual

network
creation

Topology
discovery

Event
collection

Device
configuration

Network orchestration
Global network
view

Network “system calls”

Network abstractions and APIs

Network control
applications and
integration points

Logical network models
and application APIs

Logical - physical translation,
arbitration, network-wide services

“Drivers” for controlling network
devices and capabilities

Network runtime
state

Service insertion
(middleboxes)
Routing algorithms/QoS
Scoped broadcast
...

Path
optimization

Application
provisioning

Network
access
control

Cloud
integration

SHAIKH LAYOUT_Layout 1 1/28/13 3:42 PM Page 122

IEEE Communications Magazine • February 2013 123

MERIDIAN IMPLEMENTATION

Below we describe some of the details of our
implementation of the Meridian cloud network-
ing platform, focusing on the layers of the SDN
architecture described earlier. We also discuss
how we extend two cloud orchestration plat-
forms with Meridian services.

Our Meridian prototype is built on the open
source Floodlight controller platform [10].
Floodlight is a modular Java-based OpenFlow
controller that provides OpenFlow protocol sup-
port and a number of services such as basic link
discovery and routing for OpenFlow-enabled
switches. We leverage and extend some of Flood-
light’s native support, and add new modules to
implement the Meridian architecture.

MERIDIAN NETWORK ABSTRACTION MODEL
Figure 1b shows some of the basic constructs of
the Meridian service model. This model allows
users to think of networking in terms of logical
topologies for their cloud-based applications.
Rather than exposing device or network-level
information, Meridian provides a service-level
network model for users to specify logical con-
nectivity and policies or services associated with
the virtual links between VMs.

In the Meridian network service model, five
types of entities are defined:
• endpoint: This is an entity to represent a

virtual network interface on a virtual
machine.

• group: This is a collection of endpoints that
share the same connectivity properties;
grouping simplifies the application of the
same policies on multiple endpoints.
Grouping can optionally also imply connec-
tivity between endpoints in the group.

• service: an entity to describe the services
on a connectivity path. For example, users
can define a customized routing policy, fil-
ter, or middlebox traversal policies in a ser-
vice entity.

• segment: a network segment is used to spec-
ify the connectivity path between two groups,
defined by a 3- tuple: {g1, g2, svc}, where g1
and g2 are the endpoint groups of the con-
nectivity path, and svc is the requested net-
work service(s) on the connectivity path.

• virtnet: A virtual network is a logical
topology containing groups, segments, and
services. Virtual networks can be created
for a single cloud tenant, or at finer granu-
larity for a given multi-VM application. A
virtual network can be represented by VN
= {G, S}, where G is a set of endpoint
groups, and S is a set of segments defined
on G. Each segment in S is an edge defined
by two endpoint groups {g1, g2 Œ G} and
annotated with a specified service svc.
Using these entities, users can construct a

variety of connectivity topologies among VMs
belonging to different applications. Typical
enterprise web service applications have a three-
tier topology that consists of a web server tier,
an application server tier, and a database tier.
The communication between different tiers
often has different service requirements. Some
examples include restricted communication

between tiers using firewalls, load balancing
between web and application tiers, traffic priori-
tization and QoS for some traffic classes, and
scoped broadcast between specific VMs to
enable heartbeat-based failover mechanisms.
Figure 2 shows an example for a multi-tier web
application with six VMs, grouped into tiers with
segments connecting them. The segments have
been defined with various services such as mid-
dlebox traversal or scoped broadcasting. We can
use this model to flexibly construct topologies
for many different types of applications.

Meridian REST APIs — Floodlight exposes its
services to applications using REST APIs in
which applications use standard HTTP requests
to send or receive JavaScript Object Notation
(JSON) formatted data. Meridian virtual net-
work functionality is implemented in a separate
Floodlight module that provides commands for
creating, deleting, configuring, and updating
individual instances (e.g., a specific group or seg-
ment) or collections (e.g., the set of all segments
in a virtual network) of network entities using
corresponding URLs.

