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A software defined storage environment is one in which logical
storage resources and services are completely abstracted from
physical storage systems. Therefore, not only can storage resources
cross physical boundaries, but they can also be defined by software
and provisioned automatically, for instance, by the applications
that consume them. In this paper, we present a novel software
defined cooperative caching (SDCC) framework that operates at
the block layer and manages the placement of data in different
tiers and caches that span multiple servers and storage systems in
an integrated and coherent fashion. A programming interface
complements the core framework by giving the applications an
interface to control data organization across the storage, thereby
allowing the block storage infrastructure to be software defined.
The SDCC framework allows applications to actively influence
the data layout while also benefitting from the system-wide
knowledge and resource management capabilities of the storage
system. We present an experimental study conducted using real
workloads, and the results demonstrate the performance
benefits gained with SDCC, as well as the potential for consolidating
multiple different workloads that share the same storage server.

Introduction
Software defined storage (SDS) is expected to play a key
role in enabling the software defined datacenter of the future,
defining the evolution in the design of storage systems
to enable the vision of a software defined environment (SDE).
By automatically allocating workloads to the most suitable
resources of the infrastructure, SDEs accelerate the
deployment of workloads and optimize the use of resources,
thereby delivering the agility needed to satisfy fast-changing
workload demands cost-effectively. SDS is expected to
accommodate architectures that can scale in terms of number
of compute and storage nodes (scale-out) and support
virtualized environments. In such environments,
differentiated service-level agreements (SLAs) are achieved
through software instead of hardware, and the consumers
of storage can configure and use the storage resources
through streamlined application programming interfaces
(APIs) and policies.
Datacenters are adopting Flash in various forms. For

example, introduced as a cache or as an element of tiered

storage in storage area network (SAN) storage nodes,
Flash causes little disruption to traditional storage
operations while bringing already significant performance
improvements. However, throughput increases at the storage
nodes can introduce contention in the network between
the host systems and storage, so distributing Flash closer to
the workloads not only reduces latency but also spreads the
load, enabling greater scaling. To mitigate the disruptive
effects of this scale-out approach applied to traditional
SAN-based storage environments, we introduce the software
defined cooperative cache (SDCC), a novel framework that
leaves ownership of data to the SAN storage nodes even
though data is stored in SAN storage nodes as well as across
distributed host-side Flash. As a result, functions such as
backup, mirroring and high availability operate as usual at
the SAN storage nodes without impact from the distributed
host-side Flash.
Similarly to software defined networking, which transfers

networking control plane and possibly even data plane
functions from networking hardware into software layers at
the servers to achieve global optimization across the network,
SDS is characterized by a horizontal dimension of global
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optimization and a vertical dimension of software integration.
SDCC displays these two dimensions as follows: to benefit
most from the low-latency access characteristics of Flash
as compared to magnetic disks [1], data stored in Flash
should be as close as possible to the host processors, driving
the integration of Flash control and data planes into software
at the hosts systems. The horizontal dimension of global
optimization driven by host-side Flash comes from the
coordination between hosts and SAN storage nodes: to
maximize the benefits of host-side Flash, in particular as a
read cache, placement of data at the distributed host-side
caches and the SAN storage is continuously optimized
according to workload behavior.
A further element in the vertical dimension of

integration is achieved from a data and control plane
perspective by enabling workloads to participate more
explicitly in the optimizations involving the host-side
Flash and SAN storage. To that end, a new API layer is
introduced to extend the interface available to applications:
on the data plane, applications provide hints that are
exploited by the underlying caching mechanism, thereby
managing the cache content more actively; on the
control plane, applications can adjust the properties of
the cache based on workload demands, SLAs, and properties
of the infrastructure resources. We refer to this interface
as SDCC-API.
The combined benefits of SDCC and the API

provided result in an SDS solution that closely integrates
workloads and host-side Flash while performing a global
optimization with SAN storage. This can be seen as an
example of software defined cache management. The SDCC
layer and SDCC-API have been productized in the IBM
Easy Tier* family of products.
In contrast to approaches where Flash-based caches are

integrated into a distributed file system, the framework
introduced here operates at the block level. As a
consequence, its benefits are available to any file system
or application. On the other hand, file systems access
higher-level semantics of data that can be used to influence
caching policies. For instance, a file system can detect
sequential accesses even if they end up being spread over
multiple block devices, so it can avoid Bpolluting[ the
cache (e.g. loading data unnecessarily) and instead use
pre-fetch and write-behind (i.e., periodic flushes of
the cache). In our case, such knowledge can be conveyed
over the SDCC-API interface. Moreover, compared with
other host-side block-level caches, SDCC is unique because
of its cache coherency across hosts, achieved through
coordination with the SAN storage system, as discussed
in the Related Work Section.
An environment that can take immediate advantage of

the proposed software defined cache management is server
virtualization with SAN-attached storage: by adding
Flash caches at the servers running the virtual machines

