
121

C h a p t e r 7

Network Configuration
and Flow Scheduling for
Big Data Applications

Lautaro Dolberg, Jérôme François, Shihabur Rahman

Chowdhury, Reaz Ahmed, Raouf Boutaba, and Thomas Engel

INTRODUCTION
Big Data applications play a crucial role in our evolving society. They represent a large pro-
portion of the usage of the cloud [1–3] because the latter offers distributed and online storage
and elastic computing services. Indeed, Big Data applications require to scale computing
and storage requirements on the fly. With the recent improvements of virtual computing,
data centers can thus offer a virtualized infrastructure in order to fit custom requirements.
This flexibility has been a decisive enabler for the Big Data application success of the recent
years. As an example, many Big Data applications rely, directly or indirectly, on Apache
Hadoop [11] which is the most popular implementation of the MapReduce programming

CONTENTS
Introduction 121
VM Placement for Reducing Elephant Flow Impact 123
Topology Design 124
Conventional Networking 126

Routing 126
Flow Scheduling 128
Limitations 129

Software-Defined Networking 129
Software-Defined Networks 131
Traffic-Aware Networking 132
Application-Aware Networking 133

Conclusions 135
References 136

© 2016 by Taylor & Francis Group, LLC

122    ◾    Networking for Big Data

model [4]. From a general perspective, it consists in distributing computing tasks between
mappers and reducers. Mappers produce intermediate results which are aggregated in a
second stage by reducers. This process is illustrated in Figure 7.1a, where the mappers send
partial results (values) to specific reducers based on some keys. The reducers are then in
charge of applying a function (like sum, average, or other aggregation function) to the
whole set of values corresponding to a single key. This architectural pattern is fault tolerant
and scalable. Another interesting feature of this paradigm is the execution environment
of the code. In Hadoop, the code is directly executed near the data it operates on, in order
to limit the data transfer within the cluster. However, large chunks of data are still trans-
ferred between the mappers and reducers (shuffle phase) which thus necessitate an efficient
underlying network infrastructure. It is important to note that the shuffle phase does not
wait for the completion of the mappers to start as the latter already emits (key, value) pairs
based on partial data it has read from the source (e.g., for each line). Since some failures or
bottlenecks can occur, Hadoop tasks are constantly monitored. If one of the components
(i.e., mappers or reducers) is not functioning well (i.e., it does not progress as fast as others
for example), it can be duplicated into another node for balancing load. In such a case, this
leads also to additional data transfers.

Storm [5] is another approach that aims at streaming data analytics, while Hadoop
was originally designed for batch processing. Storm consists of spouts and bolts. Spouts
read a data source to generate tuples and emit them toward bolts. Bolts are responsible for

Block 1

Block 2

Block 3

Mappers(a)

(b)

Reducers

K1, V1

K2, V2

K2, V3

K3, V4

K4, V5

K1, V6
Shuffle

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

K1, func(V1, V6)

K4, func(V5)

K2, func(V2, V3)

K3, func(V4)

Spouts Bolts

FIgURE 7.1 Big Data computational model and the underlying network traffic as plain arrows:
(a) MapReduce with K as key and V as value; (b) Storm.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

Network Configuration and Flow Scheduling for Big Data Applications    ◾    123  

processing the tuples and eventually emit new tuples toward other bolts. Therefore, a Storm
application is generally represented by a graph as shown in Figure 7.1b. The main differ-
ence between Storm and MapReduce is that data transfers occur all the time (streaming)
and so are not limited to a specific phase (shuffle phase in Hadoop). As a result, among the
diversity in Big Data applications, there are common problems, in particular optimizing
the data transfer rate between host.