Internally, each instance in the model, no
matter what type, is represented as a hash table
<key, value>. When using POST to create an
instance or PUT to modify an instance, the
caller can add fields to the instance simply by
including them as <key, value>pairs in the
JSON object sent in the request. This allows the
caller to augment the instance with additional
information such as adding a name, a new end-
point, or a security key. In addition, Meridian
supports commands to validate, install, and unin-
stall virtual network entities. These are useful
for higher-layer cloud orchestration systems to
first ensure that updates and changes are
checked for validity before committing them to
the underlying network.

Figure 2. Constructing a 3-tier application topology using the Meridian net-
work model.

Virtual network constructs

3-tier app topology logical connectivity

Web
1 App 1 db 1

Web
2

Web
1

Web
2

App 1Segment 1,
svc: LB

App 2

db1

db2

Group A: web servers Group B: app servers Group C: db servers

App 2 db 2

Web server tier app server tier db tier

Segment 3,
svc: bandwidth

Segment 2,
svc: SPF

Segment 4,
svc: broadcast

SHAIKH LAYOUT_Layout 1 1/28/13 3:42 PM Page 123

IEEE Communications Magazine • February 2013124

ORCHESTRATING THE DEPLOYMENT OF
NETWORK SERVICES IN MERIDIAN

The primary components in Meridian’s orches-
tration layer are the planner and deployer mod-
ules that specify and deploy network tasks,
respectively.

Meridian Planner Design — Meridian imple-
ments network services as one or more plans.
For example, when a Meridian client application
performs a PUT operation on a virtual network
to validate or install it, a plan is executed to per-
form the task. The planner module functions
mainly as a scheduler; plans are posted to the
planner to be executed and the planner main-
tains a pool of threads for scheduling the plans it
receives. The plans themselves contain the intel-
ligence to complete the task. Together, plans
and the planner provide a mechanism for
scheduling work items which can be performed
in parallel or sequentially, whichever is required.

Meridian plans are composable in that a plan
can start other plans, simply by posting them to
the planner for execution. So for example, Plan1
may be a plan that installs a virtual network,
which in turn starts Plan2, which installs a specif-
ic segment of that virtual network. Since plans
can be executed in parallel, Plan1 may start sev-
eral plans at once (e.g., Plan2, Plan3, and Plan4)
and wait for them to asynchronously complete.
This is required for scalability, for example, to
configure a large set of switches in parallel
rather than one at a time. However, if tasks must
be completed in order, Plan1 may choose to
start Plan2 and wait for the reply, possibly chang-
ing its behavior based on the success or failure
of each sub-plan in turn.

The composability of plans provides the
means to continually grow the set of available
plans, similar to building class libraries that can
be used and extended by others. Our approach is
in contrast to providing a single monolithic
orchestrator module, which contains a single
optimization program that provides all the ser-
vices but is difficult to extend.

Combining simple plans into more sophisti-
cated plans led us to categorizing plans into two
types:
• High-level plans work with Meridian service

model instances such as virtual networks,
groups, and endpoints.

• Low-level plans perform low-level actions
and work with existing network objects,
such as device objects returned from the
Floodlight device manager service.
For example, high-level plans may compute a

set of paths, while low-level plans would gener-
ate the associated OpenFlow rules for those
paths. This provides a level of separation and
flexibility with plans using model objects sepa-
rate from plans, which perform low-level func-
tions. As we enhance Meridian’s virtual network
model, high-level plans can be extended (or new
ones written) that can still use the existing low-
level plans. Likewise, low-level plans can be
extended or replaced with little or no impact on
high-level plans. Time-based scheduling is also
supported in Meridian. This allows a plan to
schedule itself periodically (e.g., to gather statis-

tics or monitoring data) or a client application to
schedule a set of plans for execution at a future
point in time.

Deploying Plans in the Network — The
planner manages the execution and state of
Meridian plans. Specifically, it processes a num-
ber of methods that are part of each plan as
described below:
• validate(): performs a variety of error

checks to determine if installation of the
plan is likely to succeed and creates the list
of network commands (e.g., OpenFlow
rules) that are required to actually install
the model into the physical network. This
method does not make changes to the phys-
ical network.

• install(): installs the model into the
physical network by transferring the list of
network commands generated by the vali-
date() method to the deployer.

• undo(): reverses the install operations per-
formed by the install() method of this
plan, basically providing a way to uninstall
virtual networks.

