
Scheduling Jobs Across Geo-distributed
Datacenters
PR ESEN T ED BY HYEYUN SHIN

Motivation & challenges
Growing data volumes across geo-distributed datacenters

Inefficient to aggregate all data at a single datacenter

Trend is to distribute computation for efficiency

e.g. Data intensive jobs run by cluster computation systems such as
Hadoop, Spark, etc.

Motivation & challenges (cont'd)
Centralized job execution
◦ How about when a job needs data from multiple datacenters?

◦ Substantial network traffic

◦ Increased job completion time

◦ Data replication across multiple datacenters

◦ Some data restricted to certain location

Motivation & challenges (cont'd)
Distributed job execution
◦ Bandwidth savings

◦ Shortened job completion time

◦ Faster data query

◦ Reduction in bandwidth costs

Classical SRPT scheduling is not optimal

(Shortest-Remaining-Processing-Time)

Paper presents…

Reordering and SWAG
(Workload-Aware Greedy Scheduling)

Distributed job execution
Global scheduler in Central controller
 Job-level scheduling decisions for all jobs

 Assigns a job’s tasks to datacenters that host
input data

Local scheduler has a queue of tasks
 Launches tasks at next available computing slot

 Job order is determined by global scheduler or
local scheduler

 Report progress to central controller

Distributed job execution (cont’d)
 A job is completed when all its tasks are

finished

 Job completion time is determined by its
last completed task

 Goal: Reduce average job completion time

Terminology
Sub-job: Subset of job’s tasks assigned to the same datacenter

Job completion time: Job finishing time – Job arrival time

A sub-job’s finish instant: queue index at which sub-job ends

A job’s finish instant: maximum finish instant of all its sub-jobs

Global-SRPT
Heuristic that computes jobs priority on jobs’ total
remaining size across all datacenters

Central controller:
Knows global state of current jobs’ remaining tasks across

all datacenters

Passes the job order to all datacenters

Example: Global-SRPT

Job ID Arrival Seq RT* in DC1 RT in DC2 RT in DC3 Total RT

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

*RT: Remaining Tasks

What would be the job order under Global-SRPT?

Three datacenters (DC)

Three jobs arrived to systems in order of Job A, Job B, and Job C

Independent-SRPT
Heuristic that lets each datacenter independently decide on
their jobs priority using SRPT

Each datacenter:
Performs SRPT on its own

Prioritizes its sub-jobs based on their sizes

Updates the queue order independently

Example: Independent-SRPT

Job ID Arrival Seq RT* in DC1 RT in DC2 RT in DC3 Total RT

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

*RT: Remaining Tasks

What would be the job order under Independent-SRPT?

Three datacenters (DC)

Three jobs arrived to systems in order of Job A, Job B, and Job C

Example: Independent-SRPT

Job ID Arrival Seq RT* in DC1 RT in DC2 RT in DC3 Total RT

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

*RT: Remaining Tasks

What would be the job order under Independent-SRPT?

Three datacenters (DC)

Three jobs arrived to systems in order of Job A, Job B, and Job C

Example: Independent-SRPT

Job ID Arrival Seq RT* in DC1 RT in DC2 RT in DC3 Total RT

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

*RT: Remaining Tasks

What would be the job order under Independent-SRPT?

Three datacenters (DC)

Three jobs arrived to systems in order of Job A, Job B, and Job C

Shortcomings of SRPT
Each job may have multiple sub-jobs across all datacenters

Sizes of sub-jobs may be imbalanced

Example: Global-SRPT

Job ID Arrival Seq RT* in DC1 RT in DC2 RT in DC3 Total RT

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

Paper presents…

Reordering
A lightweight add-on to any scheduling approach

Reordering
Continue moving sub-jobs later in a local queue
as long as delaying them does not increase the overall completion

time of the job

1. Identify a datacenter with the longest queue length

2. Get a job from its queue with maximum finish instant

3. Add the job into N, a queue data structure

4. Remove all its related sub-jobs from all queues

5. Repeat until all current jobs in the system are added to N

6. The final job order by Reordering is the reverse of N

Example Revisited: Global-SRPT

Job ID Arrival Seq RT* in DC1 RT in DC2 RT in DC3 Total RT

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

*RT: Remaining Tasks

What would be the job order under Global-SRPT with Reordering?

Three datacenters (DC)

Three jobs arrived to systems in order of Job A, Job B, and Job C

Workload-aware approach
Theorem: Reordering does not degrade performance for any
scheduling algorithm

Can we do better than B->C->A?

Job ID Arrival Seq RT* in DC1 RT in DC2 RT in DC3 Total RT

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

Paper presents…

SWAG
Workload-Aware Greedy Scheduling

SWAG Design principle
1. Jobs that can finish quickly should be schedules before others

2. Consider scheduling based on sub-job sizes rather than the size
of the overall job

3. Consider the local queue sizes in assessing the finish times of
sub-jobs

SWAG Design principle (cont’d)
3. Consider the local queue sizes in assessing the finish times of
sub-jobs

SWAG Algorithm
Greedily prioritizes jobs by computing their estimated finish times
based on the current queue length, as well as the job’s remaining
size

Central controller runs SWAG at new job arrival or departure

The new order is computed from scratch based on the estimated
job finish times

Terminology
Makespan(j): For each datacenter, add the current queue length
and the size of sub-jobs of job J. Makespan(j) is the biggest value
out of all

SWAG Algorithm (cont’d)
1. Compute Makespan for each job

2. Select the job with minimal makespan

3. Append the job into the job order

4. Update the queue length based on the selected job’s sub-job sizes (if more
than one job with minimal makespan, pick the one with the smallest total
remaining size)

5. Repeat

Example: SWAG

Job ID Arrival Seq RT* in DC1 RT in DC2 RT in DC3 Total RT

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

*RT: Remaining Tasks

What would be the job order under SWAG?

Three datacenters (DC)

Three jobs arrived to systems in order of Job A, Job B, and Job C

Experiment settings
Synthetic workloads with job size distributions from:
 Facebook’s production Hadoop cluster
 Google cluster workload trace
 Exponential Distributions

Adjusted job’s inter-arrival times of workloads based on Poisson Process

Tasks duration modeled by Pareto distribution according to Facebook workload
information (average task duration being 2 seconds)

Zipf distribution to model the skewness of task assignment among datacenters

Default number of datacenters is 30, with 300 computing slots per datacenter
(78% system utilization)

Experiment settings (cont’d)
FCFS (baseline)

Global-SRPT

Independent-SRPT

Global-SRPT with Reordering

Independent-SRPT with Reordering

SWAG

Optimal Scheduling (offline brute-force search with full knowledge of future job
arrivals and actual tasks duration)

Performance results
Reordering
 Improves by as much as 27% under highly utilized settings, and 17%

under lower utilization
More beneficial to Independent-SRPT than to Global-SRPT

SWAG (compared with SRPT)
 Improves under higher utilization up to:
 50% (Facebook)
 29% (Google)
 35% (Exponential)

At least 12% improvement under lower utilization

Performance results (cont’d)
Job fairness with Facebook trace
 Slowdown of large jobs for Independent-SRPT is 40% more than its overall

slowdown

Gap is no more than 30% for Independent-SRPT with Reordering

Gap is no more than 25% for SWAG

Job fairness with Facebook trace
Google trace shows huge gap of slowdown as most jobs are small

 Still, Independent-SRPT and Reordering and SWAG does relatively well

Performance

Fairness

Conclusions
As data volumes increase, running jobs across geo-distributed datacenters
emerges as the promising trend

Reordering improves scheduling algorithm by adjusting job order

SWAG improves the average job completion time and achieves near-optimal
performance

Reordering and SWAG improved the average job completion time up to 27% and
50% respectively compared to SRPT-based approach

