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Middleboxes

“A middlebox is defined as any intermediary device performing 

func5ons other than the normal, standard func5ons of an IP router on 

the datagram path between a source host and des5na5on host.” 

 - B.Carpenter. RFC 3234. Middleboxes: Taxonomy and Issues.
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Primarily deployed for security and performance benefits.

Firewalls 
Intrusion Detec5on Systems (IDS)  
Intrusion Preven5on Systems (IPS)

Proxy/Caches  
WAN Op5mizers  

Protocol Accelerators



Middleboxes
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❖ As more and more companies started to rely on middleboxes, more 
and more of them started to realize the problems they bring 

❖ Expensive hardware 

❖ Complex management  



Network Func5on Virtualiza5on
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❖ The goal is to bring greater openness and agility to network 
dataplanes 

❖ Inspired by cloud compu5ng, NFV advocates moving Network 
Func5ons (NFs) out of their dedicated physical boxes to virtualized 
so`ware applica5ons that can be run on commodity hardware 

❖ However, the current trend is to replace, on a one-to-one basis, the 
monolithic hardware by a monolithic so`ware 

❖ It fails to provide a coherent management solu5on for middleboxes 

❖ Operators s5ll need to cope with NF-specific management systems 

❖ Developers may need to invent their own solu5ons for non-trivial 
tasks (scaling, fault-tolerance, …)



Network Func5on Virtualiza5on
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❖ NFV needs a framework that implements general techniques for 
common issues. Similar to data analy5cs frameworks (Hadoop, 
Spark, Map Reduce) 

❖ Placement 

❖ Elas5c scaling 

❖ Service composi5on 

❖ Resource isola5on 

❖ Fault tolerance 

❖ Energy management 

❖ …



Elas5c Edge (E2)
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❖ A NFV management framework that 

❖ Allows developers to focus on their core applica5on logic 

❖ Simplifies the operators responsibili5es 

❖ The framework will provide solu5ons for 

❖ Automate placement 

❖ Service interconnec5on 

❖ Dynamic scaling



Outline

Design of the system

E2 Dataplane

E2 Control Plane

Evalua5on

Conclusion
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System architecture
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❖ E2 Manager orchestrates overall opera5ons 

❖ Server Agent manages opera5ons within each server 

❖ E2D acts as so`ware traffic processing layer 

Design → Dataplane → Control Plane → Evalua5on



Design considera5ons

❖ E2 is designed for a hardware infrastructure composed of general-
purpose servers connected by commodity switches 

❖ E2 is responsible for managing system resources 

❖ Must avoid over-booking CPU and NIC resources 

❖ Must avoid over-loading the switch capacity 

❖ Must avoid excessive use of the flow table 
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System workflow

❖ An operator defines a set of network policies (called pipelets) to the 
global SDN controller 

❖ The SDN controller hands the E2 Manager a set of pipelets 

❖ The E2 Manager is responsible for execu5ng these pipelets on the 
E2 cluster 

❖ The Server Agent takes care of the local configura5ons 

❖ NFs and E2D report back to the Server Agent (hardware failure, 
overload, …) 

❖ Server Agents report back to the E2 Manager which reports back to 
the SDN controller

10Design → Dataplane → Control Plane → Evalua5on



Pipelets
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❖ Pipelets are defined by the operators using a declara5ve language 

❖ A pipelet describes how a par5cular traffic class should be 
processed and a corresponding directed acyclic graph (DAG) 

❖ Traffic classes are defined in term of packet header fields and 
physical ports on the switch 

❖ A node in the pipelet’s DAG represents a NF or a physical port on 
the switch and edges describe the traffic between nodes 

❖ Edges may be annotated with one or more traffic filters 

❖ A traffic filter is a boolean expression that defines what subset of 
traffic from the source node should reach the des5na5on node

Design → Dataplane → Control Plane → Evalua5on



Pipelets
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❖ Conceptually, pipelets can be viewed as DAG, as called as policy 
graph (pGraph)

