
E2: A Framework for NFV
Applica5ons

Shoumik Palkar

Keon Jang

Cheriton School of Computer Science
Faculty of Mathema5cs

Paper presenta*on
Fall 2015

by
Jean-Philippe Gauthier

Luigi Rizzo

Chang Lan Aurojit Panda

Sangjin Han

Sylvia Ratnasamy

ScoI Spencer

UC Berkeley UC Berkeley UC Berkeley UC Berkeley

UC Berkeley
ICSI

UC BerkeleyUniversità di PisaIntel Labs

Middleboxes

“A middlebox is defined as any intermediary device performing

func5ons other than the normal, standard func5ons of an IP router on

the datagram path between a source host and des5na5on host.”

 - B.Carpenter. RFC 3234. Middleboxes: Taxonomy and Issues.

2

Primarily deployed for security and performance benefits.

Firewalls
Intrusion Detec5on Systems (IDS)
Intrusion Preven5on Systems (IPS)

Proxy/Caches
WAN Op5mizers

Protocol Accelerators

Middleboxes

3

❖ As more and more companies started to rely on middleboxes, more
and more of them started to realize the problems they bring

❖ Expensive hardware

❖ Complex management

Network Func5on Virtualiza5on

4

❖ The goal is to bring greater openness and agility to network
dataplanes

❖ Inspired by cloud compu5ng, NFV advocates moving Network
Func5ons (NFs) out of their dedicated physical boxes to virtualized
so`ware applica5ons that can be run on commodity hardware

❖ However, the current trend is to replace, on a one-to-one basis, the
monolithic hardware by a monolithic so`ware

❖ It fails to provide a coherent management solu5on for middleboxes

❖ Operators s5ll need to cope with NF-specific management systems

❖ Developers may need to invent their own solu5ons for non-trivial
tasks (scaling, fault-tolerance, …)

Network Func5on Virtualiza5on

5

❖ NFV needs a framework that implements general techniques for
common issues. Similar to data analy5cs frameworks (Hadoop,
Spark, Map Reduce)

❖ Placement

❖ Elas5c scaling

❖ Service composi5on

❖ Resource isola5on

❖ Fault tolerance

❖ Energy management

❖ …

Elas5c Edge (E2)

6

❖ A NFV management framework that

❖ Allows developers to focus on their core applica5on logic

❖ Simplifies the operators responsibili5es

❖ The framework will provide solu5ons for

❖ Automate placement

❖ Service interconnec5on

❖ Dynamic scaling

Outline

Design of the system

E2 Dataplane

E2 Control Plane

Evalua5on

Conclusion

7

System architecture

8

❖ E2 Manager orchestrates overall opera5ons

❖ Server Agent manages opera5ons within each server

❖ E2D acts as so`ware traffic processing layer

Design → Dataplane → Control Plane → Evalua5on

Design considera5ons

❖ E2 is designed for a hardware infrastructure composed of general-
purpose servers connected by commodity switches

❖ E2 is responsible for managing system resources

❖ Must avoid over-booking CPU and NIC resources

❖ Must avoid over-loading the switch capacity

❖ Must avoid excessive use of the flow table

9Design → Dataplane → Control Plane → Evalua5on

System workflow

❖ An operator defines a set of network policies (called pipelets) to the
global SDN controller

❖ The SDN controller hands the E2 Manager a set of pipelets

❖ The E2 Manager is responsible for execu5ng these pipelets on the
E2 cluster

❖ The Server Agent takes care of the local configura5ons

❖ NFs and E2D report back to the Server Agent (hardware failure,
overload, …)

❖ Server Agents report back to the E2 Manager which reports back to
the SDN controller

10Design → Dataplane → Control Plane → Evalua5on

Pipelets

11

❖ Pipelets are defined by the operators using a declara5ve language

❖ A pipelet describes how a par5cular traffic class should be
processed and a corresponding directed acyclic graph (DAG)

❖ Traffic classes are defined in term of packet header fields and
physical ports on the switch

❖ A node in the pipelet’s DAG represents a NF or a physical port on
the switch and edges describe the traffic between nodes

❖ Edges may be annotated with one or more traffic filters

❖ A traffic filter is a boolean expression that defines what subset of
traffic from the source node should reach the des5na5on node