(VMs), the performance bottleneck of SAN storage can be
alleviated, latency can be substantially reduced, and
hence the number of VMs can be increased, all without
disrupting the storage management processes in place at
the SAN storage. Depending on the virtualization technology
used, the cache driver and VM-specific features may
either be implemented in the physical block storage
stack with appropriate hints from the layers above or be
integrated in the hypervisor stack or the guest VMs
themselves.
The main contributions of the paper are as follows:

• We introduce a novel framework for software defined
cooperative caching in SAN environments with
Flash-based direct-attached storage (DAS) devices on the
host servers.

• We present a set of APIs for data placement, focusing
on just-in-time cache data placement.

• We describe the architecture and implementation of the
caching function that manages placement of data in
the host server DAS tier.

• We present the results of an experimental study based
on real-world hardware and workloads that demonstrate
the benefits of the caching function of the proposed
framework.

The remainder of the paper is organized as follows. We
motivate the need for an SDS framework in Section 2 and
introduce our approach. In Section 3, we provide a
description of the data-placement APIs and present the
architecture of SDCC. The implementation is discussed in
Section 4, and the results of our experimental study are
presented in Section 5. We discuss related work in
Section 6 and conclude in Section 7.

Software defined data placement
Realizing the benefits of SDEs requires that the infrastructure
automatically adapt to the workload and application
characteristics, system resources, and service policies. Two
existing approaches at opposite ends of the spectrum
address this requirement at the block-storage layer. At one
end, the config-time approach allows the infrastructure to
expose different classes of devices and allows system
administrators or end users (such as application developers
or applications themselves) to choose devices based on
service and performance expectations at the time of
configuration. At the other extreme, the per-I/O approach
resorts to tagging each individual I/O operation with
information such as the priority and performance
expectations.
The config-time approachVused for example in the

OpenStack** Cinder scheduler [2]Vis an essential and
simple starting point for achieving the end goal of
SDEs. However, such config-time definitions do not allow
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applications or users the flexibility to dynamically change
data layouts at runtime based on user actions or system
events. It is also highly likely that the workload is not well
defined and may evolve over time. To be able to address
the above issues, applications or users need to overprovision
the system at the time of initial configuration, thus sacrificing
resource utilization. Also, a config-time approach may not
be appropriate for fine-grained control of runtime resources
such as caches. Even if the storage layer automatically adapts
to the changes in application workload characteristics, it
does so reactively. As a result, the end user may suffer
degraded performance until the storage system catches up
with the workload.
The per-I/O approach is suitable for managing resources

and providing information that is specific to an I/O request.
For example, such an approach may be suitable to allow
the application to influence scheduling policies to allow
higher-priority requests to complete faster than lower-priority
requests [3, 4]. However, this approach has its own
limitations. First, the information reaches the storage layer at
the same time as the I/O. As a result, the approach may not be
conducive to proactive data placement, i.e., preparing the
system for an impending workload. For example, such an
approach may be unsuitable to specify desired data layouts
such as Bprefetch data into cache[ or Bplace data on the DAS
tier.[ Moreover, a performance overhead may be incurred
because the I/O path needs to be modified. Also, the amount
of space available for tagging in the context of an I/O
command is limited.
In this paper, we propose a new, orthogonal approach,

that is, runtime data-placement APIs. The goal of this
API-driven approach is to allow the application developer
and system administrator the flexibility to perform specific
configuration and optimization actions at runtime, in
response to user actions or system events. In this approach,
the target layer (such as the storage system or host-side
cache) exposes a set of APIs that may be invoked at runtime
either programmatically (by the application developer)
or through the command line (by the system administrator).
Our runtime data placement APIs are designed to coexist
with the config-time and per-I/O approaches, thereby
providing a more diverse and flexible infrastructure over
which applications can operate. When the API is invoked,
the information is conveyed to the storage system
through special-purpose small computer system interface
(SCSI) commands; thus, it does not involve any changes
to workload I/O.
We envision that the API has other broader capability

aside from cache data placement, such that it can be
used to communicate event-based, debugging, servicing,
and policy information to the target layer and perform data
placement at other layers (such as tiers of a multi-tiered
storage system). However, these topics are beyond the
scope of this paper.