• resume(), suspend(): resumes and sus-
pends execution of the plan, respectively.
These methods are hierarchical in nature;

that is, when validate() is called on a high-
level plan, it will call validate() on the lower-
level plans. It is the same for the other methods.

During execution of these methods, plans go
through a sequence of states that are maintained
relative to the state of sub-plans. For example,
prior to a validate() call, the state of a plan is
UNVALIDATED. When validate() is called,
its state is changed to VALIDATING and
remains in this state as all sub-plans are validat-
ed. Afterward, its state is VALIDATED (or
UNVALIDATED if a sub-plan fails to validate).

The basic process flow in the orchestration
layer starts with a validate() method called
on the root plan, which in turn will trigger vali-
dation on all plans in the hierarchy. This causes
each sub-plan to perform error checking and
generate a list of network commands. Problems
encountered at lower levels are propagated up
so that higher-level plans can determine a course
of action during errors or failures. In the second
step, install() is called on the root plan,
which cascades down to all sub-plans. The
install() method posts the list of configura-
tion commands to the deployer and handles
errors. The deployer accepts a stream of net-
work device commands from the install()
method in each plan, and sends the commands
to the appropriate device in the network. Suc-
cess or failure is returned back to the plan.

The deployer is a multithreaded scheduler,
which allows it to send commands to multiple
devices in a parallel manner. Being a central
point from which network device commands are
sent, it has an opportunity to merge or otherwise
optimize the set of commands sent to each
device.

Separating plan validation from installation
does not eliminate the need to handle failures
during install() processing, but does catch
some of the issues that would arise during
install() processing in advance of making

The planner module

functions mainly as a

scheduler. The plans

themselves contain

the intelligence to

complete the task.

Together, plans and

the planner provide

a mechanism for

scheduling work

items which can be

performed in parallel

or sequentially,

whichever is

required.

SHAIKH LAYOUT_Layout 1 1/28/13 3:42 PM Page 124

IEEE Communications Magazine • February 2013 125

actual changes to the network devices. It also
provides a mechanism for trying sets of com-
mands in a “what-if” manner.

TOPOLOGY SERVICES
Meridian topology services contribute to the
overall goal of realizing cloud virtual networks
by providing a view of the dynamic set of under-
lying network resources. Topology services are
used by other essential services, such as routing,
and also by higher-level functions built on top of
Meridian such as VM placement.

As with all Meridian services, a key goal, and
challenge, is flexibility in supporting a large set
of use cases, as well as handling a broad array of
underlying network devices. The goal of flexibili-
ty is well served by representing the network as a
simple annotated graph. Network interfaces and
links correspond to graph vertices and edges,
respectively. Both edges and vertices have a set
of associated attributes, with as many as possible
designated as optional. For example, edges need
not have associated attributes such as bit rate,
loss rate, or latency, but these can be added easi-
ly if needed. On the other hand, all vertices
require a parent node with which the corre-
sponding network interface is associated (nodes
could be Ethernet switches, routers, servers,
etc.).

The graph model lends itself to a variety of
network abstractions, or “views.” A summary
view may be produced by replacing each vertex/
interface with its corresponding parent node.
The resulting graph reflects the interconnection
of devices without the specifics of individual net-
work interfaces. Additional views of the network
may be provided via transformations provided by
various graph algorithms.

The topology service goes beyond simple
graph representation to provide a framework for
integrating potentially overlapping and even con-
flicting topology information from multiple
sources. Meridian’s initial topology service
implementation gathers information from three
main sources, as described below.

First, as mentioned earlier, our topology ser-
vice retrieves information from Floodlight,
including a list of managed switches, a descrip-
tion and list of features for each switch, a list of
links between switches, and information related
to all known medium access control (MAC)
addresses, along with the switch and port to
which each address is connected. Although the
topology data provided by Floodlight is substan-
tial, it does not include information internal to
servers such as hypervisor nodes. For that, libvirt
and a set of operating system commands are
employed. Libvirt provides a consistent interface
for querying and controlling a set of hypervisor
implementations including Xen, KVM,
VMWare, and others. Meridian’s topology ser-
vice implementation “discovers” hypervisors by
monitoring advertisements sent by the libvirtd
virtualization daemon. For each hypervisor, the
service uses libvirt to query its identity (host
name and UUID), and each network interface
and VM (including its associated virtual network
interfaces). Information on each real network
interface is collected using local commands on
the hypervisor hosts. No commands or queries

are issued to operating systems or applications
running inside VMs.