Design → Dataplane → Control Plane → Evalua5on

Pipelets

12

❖ Conceptually, pipelets can be viewed as DAG, as called as policy
graph (pGraph)

Design → Dataplane → Control Plane → Evalua5on

Pipelets

13

❖ Technically, pipelets are defined with a declara5ve policy language

Pipelet for outbound traffic Pipelet for inbound traffic

Design → Dataplane → Control Plane → Evalua5on

NF Descrip5on

14

❖ In addi5on to pipelets, E2 takes a NF descrip5on that guides the
framework in configuring each NF

❖ Na5ve vs legacy

❖ Akribute-Method binding

❖ Scaling constraints

❖ Affinity constraints

❖ NF performance

Design → Dataplane → Control Plane → Evalua5on

Hardware descrip5on

15

❖ It also takes a hardware descrip5on that tells the framework what
resources are available

❖ Number of cores available

❖ Network I/O bandwidth

❖ Number of switch ports

❖ Number of entries in the switch flow table

❖ Available switch ac5ons

❖ …

Design → Dataplane → Control Plane → Evalua5on

The E2 Dataplane (E2D)

16Design → Dataplane → Control Plane → Evalua5on

The E2 Dataplane (E2D)

❖ The goal of E2D is to provide flexible yet efficient plumbing across
NF instances in the pGraph

❖ The implementa5on is based on So`NIC (a so`ware-based NIC
developed by researchers from Berkeley)

❖ It allows arbitrary packet processing modules to be configured as
data flow graph

❖ E2 doesn’t use OVS because NFV doesn’t share many design
considera5ons. It would have required a lot of work to adapt and
possibly breaking changes.

17Design → Dataplane → Control Plane → Evalua5on

SoRNIC

❖ So`NIC exposes virtual NIC ports (vports) to NF instances

❖ Between vports and pports (physical ports), packet processing
modules can be configured as a data flow graph

❖ So`NIC uses Intel DPDK (Data Plane Development Kit) for low-
overhead I/O to hardware NICs and uses batch processing

❖ It also runs on a small number of dedicated processors for high
throughput and low latency (beker use of CPU caches and removes
context-switches)

❖ Can process up to 40 Gbps of data per core

18Design → Dataplane → Control Plane → Evalua5on

Extending SoRNIC for E2D

❖ New modules were developed for E2D (load monitoring, flow
tracking, packet classifica5on, load balancing, tunnelling across NFs)

❖ Development of a na5ve API that NFs can use to improve system
wide performance and modularity

❖ Provides support for zero-copy packet transfer over vports

❖ Rich message abstrac5on

❖ Reconstructed TCP bytestream (remove redundant overhead)

❖ Per-packet metadata tags that accompany the packet

❖ Inter NF no5fica5ons (no5fy to block traffic from IPS to FW)

19Design → Dataplane → Control Plane → Evalua5on

Extending SoRNIC for E2D

❖ Exposes a control API to E2’s Server Agent

❖ Dynamically create or destroy vports

❖ Add/remove modules in E2D’s packet processing pipeline

❖ Receive no5fica5ons of NF overload or failure from E2D

20Design → Dataplane → Control Plane → Evalua5on

The E2 Control Plane

❖ In charge of

❖ Placement (instan5a5on of pipelets on servers)

❖ Interconnec5on (semng up and configuring the interconnec5ons
between NFs)

❖ Scaling (dynamically adap5ng the placement decisions depending
on load varia5ons)

❖ Ensuring affinity constraints of NFs

21Design → Dataplane → Control Plane → Evalua5on

NF Placement

❖ The ini5al placement of NFs involves 5 steps

1. Merging pipelets into a single policy graph

2. Sizing

3. Conver5ng the pGraph to an iGraph

4. Instance placement

5. Offloading to hardware switch

22Design → Dataplane → Control Plane → Evalua5on

NF Placement - Step 1 (Merging pipelets)

❖ Combine the set of input pipelets into a single policy graph (pGraph)

❖ Simply the union of all the pipelets

23

Input A B Output

Input C D Output

Input E Output

Design → Dataplane → Control Plane → Evalua5on

NF Placement - Step 1 (Merging pipelets)