Just-in-time cache data placement APIs
The SDCC data placement APIs allow an application,
platform, or similar entity (collectively referred to as source)
to pass data placement hints to a target layer that implements
the SDCC-API interface. There are two APIs in this
framework: Query API and Hint API. The Query API allows
the source to fetch information (such as metadata) from
the underlying target layer. The Hint API allows the source
to pass information to the target layer as follows:

status_descriptor Hint (
application_ID_descriptor,
address_descriptor,
target_tier_descriptor,
metadata_descriptor,
intent_descriptor,
in_application_priority_descriptor,

lease_descriptor
)

The hint specifies a data location using an address
descriptor (address_descriptor) to which the hint is
applied. If the target layer operates at a different
object granularity than the source (e.g., block vs. file),
an appropriate translation layer is required to translate
the address_descriptor to addresses understood by
the target layer. For the cache data placement functionality
described here, the target_tier_descriptor represents
the cache. The hint may also specify an application
identifier (application_ID_descriptor) and priority
(in_application_priority_descriptor) to address
resource-sharing issues in a multi-tenant environment, such
as multiple VMs sharing a cache. In addition, the source
layer may also specify an event through the intent_descriptor
for the target layer to perform appropriate actions based
on this information. For example, specifying a Bclose[
event may result in the cache layer evicting the data in
response. Similarly, specifying an Bopen[ event may
result in the cache layer pre-fetching the data. In the absence
of an intent_descriptor, the target layer interprets the
hint as Bplace data in cache.[ In another example, the
application could use this API to specify a desired
response time or throughput to a storage system
implementing the API. The storage system may use
its knowledge of the current performance characteristics
of the system and devices to decide on an appropriate
location for the data that would match the application
needs.
The source layer may also specify metadata associated

with the data location using the metadata_descriptor.
Finally, a lease_descriptor may be used to describe
the duration of validity of the hint (such as start
and end times). The lease_descriptor information can be
used to optimally schedule data migration, for instance,
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by prioritizing data migration for hints with earlier
start times.
The hint results in the target layer issuing a request_id and

other status information as part of the status_descriptor.
The source layer uses this request_id to track completion
status of the hint through the hint management APIs,
which have been omitted from this paper.
The Query API is as follows:

metadata_descriptor Query(
application_ID_descriptor,
address_descriptor,
target_tier_descriptor,

)

All field interpretations are similar to the Hint API. The
Query API returns a metadata_descriptor object with
information about the current state of resources or the current
location of the data.

Motivating example
Consider a scenario in which a database application
performs a reorganization operation to eliminate
performance-degrading fragmentation in a tablespace or
index. The reorganization operation involves copying
over the data from the original fragmented location to a
new target address space that is based on unfragmented,
physically contiguous pages. However, during the
reorganization operation, key performance statistics metadata
associated with the source location is lost and must be
re-learned by the system. Also, the cache may have been
populated with data from the source address space such
that switching over to the target address space at the end of
the reorganization will affect performance adversely. The
SDCC-API hint mechanism provides a solution to this
challenge by allowing the application to proactively influence
cache placement by conveying event-based knowledge to
the caching layer. Once the database reorganization operation
is complete, the application may first query the source
metadata, issue a hint to delete the source address ranges
from the cache and then another hint to promote the target
address range to the cache and copy the required historical
access information from source to target.
Note that any application or platform layer can directly

invoke the SDCC-API. For example, in the above
example, the SDCC-API calls can be initiated by the
database application, by an application administrator through
a command-line interface or by the underlying platform.
The SDCC-API is exposed through a Java library in the
current version.

Architectural design
In this section, we present an architectural overview of
SDCC. The framework implements a client-server

architecture and consists of two layers:

• SDCC-API Layer: The SDCC-API layer provides the
APIs required for the applications (and administrator)
to influence data placement and caching policies.
The API layer also provides hint and conflict
management functions.

• SDCC Layer: The SDCC layer provides the cache
management functions, the clustering functions required
to maintain cache coherency, and the communication
protocol and channel control to communicate with the
storage nodes. The SDCC client components run on
the host servers (i.e., the SDCC clients or hosts).
The SDCC server components execute on the storage
backend node attached to the SAN fabric. Each client
is clustered with one or more servers. The clients
communicate with the server using an in-band protocol,
referred to as the SDCC Protocol, implemented using
the SCSI protocol over the storage network fabric.

SDCC clients communicate with the SDCC server to join the
cluster, to report local access statistics to the server, and to
request permissions to cache data, among other things.
The server manages clustering and cache permissions
and provides caching advice to clients. An overview of
an SDCC cluster is shown in Figure 1.