Therefore, while Big Data technological improvements were mainly highlighted by
new computing design and approaches, like Hadoop, network optimizations are primor-
dial to guarantee high performances. This chapter reviews existing approaches to con-
figure network and schedule flows in such a context. In the following sections, we will
cover the diverse optimization methods grouped according to their intrinsic features and
their contributions. In particular, recent network technologies such as Software-Defined
Networking (SDN) empowered the programmability of switching devices. Consequently,
more complex network scheduling algorithms can be afforded to leverage the performance
of MapReduce jobs. That is why this chapter focuses on SDN-based solutions but also
introduces common networking approaches which could be applied as well as virtualiza-
tion techniques. The latter are strongly coupled with the network design. For example,
end-hosts in a data center are virtual machines (VMs) which can be assigned to different
tasks and so would lead to various traffic types, which can be better handled if the network
is adaptive and therefore easily reconfigurable.

This chapter is structured as follows:

 1. Optimization of the VM placement: even if not dealing with network configuration, it
has a significant impact on the same;

 2. Topology design: it is an important topic as the way the machines are wired have an
impact on performance;

 3. Conventional networking, in particular routing and Quality of Service (QoS) sche-
duling: these might be customized to support Big Data as well.

 4. SDN: this highlights recent approaches that leverage a global view of the network to
implement efficient traffic management policies.

VM PLACEMENT FOR REDUCINg ELEPhANT FLOW IMPACT
Very large flows, normally associated to long MapReduce jobs, are often called Elephant
Flows [6]. Since any VM can be potentially hosted in any physical server, grouping VM that
are involved in large data transfers can reduce the impact on the overall bandwidth usage
of the network. This approach is based on the internal routing of Hypervisor systems used
in virtualized data centers such as XEN [7], KVM [8], or VMWare [9] solutions. From a
more general point of view, VMs can be colocated in a certain region of a network, even
if on different physical machines. This is illustrated in Figure 7.2 where in the case of the
original allocations (Figure 7.2a), the tasks of the same job are scattered in the network and
so the traffic between them has to go through many hops eventually resulting in network

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

124    ◾    Networking for Big Data

congestion. In Figure 7.2b, by moving only two tasks (one from J1 and one from J3), each
job is isolated in a single rack (under a single switch) and so no congestion occurs at higher
level switches while improving the data transfer efficiency between tasks of the same job
since these are connected through a single switch.

VM placement is basically related to VM allocation problems, which are optimiza-
tion problems under certain criteria. One of the criterion should be the usage of network
resources. Because this is not the focus of this chapter, we recommend the reader to read
Reference 10 for more details about network-aware VM placement.

The downside of existing network-aware VM placement approaches is that they lack the
reactiveness. Normally, given the nature of MapReduce phases, it is not possible to exactly
match in advance MapReduce jobs and needed network resources (e.g., how large the data
transfer will be during the shuffle phase depends on the underlying data and applications).
To cope with this practical issue, virtualized data centers may estimate the VM-to-VM
traffic matrix but such a method works well with a known batch job only. Another solution
is to migrate VMs during their execution, but this might be also resource consuming and
negatively impact the finishing time of the Big Data jobs if this occurs too frequently.

TOPOLOgy DESIgN
Data-centers networks are usually organized in a tree topology [11,12] with three defined
layers:

•	 Core layer: This layer is the backbone of the network where high-end switches and
fibers are deployed. In this layer only L2 forwarding takes place without any packet
manipulation. The equipment for this layer is the more expensive among the hierar-
chical network model.

•	 Aggregation or distribution layer: In this layer most of the L3 routing takes place.

•	 Access layer: This layer provides connectivity to the end nodes and so are located at the
top of the racks. They perform the last step of L3 packet routing and packet manipula-
tion. Normally, these are the cheapest devices in the hierarchical network model.