The topology service updates the set of
known interfaces and associated nodes based on
periodic queries of the Floodlight controller and
discovered hypervisors. It computes the set of
links between switches and endpoints by corre-
lating the MAC address information provided by
Floodlight with that provided by libvirt and host
commands. The inferred links include physical
links between hypervisor nodes and real Ether-
net switches as well as virtual links (e.g., between
VMs and virtual switches).

The Meridian topology service is made avail-
able via its own set of REST APIs with a com-
prehensive set of commands that allows
information to be provided with the desired level
of granularity. For example, the list of all inter-
faces, only virtual or real interfaces, or a specific
interface identifier are supported, along with
corresponding interface attributes.

The initial implementation demonstrates the
efficacy of the simple node, interface, and link
model, and provides a basic framework for inte-
grating information from additional sources. We
plan to extend the sources to also include topol-
ogy information from traditional network man-
agement tools, for example, using Simple
Network Management Protocol (SNMP).

MERIDIAN VIRTUAL NETWORKS WITH
OPENFLOW

Given a defined virtual network topology, Merid-
ian realizes each segment by installing Open-
Flow rules on switches. We implement different
routing policies to support various services
defined on segments. In the current implementa-
tion, we are able to support shortest path rout-
ing, middlebox waypoint routing, access control
filters, and scoped broadcast using correspond-
ing OpenFlow rules. To implement a given seg-
ment {g1, g2, svc}, we first locate the attachment
points of each endpoint in groups g1 and g2 using
Floodlight’s device manager module and the
Meridian topology service. Then, for each pair
of endpoints {ep1, ep2, ep1 Œ g1, ep2 Œ g2}, we set
up the routing between ep1 and ep2 using poli-
cies defined in the svc structure. This way, we
have the flexibility to set up routes differently
for different endpoint pairs.

A major challenge in Meridian is to manage
dynamic updates to the virtual network topology,
for example, when adding or removing a seg-
ment, adding an endpoint to an existing group,
or changing the service for a segment. These
updates may be required in response to a user
request, or an action taken by the cloud orches-
tration layer to alter the application topology,
perhaps to scale out a particular cluster of
servers. To manage these updates, Meridian
maintains a control block for each virtual net-
work. Similar to the process control block con-
cept in operating systems, a virtual network
control block keeps a record of the network
installation operations for the virtual network
during its life cycle. A control block is created
when each virtual network is defined, and all
actions (e.g., OpenFlow rule installations) taken
for a virtual network are kept as part of its state

As with all Meridian

services, a key goal,

and challenge,

is flexibility in

supporting a large

set of use cases, as

well as handling a

broad array of

underlying network

devices. The goal of

flexibility is

well served by

representing the

network as a simple

annotated graph.

SHAIKH LAYOUT_Layout 1 1/28/13 3:42 PM Page 125

IEEE Communications Magazine • February 2013126

in the virtual network control block. Each action
is also associated with a context that describes
which entities are affected by the action (which
group, segment, etc.), and whether the entity is
still active (e.g., has not been deleted). When a
virtual network is changed, we compute the new
actions to update the network installation based
on current actions that have been taken. For
example, with the list of OpenFlow rules that
have been installed for the virtual network enti-
ty, we compute a “delta” for the change that
allows us to add the new rules, or remove cur-
rent rules, necessary to effect the change. Using
the virtual network control block scheme, we are
able to manage most updates of virtual networks
incrementally at runtime without tearing down
and re-installing the whole network.

CLOUD CONTROLLER INTEGRATION
Below we briefly describe our approach in inte-
grating Meridian with two cloud orchestration
platforms. Although these platforms required
different approaches for integration, they
demonstrate Meridian’s ability to offer a uni-
form set of service APIs to multiple higher-layer
cloud provisioning systems.