SDCC-API layer
The SDCC-API layer intercepts hints issued by applications
and communicates with file system services to translate
hints from application objects into block-level addresses. The
translated hints are passed on to the SDCC client that
communicates with the appropriate storage node. The SDCC
client may interpret hints, choosing to incorporate the
information directly into its caching policy when the hint is
targeted at data placement in the cache. In other situations,
such as when the data placement is aimed at a tier in the
storage backend, the hint is sent to the SDCC server for
interpretation.
On the storage node, hints are processed by the SDCC

server to devise an appropriate data placement strategy based
on several additional considerations, such as scheduling,
resource management and conflict resolution policies. The
data placement decision is then communicated to the
appropriate SDCC client as part of the SDCC server advice.
Since the SDCC-API is a feature intended to provide

additional capabilities to an application, we do not provide
a performance evaluation of the SDCC-APIs. Instead,
we focus on the performance evaluation of the SDCC
caching layer in the Section 5.

Role of the SDCC server
The SDCC server plays three key roles related to hint
management and advice generation: persistency, scheduling,
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and placement decision. The SDCC server is responsible for
maintaining cache state and hint information persistently
across failures and power cycles. It also manages hint
lifecycles. The goal is to relieve the application from
managing resources and maintaining state. For example,
the application is not expected to relinquish capacity
allocated in the cache or on a solid-state drive (SSD) tier for a
hint after the validity of the latter has expired. Likewise, an
application needs not persistently maintain state regarding
previously issued hints across crashes or restarts.
An application can use hints to pre-populate a cache or tier

prior to a start time when the application expects to start
accessing that data. The SDCC server can schedule data
migration based on available migration bandwidth, capacity
available at the target location, and the Bstart time[ for the

hint. This allows the system to maximize utilization by not
prematurely populating data in the target location. It also
allows applications to issue hints associated with well-known
scheduled tasks (such as a monthly report). The SDCC server
performs data placement based on its knowledge of the
workload access characteristics and system configuration in
addition to application hints. Whereas each application
only has a localized view of the system, the storage
backend has a more global view because of its ability
to monitor accesses from multiple applications and
multiple hosts. While hint parameters such as the
in_application_priority_descriptor may provide applications
some flexibility to specify priority in a given host,
the sharing of global resources such as capacity on
high-performance storage requires a global view to ensure

Figure 1

Architectural overview of software defined cooperative caching (SDCC). (SCSI: Small Computer System Interface; HDD: hard disk drive; SAS:
serial-attached SCSI; SSD: solid state drive; SATA: serial advanced technology attachment; NV-RAM: non-volatile random access memory.)
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high system utilization. The location of the SDCC server on
the storage node makes it an ideal choice to combine
application hints with global information to make better
data placement decisions. For example, performing read
caching at a host for data being frequently updated by other
hosts is not efficient, as it results in frequent cache invalidates
and slowdown of writes. Note that application hints
arriving at the SDCC server are not blindly deemed important
but are constantly evaluated. With its global view, the
SDCC server can identify and place such data at a common
backend location (such as an SSD tier in the backend).
The SDCC server is also responsible for managing
multi-tenancy issues, such as resource sharing between
multiple conflicting application hints, and for enforcing
policies.

SDCC layer
The SDCC layer coordinates host-side Flash DAS with SAN
storage to continuously optimize the system based on
workload behavior and application hints. The SDCC
server generates caching advice for the different SDCC
clients (i.e., suggesting to each client which data are likely
to become hot) and pins data to the client DAS Flash if
required (i.e., forcing the clients to cache some extents).
The SDCC client is responsible for managing the local DAS
Flash cache space, monitoring the local workload at a fine
granularity, and moving data from the SAN to the DAS
Flash. For scalability reasons, workload monitoring and
data placement at the SDCC server occur at a coarse
granularity in terms of space and time. Here the unit of data
movement is an extent (1 GB in size), and data placement
decisions are evaluated every 24 hours for the SAN tiers
to have a suitable tradeoff between the cost of data movement
and workload adaptation, and every 15 minutes for the
DAS cache tiers to communicate hot data suggestions and
pin data to the client DAS caches in a timely manner. On the
other hand, the client can afford to track data at a finer
granularity: data is organized in fragments (1 MB in size
each), and data movement decisions are evaluated
continuously, on a nearly per-I/O basis. Since the SDCC
server is oblivious to user accesses that result in hits in the
local caches of the SDCC clients, the SDCC clients
periodically report summaries of these hits to the server
using the SDCC-API. In this way, the server knows the big
picture about the cluster workload, albeit with some delay.
On the other hand, the clients are better informed about
the current workload on the host servers and can make more
timely decisions. SDCC aims to combine the completeness
of the information maintained at the server with the
accuracy of the information maintained by the client to
achieve the most effective caching on the clients.
In terms of implementation, at the storage node, the SDCC