J1 J2 J2
J3

(a) (b)

J1 J3 J1 J1 J2 J2 J3 J3

FIgURE 7.2 VM placement with three jobs (each job JI has two tasks). The width of a link repre-
sents its load. (a) Initial task allocation, and (b) optimized task allocation.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

Network Configuration and Flow Scheduling for Big Data Applications    ◾    125  

Thanks to this hierarchical model, a low latency is achieved for traffic between two
nodes in the same rack. This explains why approaches like Hadoop leverage rack aware-
ness to ensure fast replication of data by selecting nodes in the same rack for copying data
(but also others out of the rack in order to guarantee data availability under a rack failure).
In addition, this type of configuration supports a large number of ports at the access layer.
A specific instance of the hierarchical model is the fat tree proposed in Al-Fares et al. [3]
and illustrated in Figure 7.3, which enables fault-tolerance by ensuring redundant paths
in a deterministic manner. The fat-tree or Clos topology was introduced more than 25
years ago [13] to reduce the cost of telephony-switched networks. The topology layout is
organized as k-ary trees, where in every branch of the tree there are k switches, grouped
in pods. Actually, a pod consists in (k/2)2 end-hosts and k/2 switches. At the edge level,
switches must have at least k ports connected as follows: half of the ports are assigned to
end nodes and the other half is connected to the upper aggregation layer of switches. In
total, the topology supports (k2/2) k-port switches for connecting host nodes.

DCell [14] is a recursively interconnected architecture proposed by Microsoft. Compared
to a fat-tree topology, DCell is a fully interconnected graph in order to be largely fault
tolerant even under several link failures. In fact, high-level DCell nodes are recursively
connected to low level ones, implemented with mini switches to scale out as shown in
Figure 7.4.

Experimental results have showed that a 20 nodes network can twice outperform a large
data center used for MapReduce. As a downside, DCell requires a full degree of connectiv-
ity, making it in practice costly to maintain and deploy. To enhance network connectivity
between servers, CamCube [15] is a torus topology where each server is interconnected to

Core

Aggregation

Edge/
access

Pod 0 Pod 1 Pod 2 Pod 3

FIgURE 7.3 Example of a hierarchical network model: Multirooted network topology.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

126    ◾    Networking for Big Data

other six servers and all communications go through them, without any switch for internal
communication. Finally, recent propositions like Singla et al. [16] promote a high flexibility
by alleviating the need for a well-defined fixed graph structure, as the fat trees are, and do
so by introducing some randomness in the topology bounded by some criteria.

CONVENTIONAL NETWORkINg
Routing

Data-center network topologies like fat trees imply a large number of links leading to
redundant paths. Therefore, routing algorithms can take that benefit to achieve a higher
bandwidth. As an illustrative example in Figure 7.5a, the shortest path is used to route the
traffic between the two tasks of the job J1. Unfortunately, it goes through a congested link.
Hence, a redundant path can be used (Figure 7.5b) and even multiple of them conjointly
(Figure 7.5a). Although these approaches have been proposed for routing in general, they
are also used in data-centers to improve the performance of the Big Data applications. This
is the reason why this section covers some propositions about how to use these principles
in case of Big Data. However, the general issues are (1) to predict the traffic patterns and
(2) to be able to rapidly change the configuration of the routing when the traffic suddenly
changes, which is the case in a cloud infrastructure.

Nowadays, a major representative of such an approach is the equal cost multipath
(ECMP) algorithm [17]. ECMP leverages the opportunity to route flows among multiple
paths. Unlike traditional routing algorithms like OSPF which consider a single best path,

Mini-switch

DCell [1]

DCell [2]

DCell [3]

DCell [0]DCell [4]

Server

FIgURE 7.4 A DCell topology for five cells of level 0, each containing four servers. (From Guo, C.
et al., in Conference on Data Communication, SIGCOMM, ACM, 2008.)

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

Network Configuration and Flow Scheduling for Big Data Applications    ◾    127  

ECMP considers all the best multipaths according to any metric (as, e.g., the number of
hops) among which a single one is selected for a given flow through a load balancer. The
number of multiple paths is dependent on the router implementation but is usually bounded
to 16. Hence, this may yield a lower performance than expected for large data-centers. In
fact, the amount of entries in the routing tables grows at an exponential rate, increasing
the latency of the routing algorithm. Commercial solutions promoting multipath routing
include FabricPath by Cisco Systems, BCube, VL2, and Oracle Sun data-center InfiniBand.