Design → Dataplane → Control Plane → Evalua5on



Pipelets
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❖ Technically, pipelets are defined with a declara5ve policy language

Pipelet for outbound traffic Pipelet for inbound traffic

Design → Dataplane → Control Plane → Evalua5on



NF Descrip5on
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❖ In addi5on to pipelets, E2 takes a NF descrip5on that guides the 
framework in configuring each NF 

❖ Na5ve vs legacy 

❖ Akribute-Method binding 

❖ Scaling constraints 

❖ Affinity constraints 

❖ NF performance

Design → Dataplane → Control Plane → Evalua5on



Hardware descrip5on
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❖ It also takes a hardware descrip5on that tells the framework what 
resources are available 

❖ Number of cores available 

❖ Network I/O bandwidth 

❖ Number of switch ports 

❖ Number of entries in the switch flow table 

❖ Available switch ac5ons 

❖ …

Design → Dataplane → Control Plane → Evalua5on



The E2 Dataplane (E2D)
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The E2 Dataplane (E2D)

❖ The goal of E2D is to provide flexible yet efficient plumbing across 
NF instances in the pGraph 

❖ The implementa5on is based on So`NIC (a so`ware-based NIC 
developed by researchers from Berkeley) 

❖ It allows arbitrary packet processing modules to be configured as 
data flow graph 

❖ E2 doesn’t use OVS because NFV doesn’t share many design 
considera5ons. It would have required a lot of work to adapt and 
possibly breaking changes.

17Design → Dataplane → Control Plane → Evalua5on



SoRNIC

❖ So`NIC exposes virtual NIC ports (vports) to NF instances 

❖ Between vports and pports (physical ports), packet processing 
modules can be configured as a data flow graph 

❖ So`NIC uses Intel DPDK (Data Plane Development Kit) for low-
overhead I/O to hardware NICs and uses batch processing 

❖ It also runs on a small number of dedicated processors for high 
throughput and low latency (beker use of CPU caches and removes 
context-switches) 

❖  Can process up to 40 Gbps of data per core

18Design → Dataplane → Control Plane → Evalua5on



Extending SoRNIC for E2D

❖ New modules were developed for E2D (load monitoring, flow 
tracking, packet classifica5on, load balancing, tunnelling across NFs) 

❖ Development of a na5ve API that NFs can use to improve system 
wide performance and modularity 

❖ Provides support for zero-copy packet transfer over vports 

❖ Rich message abstrac5on 

❖ Reconstructed TCP bytestream (remove redundant overhead) 

❖ Per-packet metadata tags that accompany the packet 

❖ Inter NF no5fica5ons (no5fy to block traffic from IPS to FW)
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Extending SoRNIC for E2D

❖ Exposes a control API to E2’s Server Agent 

❖ Dynamically create or destroy vports 

❖ Add/remove modules in E2D’s packet processing pipeline 

❖ Receive no5fica5ons of NF overload or failure from E2D

20Design → Dataplane → Control Plane → Evalua5on



The E2 Control Plane

❖ In charge of 

❖ Placement (instan5a5on of pipelets on servers) 

❖ Interconnec5on (semng up and configuring the interconnec5ons 
between NFs) 

❖ Scaling (dynamically adap5ng the placement decisions depending 
on load varia5ons) 

❖ Ensuring affinity constraints of NFs

21Design → Dataplane → Control Plane → Evalua5on



NF Placement

❖ The ini5al placement of NFs involves 5 steps 

1. Merging pipelets into a single policy graph 

2. Sizing 

3. Conver5ng the pGraph to an iGraph 

4. Instance placement 

5. Offloading to hardware switch

22Design → Dataplane → Control Plane → Evalua5on



NF Placement - Step 1 (Merging pipelets)

❖ Combine the set of input pipelets into a single policy graph (pGraph) 

❖ Simply the union of all the pipelets 
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Input A B Output

