
Decentralized Task-Aware Scheduling for Data
Center Networks

Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, Ant
Rowstron

Presented by Eric Dong (yd2dong)

October 30, 2015

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Tasks in data centers

Applications execute rich and complicated tasks
Replying to search queries, gathering information for a news
feed, etc
Each task can involve dozensof flows, all of which have to
complete for the task to finish

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Tasks in data centers

Two important metrics
Task size: sum of the sizes of network flows involved

All sorts of statistical distributions (ex: search vs. data
analytics)

Uniform, heavy-tailed, etc

Flows per task
Varies very wildly, from dozens to thousands.

Scheduling algorithm must work on a wide

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Traditional metrics

Per-flow fair sharing (TCP, DCTCP)
Poor average performance when multiple tasks occur at the
same time

Flow-level scheduling metrics (shortest flow first, etc)
Considers flows in isolation
Example: SFF schedules the shorter flows of different tasks
first, leaving the longer flows of all the tasks to the end, thus
delaying the completion of all the tasks.

We need something better.
Unfortunately, this problem is NP-hard :(. But we can use
some heuristics!

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Task serialization

The set of policies where an entire task is scheduled before
the next. This improves upon fair-sharing because it
eliminates contention. One good task serialization algorithm
is actually simple: first-in-first-out.

Another example would be shortest-task-first (STF), which
improves the average completion time, but leads to high tail
latency or even starvation if short tasks keep coming in and
preempting long tasks.Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Task serialization

FIFO is great for light-tailed distributions — in fact it’s
provably optimal for minimizing the tail completion time.
But it isn’t that great for heavy-tailed distributions.
“Elephant” flows which happen to arrive first end up blocking
small flows, increasing latency.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



FIFO-LM

The paper proposes FIFO-LM: first-in-first-out with limited
multiplexing
Just like FIFO, but does a limited number of tasks — the
degree of multiplexing — at once.
Hybrid between FIFO (degree = 1) and fair-sharing (degree =
∞).

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Baraat

The authors’ distributed implementation of FIFO-LM
No explicit coordination
Based on globally unique task-ids.

Lower ID means higher priority
Flows inherit the ID of their tasks.
Incrementing counter for every point where tasks arrive

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Prioritization mechanism

We have task priorities now. We still need an algorithm that
uses them to efficiently schedule tasks.
We can theoretically use one of the zillions of different
existing flow-prioritization algorithms. But they don’t have
the properties we need.

We need a new algorithm.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Smart Priority Class

Similar to traditional priority queues
High-priority flows preempt low-priority flows
Flows with the same priority share bandwidth fairly

Two differences:
On-switch classifier: one-to-one mapping between tasks and
priorities. Detects heavy tasks on-the-fly, and bump their
priority down to that of the next-prioritized class. -LM part in
FIFO-LM!
Explicit rate control: switches tell senders how quickly to send.

This moves more work to the end hosts and reduces the
overhead of bookkeeping in switches.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Explicit rate protocol

Every RTT, sender transmits a scheduling request message
that demands a certain rate.
Switch tells sender two numbers

Actual rate (AR): how much should be sent in the next RTT
Nominal rate (NR): maximum possible rate based on the
priority

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Explicit rate protocol

We end up implementing FIFO-LM in a distributed way, with
no global communication or central controller needed.
But is it actually a lot better than existing schedulers?
Experiments!

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Evaluation

The paper evaluates Baraat on three platforms
Small scale testbed
Huge datacenter simulation
Micro-benchmarks

All show significant improvements compared to other
techniques

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Small-scale tests

Storage retrieval scenario: clients read data from storage
servers in parallel
One rack of four nodes running Memcached as the client, four
more racks acting as the backend
One switch connecting everything

Very significant improvmeents in task completion time.
(Nitty-gritty details of setup in paper)

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Large datacenter simulation

Three-level tree topology
Racks of 40 machines with 1 Gbps links connected to
top-of-rack switch and then to aggregator switch
Three different workloads:

Search engine (Bing)
Data analytics (Facebook)
Homogeneous application: uniformly distributed flow sizes
from 2 KB to 50 KB

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Bing-like workloads

Policies comparable until the 70th percentile
At that point, size-based policies begin starving heavy tasks.
Baraat’s “limited multiplexing” fixes this problem well.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Other two workloads

Data-analytics workloads are heavy-tailed, and FIFO suffers
from head-of-line blocking.

Size-based policies reduce completion time relative to
fair-sharing here.

But still causes starvation issues at the very end of the tail

Baraat still much faster
60% faster than fair-sharing
36% faster than size-based policies

Uniform workloads show benefits too
Baraat is 48% faster than fair-sharing
Size-based policies have serious starvation issues, and ends up
50% slower than fair-sharing.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Very small tasks

The ns-2 network simulator was used to microbenchmark
small tasks with tiny flows.
Still provides significant benefits over fair-sharing due to
minimal setup overhead

We can improve performance even more by breaking our
one-task-per-priority-class invariant, and aggregating multiple
tiny tasks into a single class.

But only up to a point! Otherwise it degenerates into
fair-sharing.

Preemption and work conservation also validated using small
tasks (see the paper!)

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks



Discussion and further work

Multi-pathing
Data centers often have multi-root topologies for path
diversity.
Existing mechanisms for spreading traffic among paths
maintain flow-to-path affinity.
So Baraat can be used even in multi-root topologies.
Senders can load-balance by sending SRQ packets among
different paths

Non-network resources
Baraat doesn’t try to schedule non-network resources like CPU
This is generally not an issue: Baraat will either saturate the
CPU or the network link depending on which is the bottleneck
Future work: improve performance even more by coordinating
multiple resources.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks


