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Motivation

I Dedicated middlebox hardware, with backup, is expensive

I Middlebox applications that use NFV run on diverse hardware
platforms, which have a higher probability of failure



Middlebox application model

I Thread local state:
packet data

I Shared state:
counters, IDS state
machine, rate limiter
etc.
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Challenges to recovery

I Statefulness: Shared variables (e.g. counters) need to be
restored before processing new packets

I Non-determinism: Access order to shared variables is
important; access of hardware clocks needs to be reproduced
for stateful recovery

I Low latency: Normal operation needs to be in the order of
microseconds



Replay vs No-Replay designs

I No-Replay: Snapshot of system and buffering of output until
next snapshot. Simple, but slow.

I Replay: Snapshot of system and write-ahead-logging of input
in between snapshots. Output is only released after input is
safely logged. Lower latency per operation, but more
expensive logging.



FTMB architecture
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Packet dependencies
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Packet can be released when all its causal dependencies have been
recorded to safe storage as Packet Access Logs (PALs).



Parallel release

I Master: Packet is released
together with a vector clock
representing the number of
PALs each queue has
processed: e.g. next packet
has vector clock
[56, 77, 63, 77].

I Output Logger: Packet is
released when each queue
has processed more PALs
than the current value of the
vector clock: e.g.
[45, 76, 60, 70] can’t be
released because of the third
queue.
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Implementation

I Input Logger: Buffers incoming packets, in between
snapshots, for replay. Adds one hop delay.

I Master: Processes packet. Sends PALs and output packets to
the stable storage and output logger. Adds processing + PAL
generation and transmission delay.

I Output Logger: Buffers outgoing packets until the vector
clocks increment to the per-packet vector clock value.
Generally adds the one hop latency to assert that PALs have
been stored.



Discussion

I Middlebox application code has to be annotated. Modulo
that, the solution is generic.

I Performance numbers show feasibility of approach.

I The Input Logger, Stable Storage and Output Logger are now
the points of failure.

I Causal consistency work in databases has more depth, and
covers the “novelty” presented here. The application of causal
consistency to middlebox code, however, might be novel.



Causal consistency work

I Don’t Settle for Eventual: Scalable Causal Consistency for
Wide-area Storage with COPS

I Stronger semantics for low-latency geo-replicated storage

I Orbe: scalable causal consistency using dependency matrices
and physical clocks
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