OpenStack Tutorial

Shihabur R. Chowdhury CS 856 - Fall 2015 University of Waterloo

Environment Setup

- Download the VirtualBox image from <u>here</u>
- Open VirtualBox and go to
 - File > Import Appliance
- Choose the just downloaded virtual appliance file and click **Next**
- Set at least **4096MB** of memory and **1CPU** in the Appliance Settings window and click **Import**

Environment Setup

- VM credentials
 - username: **openstack**
 - password: **openstackpass**
- OpenStack credentials
 - username: admin
 - password: adminpass

DevStack

- A collection of scripts to run OpenStack on a single machine
 - For development and demo purposes
- Download devstack from github
 - git clone <u>https://git.openstack.org/openstack-</u> <u>dev/devstack</u>
- Put the configuration in local.conf
- Run the **stack.sh** script inside devstack directory.

DevStack Configuration

- Start the file with
 - o [[local|localrc]]
- A bunch of password configurations
 - ADMIN_PASSWORD=adminpass
 - DATABASE_PASSWORD=\$ADMIN_PASSWORD
 - RABBIT_PASSWORD=\$ADMIN_PASSWORD
 - SERVICE_PASSWORD=\$ADMIN_PASSWORD
 - SERVICE_TOKEN=servicetoken

DevStack Configuration (contd...)

- Network configuration
 - **FLOATING_RANGE=10.0.3.0/27**
 - PUBLIC_NETWORK_GATEWAY=10.0.3.1
 - HOST_IP=10.0.2.15

DevStack Configuration (contd...)

- Disable nova network
 - disable nova-net
- Enable neutron networking
 - enable_service q-svc
 - enable_service q-agt
 - o enable_service q-dhcp
 - enable_service q-meta
 - enable_service q-13
 - enable_service q-lbaas

DevStack Configuration (contd...)

Neutron configuration

- Q_USE_SECGROUP=True
- ENABLE_TENANT_VLANS=True
- TENANT_VLAN_RANGE=1000:1999
- o PHYSICAL_NETWORK=default
- FLAT_INTERFACE=eth0
- PUBLIC_INTERFACE=eth0

Environment Setup

- **stack.sh** takes quite a while to finish. It has been already run for you. Run the **rejoin-stack.sh** script to finish configuring the environment
 - o ~/devstack/rejoin-stack.sh
- Press Ctrl-a then press d to detach the screen session

General Tips

- Every component has detailed help
 - nova help
- Parameters of a particular command can be found in similar way
 - \circ $\,$ nova help boot $\,$
- Almost every component has a *-list command to show list of *s
 - glance image-list
 - neutron subnet-list

What services are running?

- Show the list of currently available services
 - \circ keystone service-list
- List of URLs for accessing REST API of the services
 - keystone endpoint-list
- Show everything
 - keystone catalog

User Management

- View list of users
 - keystone user-list
- Add a new user
 - keystone user-create --name bob --pass bobpass
- Add 'bob' to tenant 'admin'
 - keystone user-role-add --user bob --role _member_ -tenant admin

Quick Exercise

• How to change password of the user bob to 'nobob'?

Images and Flavors

- Show available images
 - o glance image-list
- Add a VM image to glance
 - glance image-create --name tinycore-x86 --disk-format

qcow2 --container-format bare --file

~/images/base_tc.qcow2

- List available flavors
 - nova flavor-list
- Create a new flavor
 - o nova flavor-create <name> <id> <ram> <disk> <vcpu(s)>
 - nova flavor-create m1.verytiny 6 64 1 1

Network Management

- Create a private network
 - neutron net-create private-ipv4-net
 - Note the ID and export it as **NETWORK_ID**
- Create a subnet under 'private-net'
 - neutron subnet-create --name private-ipv4-subnet
 \$NETWORK_ID 172.16.0.0/24 --gateway 172.16.0.1 --dnsnameserver 8.8.8.8
- Show details of a subnet
 - neutron subnet-show \$SUBNET_ID

Network Management

- Show list of routers
 - neutron router-list
- Create a router named 'border'
 - neutron router-create border
- Add the private and public networks to one of 'border''s interfaces
 - neutron router-interface-add border private-ipv4subnet
- Set a gateway interface for the router
 - neutron router-gateway-set border public

Security Groups

- Show the current tenant's security groups
 - \circ neutron security-group-list
- Create a new security group
 - neutron security-group-create ftp --description
 "Allow ftp traffic"
- Add rule to a security group
 - neutron security-group-rule-create --direction

ingress --protocol tcp --port_range_min 21 -port_range_max 21 ftp

Security Groups

- List all security rules
 - neutron security-group-rule-list
- Delete a security group rule
 - neutron security-group-rule-delete \$RULE_ID
- Delete a security group
 - neutron security-group-delete \$GROUP_ID

Security Group Exercise

• Create a security group that allows incoming UDP traffic from ports 10000 to 11000.