❖ Combine the set of input pipelets into a single policy graph (pGraph)

❖ Simply the union of all the pipelets

24

A B

C D Output

E

Input

Design → Dataplane → Control Plane → Evalua5on

NF Placement - Step 2 (Sizing)

❖ Use the ini5al es5mate of the load on a NF and its per-core capacity
from the NF descrip5on to find how many instances (running on
separate cores) should be allocated to it

❖ The sizing step doesn’t need to be accurate, we only need a star5ng
point and the dynamic scaling will take care of the rest

25

A

B

C

D

E2

1 2

1 1

Design → Dataplane → Control Plane → Evalua5on

NF Placement - Step 3 (pGraph to iGraph)

❖ Transform the policy graph (pGraph) into an instance graph (iGraph)

❖ Uses the size of each NFs from step 2

26

A B

C D Output

E

Input

Design → Dataplane → Control Plane → Evalua5on

NF Placement - Step 3 (pGraph to iGraph)

❖ Transform the policy graph (pGraph) into an instance graph (iGraph)

❖ Uses the size of each NFs from step 2

27

A

D Output

E

Input

B

A

D

C

Design → Dataplane → Control Plane → Evalua5on

NF Placement - Step 4 (Instance Placement)

❖ Maps each NF instance to a par5cular server

❖ The goal is to minimize inter-server traffic

❖ Forwarding within a single server incurs lower delay and
consumes less processor cycles

❖ Link bandwidth between servers and the switch is a limited
resource

❖ Op5miza5on problem → Graph Par55on Problem → NP-hard

❖ Itera5ve local searching algorithm (modified form of Kernighan-Lin)

28Design → Dataplane → Control Plane → Evalua5on

NF Placement - Step 5 (Offloading to the hardware switch)

❖ Commodity switch ASICs implement various low-level features

❖ Possibility to offload some func5ons, but resources are limited

❖ E2 uses an opportunis5c approach

❖ NF is considered as a candidate to offloading to the switch only
if, at the end of the placement, that NF is adjacent to a switch
port, and the switch has available resources to run it

❖ The current prototype doesn’t focus on offloading

29Design → Dataplane → Control Plane → Evalua5on

Service Interconnec5on

❖ Recall that edges in pGraph are annotated with filters

❖ Three stages

❖ Instan5a5ng NF’s ports

❖ Adding traffic filters

❖ Configuring the switch and E2D

30Design → Dataplane → Control Plane → Evalua5on

Dynamic scaling

❖ Some NFs are stateful and require affinity (traffic for a given flow
must reach the instance that holds the flow’s state)

❖ Tradi5onal approaches

❖ State migra5on (moving the state to another instance)

❖ Expensive and incompa5ble with legacy applica5ons

❖ E2 uses a novel migra5on avoidance strategy in which hardware and
so`ware act in concert to maintain affinity

31Design → Dataplane → Control Plane → Evalua5on

Migra5on avoidance for flow affinity

❖ Each flow can be mapped to a flowID (hash func5on on relevant
header fields)

❖ Each instance as a range ([X, Y))

❖ When overloaded, the range is split ([X, M) and [M, Y))

❖ Need to take care of the old flows (excep5on flows)

32Design → Dataplane → Control Plane → Evalua5on

E2D Performance Evalua5on

❖ A simple forwarding test

33

NF Switch

Average of 4.91µs

NF
(DPDK) Switch

Average of 4.61µs

❖ Overhead of 0.15µs (for each direc5on)

Design → Dataplane → Control Plane → Evalua5on

E2
D

Placement algorithm performance evalua5on

34Design → Dataplane → Control Plane → Evalua5on

Overall performance evalua5on

35Design → Dataplane → Control Plane → Evalua5on

Conclusion

36Design → Dataplane → Control Plane → Evalua5on

❖ E2, a management framework for NFV

❖ It provides the operator with a single coherent management system

❖ It takes care of the placement, scaling, service interconnec5on and
other func5onali5es

❖ E2 doesn’t impose undue overheads and enable flexible and
efficient interconnec5on between NFs.

❖ The placement algorithm performs beker than tradi5onal
approaches

❖ The migra5on avoidance strategy has a lot of poten5al