OpenStack Integration with Quantum —
OpenStack is an open source cloud computing
platform with three major components: com-
pute, network, and storage [1]. Its networking
component, Quantum, has a pluggable, extend-
able, and API-driven architecture, and is used as
part of the cloud operating system to create and
manage networks required by cloud applications.

The main Quantum building blocks are net-
works, subnets, and ports, and the Quantum API
is defined to manipulate (create, delete, and
update) these entities. We have developed a
Quantum plug-in for Meridian, which maps the
basic Quantum constructs to the Meridian net-
work model. In particular, when a Quantum net-
work is created, a Meridian virtual network is
created, along with an empty group and a seg-
ment enabling all-to-all communication within
the group. Then the virtual network is installed.
As Quantum virtual ports get created on a given
network, endpoints are created and added to the
corresponding Meridian group.

While this allows the Quantum network man-
ager component to work with Meridian using the
standard APIs, it does not exploit the full flexi-
bility of the service-level networking model. For
this, we have introduced a new set of extensions
to the basic Quantum API and implemented
them as a Quantum plugin. As part of future
work, we are also investigating extensions to the
Nova compute module to support multi-VM
application deployments that can better exploit
Meridian services.

Integration with A Commercial Cloud Plat-
form — In addition to OpenStack, we also inte-
grated Meridian with the IBM Smart Cloud
Provisioning (SCP) cloud controller. SCP uses a
fully decentralized architecture with a set of
managers, or bots, that handle compute and
storage resources for tenants. The managing
processes run in a peer-to-peer fashion, with one
instance elected to coordinate provisioning oper-

ations. In the original SCP system, there are stor-
age bots and hypervisor bots that manage the
image and volume, and computing resources,
respectively, with a limited model of network ser-
vices for VMs. To support Meridian network ser-
vices, we extended SCP with a new network bot
type. Network bots are managing processes that
handle network configuration requests for ten-
ants. Similar to storage bots and hypervisor bots,
network bots operate in peer-to-peer mode with
one elected leader. The network leader bot is the
primary contact that receives network configura-
tion requests from the SCP web service node and
issues requests to the Meridian controller to con-
figure network topology for tenants.

SUMMARY AND FUTURE WORK
In this article, we describe Meridian, an SDN-
based controller framework for cloud network-
ing. We introduce a network service model for
users to construct and manage logical topologies
for their complex workloads in the cloud. We
discuss several key issues in the design of Merid-
ian, including installation and management of
virtual networks, how to dynamically update vir-
tual network entities efficiently, and our
approach to scalable orchestration of network
control and configuration tasks. We also describe
how Meridian can be leveraged by the Open-
Stack and IBM Smart Cloud Provisioning cloud
controllers.

Our current Meridian system is only an initial
prototype of an SDN-based networking frame-
work for the cloud. There are several challenges
remaining in all layers of the architecture that
need to be explored in our future work. First,
the network service model we describe is mainly
focused on managing the connectivity properties
of cloud applications like web service applica-
tions. However, we would like to explore how it
should be extended for performance-sensitive
workloads, such as Hadoop or content stream-
ing. These workloads require more specialized
routing and traffic delivery support to optimize
their performance.

Although Meridian supports multiple
instances of virtual networks, more work is need-
ed to fully understand the implications of multi-
tenancy. For example, with many tenants at cloud
scale, interactions or conflicts between network
configurations must be carefully managed. Multi-
tenancy also requires consideration of multiple
virtual networks together in order to jointly opti-
mize the required network device state. Another
related challenge is clearly scalability of the plat-
form in order to support a large number of ten-
ant network requests — the amount of state
required in network device tables will be a limit-
ing factor without additional schemes to optimize
flow rules and other resources.

We are also exploring additional enhance-
ments to Meridian services, such as the planner
to support partial recovery of failed plans and
the topology service to add a more generalized
topology discovery capability (as discussed earli-
er). Finally, to validate the ability of the Meridi-
an controller to support multiple methods for
implementing cloud networks, we are integrating
overlay-based virtual networking as an alternate

We are also explor-

ing additional

enhancements to

Meridian services,

such as the planner

to support partial

recovery of failed

plans and the topol-

ogy service to add a

more generalized

topology discovery

capability.