Virtual Machines

- Boot a virtual machine from an existing image
 - nova boot --flavor 1 --image cirros-0.3.4-x86_64-uec
 - --nic net-id=\$PRIVATE_NET --security-groups default,
 - ssh,icmp --poll vm-0
- Shutdown a VM
 - nova stop \$VM_ID
- Delete a VM
 - nova delete \$VM_ID

Virtual Machines

- Show VM details
 - nova show \$VM_ID
- Show the VM log
 - **nova console-log \$VM_ID** (or VM name)
- Get the VNC console URL
 - nova get-vnc-console \$VM_ID novnc
 - Paste the console URL to a browser to get the VM terminal.

Assign External IP to VM

- Allocate floating IP addresses from the floating range
 - neutron floatingip-create \$PUBLIC_NETWORK_ID
- List the network port of a VM
 - neutron port-list --device-id \$VM_ID
- Associate a floating IP with a VM nic
 - neutron floatingip-associate \$FLOATING_IP_ID
 \$VM_PORT_ID

• LVM concepts

- <u>https://www.howtoforge.com/linux_lvm</u>
- <u>http://www.routemybrain.com/understanding-the-concept-of-</u> <u>logical-volume-manager-%E2%80%93-lvm/</u>
- <u>http://tldp.org/HOWTO/LVM-HOWTO/anatomy.html</u>

- Create a new disk volume of size 1GB
 - \circ $\,$ cinder create 1 --display-name portable-disk $\,$
- Create a virtual machine with this disk volume attached
 - o nova boot --flavor 1 --image cirros-0.3.4-x86_64-uec

--nic net-id=\$PRIVATE_NET --block-device

source=volume,id=\$VOLUME_ID,dest=volume,

shutdown=preserve --poll vm-1

- Open the vnc console of **vm-1** and initialize the volume:
 - # partition the disk
 sudo fdisk /dev/vdb
 - # create a file system
 sudo mkfs -t ext3 /dev/vdb
 - # create mount point sudo mkdir /mnt/vdb
 - # mount the disk
 sudo mount /dev/vdb /mnt/vdb

- Detach volume from a VM
 - nova volume-detach vm-1 \$VOLUME_ID
- Attach volume to a running VM
 - nova volume-attach vm-0 \$VOLUME_ID

Load Balancing with Neutron

- Create 2 virtual machines with nova
 - nova boot --flavor 1 --image cirros-0.3.4-x86_64-uec
 --nic net-id=\$PRIVATE_NET --poll vm-00
 - nova boot --flavor 1 --image cirros-0.3.4-x86_64-uec
 -nic net-id=\$PRIVATE_NET --poll vm-01
- Create a load balancer pool
 - neutron lb-pool-create --lb-method ROUND_ROBIN --name balancer-pool --protocol TCP --subnet-id \$PRIVATE_SUBNET

Load Balancing with Neutron

- Add the two VMs to the load balancer pool
 - neutron lb-member-create --address \$SERVER1_IP -protocol 22 balancer-pool
 - neutron lb-member-create --address \$SERVER2_IP -protocol 22 balancer-pool
- Create a virtual IP (VIP)
 - neutron lb-vip-create --name lb-vip --protocol-port
 22 --protocol TCP --subnet-id \$PRIVATE_SUBNET
 balancer-pool

Load Balancing with Neutron

- Associate a floating IP with the VIP
 - neutron floatingip-associate \$FLOATING_IP_ID
 \$VIP_PORT_ID
- Port ID of a VIP can be obtained by
 - neutron lb-vip-show

OpenStack Python API

- OpenStack has a Python binding for it's RESTful API
- Each component of OpenStack exposes it's own API
- The first step is to create a Python object that acts as a client to a particular OpenStack component

- To use nova api import the novaclient first
 - from novaclient import client as nova_client
- Create a nova client by providing it with proper credentials
 - o nova = nova_client.Client(<api-version>, <username>,

<password>, <tenant-name>, <auth_url>)

• Once authorized, the nova object will be used to make all API calls

- List all flavors
 - o nova.flavors.list()
- List all servers
 - o nova.servers.list()
- Find a specific server
 - o nova.servers.find(name="vm-0")
- Show the supported operations on a server
 - o dir(nova.servers.find(name="vm-0"))

- Show a server's console log
 - o nova.servers.find(name="vm-0").get_console_output()
- Show status of a server
 - o nova.servers.find(name="vm-0").status
- Show the tenant who owns this server
 - o nova.servers.find(name="vm-0").tenant_id

- Find a server's Id using the API
- List the security groups a server belongs to
- Reboot a server
- Pause a server, print its status and unpause the server

- Create a new server
 - o nova.servers.create(

name='vm-2', flavor=nova.flavors.find(name='m1. very-tiny'), image=nova.images.find(name='cirros-0.3.4-x86_64-uec), nics=[{'net-id' : <NET_ID>}])

OpenStack Python API - Neutron

Similar for neutron. Create a client first

o from neutronclient.v2_0 import client

```
neutron = client.Client(username=<username>,
password=<password>, tenant_name=<tenant_name>,
auth_url=<auth_url>)
```

OpenStack Python API - Neutron

- List the networks
 - o neutron.list_networks()
- List the subnets
 - o neutron list_subnets()
- List the routers
 - o neutron list_routers()