Input C D Output
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NF Placement - Step 1 (Merging pipelets)

❖ Combine the set of input pipelets into a single policy graph (pGraph) 

❖ Simply the union of all the pipelets 
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A B
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E

Input

Design → Dataplane → Control Plane → Evalua5on



NF Placement - Step 2 (Sizing)

❖ Use the ini5al es5mate of the load on a NF and its per-core capacity 
from the NF descrip5on to find how many instances (running on 
separate cores) should be allocated to it 

❖ The sizing step doesn’t need to be accurate, we only need a star5ng 
point and the dynamic scaling will take care of the rest
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NF Placement - Step 3 (pGraph to iGraph)

❖ Transform the policy graph (pGraph) into an instance graph (iGraph) 

❖ Uses the size of each NFs from step 2
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NF Placement - Step 3 (pGraph to iGraph)

❖ Transform the policy graph (pGraph) into an instance graph (iGraph) 
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NF Placement - Step 4 (Instance Placement)

❖ Maps each NF instance to a par5cular server  

❖ The goal is to minimize inter-server traffic 

❖ Forwarding within a single server incurs lower delay and 
consumes less processor cycles 

❖ Link bandwidth between servers and the switch is a limited 
resource 

❖ Op5miza5on problem → Graph Par55on Problem → NP-hard 

❖ Itera5ve local searching algorithm (modified form of Kernighan-Lin)

28Design → Dataplane → Control Plane → Evalua5on



NF Placement - Step 5 (Offloading to the hardware switch)

❖ Commodity switch ASICs implement various low-level features 

❖ Possibility to offload some func5ons, but resources are limited 

❖ E2 uses an opportunis5c approach 

❖ NF is considered as a candidate to offloading to the switch only 
if, at the end of the placement, that NF is adjacent to a switch 
port, and the switch has available resources to run it 

❖ The current prototype doesn’t focus on offloading

29Design → Dataplane → Control Plane → Evalua5on



Service Interconnec5on

❖ Recall that edges in pGraph are annotated with filters 

❖ Three stages 

❖ Instan5a5ng NF’s ports 

❖ Adding traffic filters 

❖ Configuring the switch and E2D

30Design → Dataplane → Control Plane → Evalua5on



Dynamic scaling

❖ Some NFs are stateful and require affinity (traffic for a given flow 
must reach the instance that holds the flow’s state) 

❖ Tradi5onal approaches 

❖ State migra5on (moving the state to another instance) 

❖ Expensive and incompa5ble with legacy applica5ons 

❖ E2 uses a novel migra5on avoidance strategy in which hardware and 
so`ware act in concert to maintain affinity

31Design → Dataplane → Control Plane → Evalua5on



Migra5on avoidance for flow affinity

❖ Each flow can be mapped to a flowID (hash func5on on relevant 
header fields) 

❖ Each instance as a range ( [X, Y) )  

❖ When overloaded, the range is split ( [X, M) and [M, Y) ) 

❖ Need to take care of the old flows (excep5on flows)

32Design → Dataplane → Control Plane → Evalua5on



E2D Performance Evalua5on

❖ A simple forwarding test
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NF Switch

Average of 4.91µs

NF 
(DPDK) Switch

Average of 4.61µs

❖ Overhead of 0.15µs (for each direc5on)

Design → Dataplane → Control Plane → Evalua5on

E2
D



Placement algorithm performance evalua5on
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Overall performance evalua5on
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Conclusion

36Design → Dataplane → Control Plane → Evalua5on

❖ E2, a management framework for NFV 

❖ It provides the operator with a single coherent management system 

❖ It takes care of the placement, scaling, service interconnec5on and 
other func5onali5es 

❖ E2 doesn’t impose undue overheads and enable flexible and 
efficient interconnec5on between NFs. 

❖ The placement algorithm performs beker than tradi5onal 
approaches 

❖ The migra5on avoidance strategy has a lot of poten5al