In addition to promoting the fat-tree topology usage for data-centers, Al-Fares et al. [3]
proposed a dedicated routing algorithm based on an approach called Two-Level Routing
Tables, where the routing tables are split into two hierarchical tables linked on the prefix
length of the network address. A two layer table approach aims at leveraging the routing
algorithm speed for establishing a route. This is possible because the authors introduced
a private addressing system respecting a pre-established pattern like 8.pod.switch.host
assuming a class A network. The first table index entries use a left-handed prefix length (e.g.,
8.1.2.0/24, 8.1.1.0/24). The entries of the first table are linked to a smaller secondary table
indexed by a right-handed suffix (e.g., 0.0.0.1/4, 0.0.0.4/4). For example, to find the route to
the address 8.8.8.8, the algorithm will look up the first table, find the corresponding entry
for the first part of the network address 8.8.8.0/24, then jumps to the secondary table and
finds the remainder of the route. Since each switch of the aggregation layer in a fat-tree
topology has always a k/2° of connectivity to the access layer, Two-Level Routing Tables are
bounded in the worst case to k/2 entries for suffixes and prefixes. Moreover, flows can be
actually classified by duration and size. Then, the proposed algorithm in Al-Fares et al. [3]
minimizes the overlap between the paths of voluminous flows. To achieve this, a central
scheduler is in charge of keeping track of used links in the network in order to assign a new
flow to a nonused path. From this perspective, it falls into the category of centralized net-
working (see section “Software-Defined Networks”), where a server acts as the controller
by informing other ones about the link to use to forward specific packets of a flow.

The flow establishment is also leveraged by the previously described route lookup. In
this approach, instead of routing traffic at a packet level, streams of data are grouped into
flows and routed as a whole entity. One of the benefits of this approach is a faster route

(a) (b)

J1 J1 J1 J1 J1 J1

(c)

FIgURE 7.5 Routing decisions for one job with two tasks. The width of a link represents its load.
(a) Shortest path routing, (b) high throughput, and (c) multipath routing.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

128    ◾    Networking for Big Data

computation as it is reduced in a similar fashion as in circuit switching legacy technology.
For example, if a host node requires to transfer a large data file as a part of a Big Data job,
the whole stream will follow a pre-established route, reducing the latency of establishing a
different route for each packet of the stream.

In order to enhance routing and network speed, hardware plays a core role. Therefore,
there have been propositions to replace standard hardware. In particular, Farrington et al.
[18] argue for a hybrid optical–electric switch as optical links achieve higher throughput but
are not well adapted to bursty traffic. Combining both technologies thus helps in obtain-
ing a good trade-off between accuracy and cost. Moreover, the technological availability
of programmable circuits also leads to the possibility of implementing switching devices,
especially in the aggregation and core layer using ASIC and FPGA devices. Lu et al. [19]
propose an approach for implementing switching cards with a PCI-E interface. A recent
proposal [20] addresses dynamic routing by replacing the traditional dynamic host con-
figuration protocol (DHCP) address configuration by an another automated address con-
figuration system. In this approach, the network is automatically blue printed as a graph.
Then, by interpreting a set of labels assigned to each computing node, the system tries to
find an isomorphism that minimizes the traffic at the aggregation layer. From the prelimi-
nary results, this approach has yielded promising results. However, it actually runs only
over BCube or DCell because they have a fully connected topology.