server component is part of the volume virtualization and
automated tiering component. At the hosts, the SDCC client

is in the block layer of the host operating system (OS)
or the hypervisor, where it uses the DAS Flash to store
unmodified data, similarly to a read-only cache. However,
it not only caches hot data based on local application access
patterns, but also allows the storage node to use the host
DAS Flash as an external tier, in which the storage node
can pin data for a long term when deemed appropriate.
Because the storage node has a global view of the cluster
workload, it can coordinate the data flow in the cluster
and allow the host caches to work in a cooperative way
with SAN tiering mechanisms.
The main design objective of SDCC is to accelerate

host applications by taking advantage of the DAS Flash:
SDCC brings the most valuable data as close to the
application as possible by storing a copy of it on the DAS
Flash, where it can be accessed with low latency. Moreover,
by serving most of the requests from the DAS Flash,
SDCC offloads significant read traffic from the SAN,
reducing host and storage network infrastructure
requirements and allowing the SAN storage node to serve
more hosts and serve write I/Os more efficiently. Thereby,
it enables the SAN storage infrastructure to scale out.
It is key for the SAN storage node to retain ownership of the
data, i.e., at any given time the most up-to-date version of
the data is in the SAN. In this way, SDCC does not
disrupt features offered by the SAN, such as high availability,
copy services and tools for manageability. At the same
time, SDCC is transparent to applications and file systems
running on the hosts. Finally, SDCC manages the
coherence and the consistency of data in the cluster, ensuring
that the data stored on the DAS Flash of each host are
up-to-date.

Transport layer and communication protocol
The SDCC protocol is implemented as a set of vendor-unique
SCSI commands. A client initiates communication with an
SDCC server by sending a SCSI command. An SDCC server
initiates communication with a client by responding to a
polling command that the SDCC client has sent to the
server within the client I/O timeout period. The client sends
another polling command when it receives a response to a
previous polling command. A response to a polling
command contains either the message itself or a handle
that the client can use to read the message with a separate
SCSI command. These polling commands are issued on
an on-demand basis and are not continuous, except for the
infrequent keep-alive commands that clients send at
coarse intervals (e.g., every 15 minutes).

Data sharing
In many environments, multiple clients access the same
volumes on a storage node. SDCC allows data sharing by
multiple clients, so that clustered applications, e.g., clustered
databases such as IBM DB2* pureScale* [5] and Oracle
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RAC** (Real Application Clusters) [6], and clustered file
systems, e.g., IBM GPFS* (General Parallel File System) [7]
can be accelerated. To ensure coherence and consistency,
the SDCC server hands out caching permissions to clients:
a client may only cache a fragment of data (i.e., 1 MB
of data) if and only if it has been granted the appropriate
permissions by the server. The server will revoke caching
permissions for a fragment cached on a client if some
other client issues a write to that fragment. The SDCC server
suppresses thrashing due to writes by not granting caching
permissions for fragments that receive too many writes
from multiple clients.

Cache coherency
Initially, clients obtain leases from the SDCC server to
become members of the cluster. With such a lease, the client
can request subscriptions to one or more volumes. With a
volume subscription in place, the client will periodically
(e.g., at 15-minute intervals) receive caching advice from the
server for that volume, which, among other things, includes
a list of extents the client should promote and pin into its
cache for as long as it is not advised otherwise, and a list
of extents that are expected to be hot on that client and
that the client should promote, or at least consider promoting,
to the cache. A volume subscription allows the client to
request caching permissions for specific fragments of
that volume. Once this permission has been granted, the
client can promote the respective fragments into its cache.
At any given time, the client may relinquish caching
permissions and volume subscriptions, or decide to drop
its lease and leave the cluster. Similarly, the SDCC server
may decide to revoke caching permissions or volume
subscriptions or revoke the lease from a client if that client
stops reporting its status.

Selective caching
The SDCC client cache employs selective population to
decide what to promote into the cache and when to do so.
Therefore, the client will not cache all user reads; instead,
it will carefully monitor the user workload, also taking into
account the caching advice received from the SDCC
server, incorporating hints coming from the SDCC-API, to
only promote into the cache data fragments that are deemed
of high caching utility or that the application specifically
requests caching for. This is an iterative process that
constantly adapts to the workload and re-evaluates the
caching utility of data fragments. Note that legacy
applications not employing the SDCC-API running on a
SDCC client will still benefit from caching happening
underneath. Selective caching achieves a three-fold
objective:

a) Increase the hit rate: by only caching valuable fragments,
the client avoids cache pollution with cold data,

thereby saving space in the cache for more valuable
fragments that will bear more hits.

b)Maximize the read bandwidth: by only writing to the DAS
Flash hot fragments that are likely to stay in the cache for a
long time, the write bandwidth consumption of the DAS
Flash is minimized, leaving more bandwidth available for
serving cache read hits at a lower latency.

c) Maximize the Flash lifetime: by keeping the rate of
promotes low, the number of Flash writes is minimized,
thereby increasing the DAS Flash lifetime, which is
especially important with low-endurance consumer-level
Flash.

Implementation

Cache organization
The SDCC client cache maintains a cache directory structure,
in which allocation of DAS space occurs at fragment
granularity, whereas cache hits and invalidates occur at sector
granularity. The cache uses a variant of the generalized
CLOCK algorithm for fragment replacement [8]. For each
fragment, the cache also maintains a metric of its caching
utility, which is computed based on the recency and
frequency of accesses to that fragment. In addition to the
cache directory, the cache maintains a shadow cache
structure, called the watchlist, which holds information
about fragments that have not yet been promoted into the
cache. Fragments that have recently been accessed or have
been suggested for promotion by the SDCC server are
inserted into the watchlist, where their accesses are being
monitored for some time. Once a fragment becomes hot in
the watchlist (i.e., once it has seen a sufficient number of
Bpseudo-hits[), it becomes candidate for promotion into
the cache. At that point, the cache directory will compare
its utility against the utility of the candidate(s) for eviction
from the cache and the average utility of recently evicted
fragments: if the candidate for promotion is deemed
more worthy of caching, it will be promoted into the
cache; otherwise it will stay in the watchlist until it becomes
hotter than what is to be evicted (or until it gets cold and
is dropped from the watchlist altogether). In this way,
the cache ensures that only the hottest data will be promoted
and that they will remain cached for as long as they remain
hot, avoiding unnecessary cache churn. At the same time,
the cache is resistant to sequential scans and can adapt to
changing workloads, as every aspect of the cache admission
policy is dynamic. Besides the client cache admission
logic, the SDCC server can force specific fragments to be
promoted to the cache and remain there until further notice.

Bandwidth throttling
SDCC operates in an asynchronous manner, i.e., without
intervening in the user data path. For the SDCC client cache,
this means that fragments are promoted outside of the user
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read path: when the cache promotes a fragment, it first
requests caching permission from the SDCC server for that
fragment (if it does not have one already) and then initiates
a read operation from the SAN to fetch the data. Clearly,
a high promote rate (e.g., during the warm-up phase of the
cache) may impact the user workload if the SAN is operating
near its peak throughput. To avoid that, the SDCC server
periodically informs each SDCC client about how much
bandwidth can be used for promote reads based on the
current storage node load. In this way, each client can
limit its rate of promotes to ensure that the user workload will
not be affected, even when the cache intends to promote
heavily.

Persistent cache
Thanks to the coordinated and cooperative nature of SDCC,
the SDCC client caches can be persistent across orderly
client reboots and power cycles. Upon a client shutdown, the
client cache flushes its directory and relevant metadata to
the DAS Flash devices, with each device storing the metadata
for the data fragments it contains. Upon reboot, the cache
directory can be reconstructed by reading the relevant
metadata from the DAS devices that are still present.
Note that during the downtime of a client, some other client
may have issued writes to the data cached by the client that
is down, running the risk of serving stale data from their
DAS Flash upon reboot. SDCC ensures consistency
by having the client inform the server about the shutdown
and having the server continue monitoring the caching
permissions that had been granted to that client. While
the client is down, the server marks permissions for
fragments that have seen writes by other clients as revoked.
Upon reboot, the client is notified by the server of the
fragments with still valid caching permissions: the client
keeps these fragments in its cache and discards all others,
thereby avoiding the risk of serving stale data. Currently, the
cache contents are not maintained upon an un-orderly
shutdown (e.g., a crash); the system will automatically detect
the crash, however, and ensure correctness.

Platforms
We have implemented SDCC starting with the high-end
IBM server and storage platforms. As SDCC server we have
used the DS8870 storage node [9], in which the SDCC
component has been implemented within the Easy Tier
automated tiering component [10]. Once the administrator
enables SDCC, the system starts monitoring workloads and
makes volumes eligible for caching on the DAS space of
the hosts, without disruption to the high availability,
manageability and reliability features of the storage system.
On the host side, the SDCC client has been implemented

on the IBM Power* platform [11] as a driver for the
AIX* and Linux** OSs. In both cases, the client comprises
both a kernel component and a user-space component.

The kernel component is in the block layer of the OS and
intercepts user read and write requests. Read requests are
redirected to the DAS Flash if they are cache hits.
Write requests that update cached data result in cache
invalidations; updates to hot data are selectively chosen and
asynchronously reflected in the cache. The administrator
of the host OS can selectively enable caching for some
of the volumes connected to the host using a command-line
interface and monitor cache operations using a command-line
utility. In terms of host memory usage, the SDCC client
has a small footprint, requiring only about 0.05% of the
DAS size in main memory. The DAS hardware used is the
IBM EXP30-Ultra SSD Drawer [12], the IBM FlashSystem*
all-Flash arrays, and the PCIe** (Peripheral Component
Interconnect Express) cards [13]. The SDCC-API has
been implemented, but the applications we have
experimented with in this paper have not yet been modified
to use it actively. However, the cooperative caching at the
SDCC layer has been implemented: the SDCC server will
monitor the global workload and advise the clients regarding
what to cache, in addition to providing coherence and
consistency.
An early version of SDCC has been shipped with the

DS8870 storage systems under the name Easy Tier Server.
This initial version supports AIX on Power servers as the
client platform with a subset of the features described herein.

Summary of experimental results
We present an evaluation of the SDCC framework to
demonstrate the effectiveness of data placement close to the
application and to show that clustering and communication
overheads do not interfere with performance gains. These
results focus on the SDCC layer, that is, on cooperative
selective caching; further performance gains will be achieved
by leveraging application hints via the SDCC-API.
Since SDCC is mainly suited for transactional workloads

that benefit significantly from low-latency access to data,
we have evaluated it under a brokerage transactional
workload and an on-line transactional processing (OLTP)
workload with high skew. The former simulates a class
of applications that facilitate and manage transaction-oriented
business processes, resulting in a highly random I/O
workload with about 90% read and 10% write operations. We
used the brokerage workload to demonstrate how SDCC
improves the application transaction rate. The latter is a
typical OLTP workload that consists of 40% reads and 60%
writes, with a highly skewed distribution in the address
space: 90% of the I/O operations are contained within 5%
of the address space. We used the OLTP workload to
demonstrate the response time improvement under
constant throughput. We have used IBM DB2 9.7 as
the database server. Note that in all experiments all
traditional caches, such as OS and file system caches, storage
server caches, etc., operate as usual, i.e., SDCC supplements
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any other kind of caching at the host servers and storage
systems. The hardware and software configuration we used is
described in the Appendix.
The brokerage transactional workload required about

30 minutes to reach steady state before SDCC was enabled,
moving the hottest of data to the client DAS Flash and
resulting in an improvement of 5.4x at the steady state as
shown in Figure 2. The first 30 minutes in the run
correspond to the steady-state behavior without SDCC.
At the steady state with SDCC, the client cache hit rate was
about 93%, computed as a per-minute average. The 20%
drop in the transaction rate immediately after SDCC was
enabled is due to the very aggressive initial population
of the cache, consuming read bandwidth from the SAN
and impacting the user workload. During that phase, which
lasted for about 15 minutes, about 200 GB of data were
brought into the cache and the hit rate rose from 0% to
about 40%. The bandwidth throttling mechanism described
in the section BBandwidth throttling[ aims to alleviate
this problem. Table 1 shows the response time improvement

for the various transaction types. Overall, the transaction
response time was reduced by 88%, resulting in a
significant application acceleration. In addition to these
performance gains, SDCC relieved the SAN from a
significant portion of load: after SDCC was enabled, and
despite the throughput increase, the DS8870 served 60%
fewer reads per unit of time than before. This not only
allows the SAN to serve more writes, but also allows it to
serve more hosts, achieving higher consolidation and
substantial cost savings.
For the OLTP workload, the transactional throughput

of the system was fixed throughout the experiment, which
corresponds to an I/O throughput of about 40k IOPS
(I/O per second). The client cache hit rate was about 80%
at steady state. The results for the I/O throughput and
response time are shown in Figure 3. Again, as data
moved to the DAS Flash, the response time was reduced
from 3.9 ms to 1.9 ms, a 69% improvement. Note that this
improvement was achieved despite the significant write
ratio of the workload (60% writes vs. 40% reads).

Figure 2

Transactional throughput for the brokerage workload.

