Decentralized Task-Aware Scheduling for Data

Center Networks

Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, Ant
Rowstron

Presented by Eric Dong (yd2dong)

October 30, 2015

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Tasks in data centers

@ Applications execute rich and complicated tasks

@ Replying to search queries, gathering information for a news
feed, etc

@ Each task can involve dozensof flows, all of which have to
complete for the task to finish

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Tasks in data centers

@ Two important metrics
@ Task size: sum of the sizes of network flows involved

o All sorts of statistical distributions (ex: search vs. data

analytics)
- . f
|
p 0 /
u .
])
0 0 1y
7. [¥
o — . |
2 05 08 1 0 0" 0" 0t 0f 0t 0 o
Taskize (ormalzed) Inpu sz romalized

e Uniform, heavy-tailed, etc

@ Flows per task

e Varies very wildly, from dozens to thousands.

@ Scheduling algorithm must work on a wide

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Traditional metrics

@ Per-flow fair sharing (TCP, DCTCP)

e Poor average performance when multiple tasks occur at the
same time

o Flow-level scheduling metrics (shortest flow first, etc)

o Considers flows in isolation
o Example: SFF schedules the shorter flows of different tasks
first, leaving the longer flows of all the tasks to the end, thus
delaying the completion of all the tasks.
@ We need something better.

e Unfortunately, this problem is NP-hard :(. But we can use
some heuristics!

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Task serialization

@ The set of policies where an entire task is scheduled before
the next. This improves upon fair-sharing because it
eliminates contention. One good task serialization algorithm
is actually simple: first-in-first-out.

: Fs TS
== S
=] Cal
8 time 4 8 time
:ﬁ:ﬁz:q b) [T
' S v | i e ,
16 4 & 1

Figure 4: Distilling the Benefits of Task Serialization
(TS) over Fair Sharing (FS).

s FS . FIFO
] L L]
==,]

Figure 5: FIFO ordering can reduce tail completion
times compared to fair sharing (FS).

@ Another example would be shortest-task-first (STF), which
improves the average completion time, but leads to high tail
latency or even starvation if short tasks keep coming in and

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Task serialization

@ FIFO is great for light-tailed distributions — in fact it's
provably optimal for minimizing the tail completion time.

@ But it isn't that great for heavy-tailed distributions.

@ "Elephant” flows which happen to arrive first end up blocking
small flows, increasing latency.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

FIFO-LM

@ The paper proposes FIFO-LM: first-in-first-out with /imited
multiplexing

@ Just like FIFO, but does a limited number of tasks — the
degree of multiplexing — at once.

@ Hybrid between FIFO (degree = 1) and fair-sharing (degree =
).

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

@ The authors’ distributed implementation of FIFO-LM
@ No explicit coordination
@ Based on globally unique task-ids.

o Lower ID means higher priority
o Flows inherit the ID of their tasks.
e Incrementing counter for every point where tasks arrive

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Prioritization mechanism

@ We have task priorities now. We still need an algorithm that
uses them to efficiently schedule tasks.

@ We can theoretically use one of the zillions of different
existing flow-prioritization algorithms. But they don’t have
the properties we need.

stict | Fair | Heavy Work | Preemption
Priority | Sharing | Task Conservation
Support

ocree | No Yes No Yes No
Rep. No Yes No Yes No
0| Partial | Yes No Yes No
PFabric | Yes Yes No Partial Yes
PDQ Yes No No Yes Yes

Table 2: Desired properties and whether they are sup-
ported in existing mechanisms.

@ We need a new algorithm.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Smart Priority Class

@ Similar to traditional priority queues
o High-priority flows preempt low-priority flows
o Flows with the same priority share bandwidth fairly

@ Two differences:

o On-switch classifier: one-to-one mapping between tasks and
priorities. Detects heavy tasks on-the-fly, and bump their

priority down to that of the next-prioritized class. -LM part in
FIFO-LM!

e Explicit rate control: switches tell senders how quickly to send.

@ This moves more work to the end hosts and reduces the
overhead of bookkeeping in switches.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Explicit rate protocol

@ Every RTT, sender transmits a scheduling request message
that demands a certain rate.
@ Switch tells sender two numbers
o Actual rate (AR): how much should be sent in the next RTT
o Nominal rate (NR): maximum possible rate based on the
priority

Algorithm 1 Sender — Generating SRQ
1: MinNR - minimum NR returned by SRX
: Demand;yy < min(NIC_Rate,DatalnBuf fer x
RTT) //if flow already setup
if MinNR < Demand, then
Demand, + < min(Demand, 1, MinNR + §)
end if

v

9ok

Algorithm 2 Switch - SRQ Processing

Return Previous Allocation and Demand

Class = Classifier(TaskID)

ClassAvIBW = C — Demand (HigherPrioClasses)

AvailShare = ClassAvIBW — Demand (MyClass)

if AvailShare > CurrentDemand then
NominalRate(NR) < Current Demand

else
NR « ClassAvIBW /NumF lows(MyClass)

9: end if

10: if (C— Allocation) > NR then

11: ActualRate(AR) <+~ NR

12: else

13: AR < (C—Allocation)

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

L o

Explicit rate protocol

@ We end up implementing FIFO-LM in a distributed way, with
no global communication or central controller needed.

@ But is it actually a lot better than existing schedulers?

@ Experiments!

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Evaluation

@ The paper evaluates Baraat on three platforms

o Small scale testbed
e Huge datacenter simulation
o Micro-benchmarks

2 a
8 8
g

INNASH

Task Completion Time (ms)

¢
20 - Barast s g

AN #

AN 7
AN

N4
e

N
o

Number of Concurrent Tasks

@ All show significant improvements compared to other
techniques

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Small-scale tests

Storage retrieval scenario: clients read data from storage
servers in parallel

One rack of four nodes running Memcached as the client, four
more racks acting as the backend

One switch connecting everything

[[Avg | Min [957 perc. [997 perc. |

FS 40ms | I11ms 72ms 120ms
Baraat 29ms | I1ms 41ms 68ms
Improvement | 27% 0 43% 43.3%

Very significant improvmeents in task completion time.

(Nitty-gritty details of setup in paper)

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Large datacenter simulation

@ Three-level tree topology

@ Racks of 40 machines with 1 Gbps links connected to
top-of-rack switch and then to aggregator switch
@ Three different workloads:
e Search engine (Bing)
e Data analytics (Facebook)

e Homogeneous application: uniformly distributed flow sizes
from 2 KB to 50 KB

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Bing-like workloads

@ Policies comparable until the 70th percentile

e At that point, size-based policies begin starving heavy tasks.
e Baraat's "limited multiplexing” fixes this problem well.

STF

2 4 8 16
Task completion time (msec)

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Other two workloads

e Data-analytics workloads are heavy-tailed, and FIFO suffers
from head-of-line blocking.

e Size-based policies reduce completion time relative to
fair-sharing here.

o But still causes starvation issues at the very end of the tail
e Baraat still much faster

@ 60% faster than fair-sharing
o 36% faster than size-based policies

@ Uniform workloads show benefits too

o Baraat is 48% faster than fair-sharing
o Size-based policies have serious starvation issues, and ends up
50% slower than fair-sharing.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Very small tasks

@ The ns-2 network simulator was used to microbenchmark
small tasks with tiny flows.

@ Still provides significant benefits over fair-sharing due to
minimal setup overhead

50

Baraat me—
40
2 30
0
0
0

135 450 4500
Task Size (KB)

N

Benefits compared
to FS(%)

@ We can improve performance even more by breaking our
one-task-per-priority-class invariant, and aggregating multiple
tiny tasks into a single class.

e But only up to a point! Otherwise it degenerates into
fair-sharing.

20

Baraat mmm—

Inefits compared
to FS(%)
5

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

Discussion and further work

e Multi-pathing

e Data centers often have multi-root topologies for path
diversity.

e Existing mechanisms for spreading traffic among paths
maintain flow-to-path affinity.

e So Baraat can be used even in multi-root topologies.

e Senders can load-balance by sending SRQ packets among
different paths

@ Non-network resources

o Baraat doesn't try to schedule non-network resources like CPU

o This is generally not an issue: Baraat will either saturate the
CPU or the network link depending on which is the bottleneck

e Future work: improve performance even more by coordinating
multiple resources.

Dogar, et al Decentralized Task-Aware Scheduling for Data Center Networks