Flow Scheduling

Network operators perform various traffic engineering operations in order to provide dif-
ferent network services on a shared network. This consists in classifying the traffic accord-
ing to the intrinsic characteristics of each service or application using the network. For
example, it is possible to define policies to specially treat Big Data applications. Similarly,
the IPv6 Traffic Class includes the possibility of injecting information specific to applica-
tions in the packet stream. Other types of support for enabling network infrastructure to
perform management of traffic are proposed in request for comments (RFCs) [21] and [22].
The first (DiffServ) proposes a protocol for differentiating services and its network behav-
ior. The latter, Resource Reservation protocol (RSVP), specifies also a protocol that enables
applications to reserve network resources in advance of initiating a data transfer.

As highlighted in the introduction, Big Data applications include both batch processing
and streaming analytics, which are different by nature. In particular, batch processing jobs
are more prone to use the network heavily during certain phases while streaming uses the
network constantly with various rates. Therefore, the apparition of a batch job (Hadoop)
may suddenly impact the network and so the other underlying applications. Dogar et al.
[23] have proposed to schedule flows from BigData applications in a data center using
a variation of first-in first-out (FIFO) scheduling that allows some level of multiplexing
between the flows. The authors propose to schedule flows in the order of arrival with a
certain degree of freedom and allow multiplexing over a limited number of flows which
in turn allows small flows to be processed alongside large flows. This approach allows the
co-execution of batch and streaming Big Data applications.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

Network Configuration and Flow Scheduling for Big Data Applications    ◾    129  

Limitations

It is worth mentioning that, in traditional data center networks, only aggregation and core
layer switches have the capability of scheduling flows. This is a limitation imposed by the
hardware. To be able to exploit the full potential of flow scheduling, an additional network
function is required. This is often implemented in a central controller, this way allowing
core and aggregation switches to be replaced by simple switches. One of the main advan-
tages of using this approach is the reduced cost of switching and forwarding (L2) devices.

Another disadvantage of traditional networking is that the network configuration
remains static and so impacts on the maintenance cost of the infrastructure because any
modification of the topology must be wired manually by the network administrators.
Virtualized networks come into play for coping with the lack of flexibility in traditional
networks, and have become popular over the last years, thanks to the emerging virtualiza-
tion technologies and computing power to support them. As a result, data-center owners
offer their clients not only VMs (known as Virtual Private Servers [VPS]) but also virtual
network infrastructure. This allows VPS users to create customized topologies. Virtual
LANs (VLAN) have been popular in the past decades for splitting large organizational
networks into smaller ones. However, this approach fails to segregate application traffic
because of the coarse routing granularity inside a VLAN. A possible solution to this issue
is to use a dynamic topology that adapts to the specific needs of each application. In such a
scope, the section “Software-Defined Networks” covers emerging technologies facilitating
dynamic network configuration using a centralized control plane implemented in software.

SOFTWARE-DEFINED NETWORkINg
This section covers both theoretical approaches as well as practical implementations.
Solutions highlighted in the following paragraphs combine three aspects: computational
patterns present in most of Big Data services, data-centers network architectural improve-
ments such as hierarchical topologies (e.g., fat trees) and dynamic routing algorithms lever-
aged by the adoption of technologies such as SDN. These three aspects combined together
allow the adaptation of the network configuration from the core to the aggregation infra-
structure layer to better suit Big Data application needs.

Routing and scheduling decisions rely on the traffic matrix. Such a matrix can be observed
in real-time at the network level but can also be predicted in order to plan next course of
action. The traffic matrix usually reflects the flow’s size, duration and frequency for each
pair of nodes and eventually application instances or even between multiple tasks of a single
job. Alternatively, Big Data applications can interact with a central controller to expose their
current usage and needs. These two types of approaches are differentiated in Figures 7.6a
and 7.6b. In every cases, there is a Big Data application controller or manager (e.g., the job-
tracker or the resource manager in Hadoop), which is in charge of triggering and monitor-
ing the tasks. In Figure 7.6a, a monitoring service gathers traffic from forwarding devices
and sends the information to the network controller itself which is in charge of taking rout-
ing decisions. The monitoring can even be done by OpenFlow as an OpenFlow controller
can request such statistics from OpenFlow switches [24]. In this case, both the monitor and