Table 1 Average response time with and without SDCC for the brokerage workload.
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Related work
The placement of Flash within the storage hierarchy is
being actively researched. In [14, 15] Flash is used as
a cache at the host, whereas [16] considers Flash as
a cache in a storage system, and [17] as a tier in the
storage system. SDCC is novel in that it integrates Flash
as a cache at the host in cooperation with the storage system,
providing cache coherency and cache hinting for the
Flash cache at the hosts. Coherency between hosts and
storage is addressed by [18] for networked file systems,
whereas SDCC provides this capability for block storage
systems. Cooperative caching between hosts and storage,
with the host issuing demote notifications to the
storage is introduced in [19], whereas SDCC provides
hints for promotions and demotions along with the
duration of those hints.
Many approaches to optimizing storage systems

using semantic information from the host have been
explored. Some approaches [20, 21] consider modifying
the storage system to determine cache placement according
to heuristics about the file system. This approach is
susceptible to changes in the file system format that could
unexpectedly cause undesired results. The SDCC-API
provides direct semantic information and hence does
not introduce any susceptibility to changes. In contrast
to [22], the SDCC-API sends semantic information in
independent commands instead of doing I/O tagging so
that a diverse set of future semantics can be provided
without being limited by the constraints of the widely
used SCSI command set. Avoiding I/O tagging also
enables the SDCC-API to provide hints for optimizations

that are outside the scope of a single I/O. In addition,
the SDCC-API can provide the capability to control
features of the underlying storage system such as
point-in-time copies.
A common industry approach to deploy host Flash

caching is to combine a host device driver with SSDs or PCIe
Flash, such as [23–26]. These device drivers do not maintain
cache coherency across hosts, whereas SDCC adds cache
coherency across hosts through coordination with the storage
system. Another approach to maintaining cache coherency
is to deploy Flash in combination with HBAs (host-bus
adapters) [27]. The HBA solution supports caches that are
hundreds of gigabytes in size, whereas SDCC supports
caches that are tens of terabytes in size with gigabytes
of meta-data in host DRAM (dynamic random-access
memory). HBA solutions can pool resources of multiple
HBAs, but accessing cached data shared among HBAs
in the same host consumes SAN bandwidth [28].
SDCC shares its cache among HBAs without consuming
SAN bandwidth.

Conclusion and future work
In this paper we have focused on SDS and, in particular, on a
framework that enables a software defined datacenter to take
advantage of Flash to increase performance and optimize
resource utilization. We have presented the SDCC-API, a
runtime data placement API, that facilitates just-in-time
placement of data at the most appropriate location, with an
emphasis on cache placement for host-side caches. SDCC
coordinates SAN storage with DAS storage to continuously
optimize data placement based on workload behavior and

Figure 3

Input/output throughput and response time for the OLTP workload.
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hints provided through the API. SDCC implements host-side
caching on Flash DAS, manages the cache coherence in
clustered environments in which multiple hosts access
the same data, and selects the most appropriate data to be
cached at each host. The framework, which we have
implemented in a real system using the IBM DS8870 Storage
Server and IBM Power servers, allows applications, such
as the IBM DB2 Database Server, to increase their
throughput by 5.4 times and reduce latency by 69% for real
workloads.
In the future, we plan to further develop the SDCC-API

to offer a more diverse interface and integrate it into
appropriate data-intensive applications and management
tools. In addition, we plan to integrate SDCC into
virtual computing infrastructures, where SDCC can be
used to accelerate virtualized storage and provide
virtual-server-specific functions. Moreover, we plan to
leverage novel types of memories (such as phase-change
memory) to further improve performance and optimize
resource utilization.

Appendix
For the experimental evaluation, the results of which
are presented in Section 5, we used the configurations
detailed below. Here the B2þ P[ designation indicates that
there are three drives in total in the RAID (redundant array
of independent disks) array, and a RAID stripe consists
of 2 data segments and 1 Parity segment. For the brokerage
workload, we used the following:

• IBM DS8870 Storage System with eight CPU cores and
256 GB cache
� 128 146 GB 15K HDDs (hard disk drives), RAID-5
� 4 Device Adapter Pairs
� 4 � 8 Gb Fibre Channels

• IBM Power 770+ Server (AIX 6.1.8.0), 8 8-Core P7+
(3.8 GHz)
� 1 EXP30 Ultra SSD
� 2þ P SSD RAID5 arrays used as Flash cache
� 1024 GB of DRAM

• DB2 9.7 FP2
� 1 DB2 Instance
� Database size was 2 TB
� 2 1.3TB volumes were allocated for database, temporary
files, and data generation
� 1 50 GB volume was allocated for log files

The OLTP workload used the following configuration:

• IBM DS8870 Storage System with 8 CPU cores and
256 GB cache
� 192 146 GB 15K RPM drives, RAID-5
� 4 Device Adapter pairs
� 4 � 8 Gb Fibre Channels

• IBM Power 770+ Server (AIX 6.1.8.0), 8 8-Core P7+
(3.8 GHz)

�1 EXP30 Ultra SSD
�2 2þ P RAID5 SSD arrays used as Flash cache.
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