SHAIKH LAYOUT_Layout 1 1/28/13 3:42 PM Page 126

IEEE Communications Magazine • February 2013 127

or complementary mechanism to manage the
underlying network.

REFERENCES
[1] “Openstack Cloud Software,” http://www.openstack.

org, 2012.
[2] T. Benson et al., “CloudNaaS: A Cloud Networking Plat-

form for Enterprise Applications,” Proc. ACM Symp.
Cloud Computing, Oct. 2011.

[3] M. Loukides, What Is DevOps? O’Reilly Media, 2012.
[4] IETF, “Network Virtualization Overlays,” http://datatrack-

er.ietf.org/wg/nvo3/, Sept. 2012, work in progress.
[5] K. Barabash et al., “A Case for Overlays in DCN Virtual-

ization,” Proc. Wksp. Data Center-Converged and Virtu-
al Ethernet Switching, Sept. 2011.

[6] Nicira, Inc., “Networking in the Era of Virtualization,”
white paper, 2012, http://www.nicira.com.

[7] A. R. Curtis et al., “DevoFlow: Scaling Flow Manage-
ment for High-Performance Networks,” Proc. ACM SIG-
COMM, Aug. 2011.

[8] S. Shenker et al., “The Future of Networking, and the
Past of Protocols,” slides at http://www.slideshare.net/
martincasado/sdn-abstractions, June 2011.

[9] Open Networking Foundation, “Software-Defined Net-
working: The New Norm for Networks,” white paper,
Apr. 2012.

[10] “Floodlight,” http://floodlight.openflowhub.org, 2012.

BIOGRAPHIES
MOHAMMAD BANIKAZEMI [SM] is a research staff member at
the IBM T.J. Watson Research Center. His research interests
include cloud computing and software-defined networking.
He has a Ph.D. in computer science from Ohio State Univer-
sity, where he was an IBM Graduate Fellow. He has received
an IBM Research Division Award and several IBM Invention
Achievement Awards. He is a senior member of the ACM.

DAVID OLSHEFSKI received his B.S. degree in computer sci-
ence from State University of New York at Albany, his

M.S. degree from Renssalaer Polytechnic Institute at Hart-
ford, and his Ph.D. degree from Columbia University. He
has worked at IBM Research since 1988, and his current
research focus is on software-defined networking and
high-performance networking.

ANEES SHAIKH Anees Shaikh [S '92, M '99]
(aashaikh@us.ibm.com) is with the System Networking
division at IBM, where he works on software-defined net-
working. Prior to this, he was a research staff member and
manager with the IBM T.J. Watson Research Center in New
York, where he led research groups working in data center
networking, software-defined networking, cloud comput-
ing, and systems management. He received a Ph.D. in com-
puter science and engineering from the University of
Michigan, and B.S. and M.S. degrees in electrical engineer-
ing from the University of Virginia.

JOHN TRACEY (traceyj@us.ibm.com) is a senior technical staff
member at the IBM T. J. Watson Research Center in New
York. He received his B.S. and M.S. degrees, both in electri-
cal engineering, from the University of Notre Dame in 1990
and 1992, respectively. In 1996, he joined IBM Research as
an advisory software engineer after receiving his Ph.D. in
computer science, also from Notre Dame. He has pursued
research in the area of system software for networking
with a focus on performance and scalability of TCP/IP and
web and SIP servers. He has contributed research technolo-
gies to multiple IBM products. Currently, he is in the Sys-
tems Networking department working on software-defined
networking.

GUOHUI WANG (wangg@us.ibm.com) is a research staff
member at the IBM T. J. Watson Research Center. Before
joining IBM, he received his Ph.D. degree in computer sci-
ence from Rice University, an M.S. in computer science
from the Chinese Academy of Sciences, and a B.S. in elec-
trical engineering from the University of Science and Tech-
nology of China. His research interests are in data center
networking and cloud computing with a focus on new net-
work architecture, network virtualization, and software-
defined networking in cloud data centers.

To validate the ability

of the Meridian

controller to support

multiple methods for

implementing cloud

networks, we are

integrating overlay-

based virtual

networking as an

alternate or

complementary

mechanism to

manage the

underlying network.

SHAIKH LAYOUT_Layout 1 1/28/13 3:42 PM Page 127

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

