
CS856: Presentation of “Rollback-Recovery for
Middleboxes”

Adrian Nicoara



Motivation

I Dedicated middlebox hardware, with backup, is expensive

I Middlebox applications that use NFV run on diverse hardware
platforms, which have a higher probability of failure



Middlebox application model

I Thread local state:
packet data

I Shared state:
counters, IDS state
machine, rate limiter
etc.

p
ac

ke
t

h
ea

d
er

h
as

h

in

in

in

in

thread

thread

thread

thread

out

out

out

out

ou
tp

u
t

N
IC

shared state



Challenges to recovery

I Statefulness: Shared variables (e.g. counters) need to be
restored before processing new packets

I Non-determinism: Access order to shared variables is
important; access of hardware clocks needs to be reproduced
for stateful recovery

I Low latency: Normal operation needs to be in the order of
microseconds



Replay vs No-Replay designs

I No-Replay: Snapshot of system and buffering of output until
next snapshot. Simple, but slow.

I Replay: Snapshot of system and write-ahead-logging of input
in between snapshots. Output is only released after input is
safely logged. Lower latency per operation, but more
expensive logging.



FTMB architecture

Master

Input
Logger

Stable
storage:
in/out

packets,
PALs,

snapshots

Output
Logger

Backup



Packet dependencies

A

B

C

D

X = 1 T = 6

X = 2 Y = 2

Z = 2 Y = 1

Z = 1

Packet can be released when all its causal dependencies have been
recorded to safe storage as Packet Access Logs (PALs).



Parallel release

I Master: Packet is released
together with a vector clock
representing the number of
PALs each queue has
processed: e.g. next packet
has vector clock
[56, 77, 63, 77].

I Output Logger: Packet is
released when each queue
has processed more PALs
than the current value of the
vector clock: e.g.
[45, 76, 60, 70] can’t be
released because of the third
queue.

56

55

54 77

63

62

61

77

76

53

52

76

75

74

60

59

57 75

Master

Output
Logger



Implementation

I Input Logger: Buffers incoming packets, in between
snapshots, for replay. Adds one hop delay.

I Master: Processes packet. Sends PALs and output packets to
the stable storage and output logger. Adds processing + PAL
generation and transmission delay.

I Output Logger: Buffers outgoing packets until the vector
clocks increment to the per-packet vector clock value.
Generally adds the one hop latency to assert that PALs have
been stored.



Discussion

I Middlebox application code has to be annotated. Modulo
that, the solution is generic.

I Performance numbers show feasibility of approach.

I The Input Logger, Stable Storage and Output Logger are now
the points of failure.

I Causal consistency work in databases has more depth, and
covers the “novelty” presented here. The application of causal
consistency to middlebox code, however, might be novel.



Causal consistency work

I Don’t Settle for Eventual: Scalable Causal Consistency for
Wide-area Storage with COPS

I Stronger semantics for low-latency geo-replicated storage

I Orbe: scalable causal consistency using dependency matrices
and physical clocks

http://doi.acm.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://doi.acm.org/10.1145/2523616.2523628
http://doi.acm.org/10.1145/2523616.2523628