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

130    ◾    Networking for Big Data

Monitoring

Monitoring

Network monitor
(a)

(b)

(c) Network monitor

Network controller

Network controller

Network controller

Configuring

Configuring

Configuring

Big Data
application controller

Big Data
application controller

Big Data
application controller

Big Data controlling and reporting

Big Data controlling and reporting

Big Data controlling and reporting

FIgURE 7.6 The different type of *-aware networking (small circles represent a task of a Big Data
process). (a) Traffic-aware networking, (b) application-aware networking, and (c) hybrid awareness.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

Network Configuration and Flow Scheduling for Big Data Applications    ◾    131  

controller are merged in a single entity. In a second scenario (Figure 7.6b), the Big Data
controller itself sends information about the running jobs to the network controller which
can thus take proper configuration actions. Finally, it is also possible to imagine a hybrid
approach (Figure 7.6c) where both types of information are made available to the controller.
It might be useful if the level of details from the Big Data controller is coarse-grained.

To summarize, the different methods covered in the following subsections are actually
similar to conventional networking (select better paths, minimize congestion, etc.), but
they rely on a higher and more dynamic coupling between the network configuration and
applications (or the corresponding traffic).

Software-Defined Networks

In recent years, SDN emerged introducing a new layer of abstraction for more flexible net-
work management. Under this approach, switches are just forwarding devices while most
of the control (e.g., routing decisions) is performed in a central controller. As a result, a
network can be built with merchant silicone and can be programmatically controlled by
the central control plane. This eventually results in reduction of both capital expenditures
(CAPEX) and operation expenditures (OPEX).

SDN decouples the data and the control plane as shown in Figure 7.7, where

•	 Control plane: The concept of the control plane is to have a dedicated communication
channel for exchanging signalization messages among forwarding and management
devices. Most of the available products for SDN expose a North Bound application
programming interface (API) for applications to subscribe to real-time statistics and
service usage.

•	 Data plane: This layer, also referred as the forwarding plane, performs the actual
switching/forwarding of the network traffic. The traffic in this plane is accounted and
measured but not interpreted by any decisional algorithms.

SDN controller

Data plane

Control
plane

SDN applications

FIgURE 7.7 SDN architecture example.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

132    ◾    Networking for Big Data

Additionally, the application layer is composed of custom-made applications. The latter
subscribe to the North Bound API of the SDN controller to enable extra functionality not
provided by the out of the box controller. For example, these applications might be secu-
rity oriented [25] or for routing purposes [26]. OpenFlow [27] is adopted as de facto stan-
dard control protocol. OpenFlow acts as the communication protocol between switches
and controllers (e.g., NOX, Floodlight, POX). An OpenFlow rule consists of two parts:
a match field, which filters packet headers, and instructions, indicating what actions to
take with the matched packets. Upon arrival of a packet at a switch, the controller decides
on the route of the packet and sends the corresponding rule to the switch. This event is
known as FlowMod. Finally, the packet is sent (PacketOut). Figure 7.8 illustrates an exam-
ple where a routing action is taken upon arrival of a packet with destination X and source
Y. Additionally, a controller can provision switches with flow tables entries in advance.
Hence, a PacketIn message is not required to emit an event FlowMod. The rules also have
soft (last seen packet) and hard (maximum absolute value) timeouts, and after expiration
of these timeouts the rule is removed.

While originally proposed for campus networks, the modification proposed by Curtis
et al. [28] consists of reducing the overhead induced by OpenFlow to enable a more efficient
flow management for Big Data analytics applications networking through the extensive
use of wildcard rules within the switches to avoid invoking the OpenFlow controller for
each new flow. However, the extensive use of wildcards on OpenFlow might cause loss of
granularity in the statistics derived from the counters on the controller and evidently on
routing and scheduling decisions. As mentioned in Curtis et al. [28], DevoFlow aims to
devolve control by cloning rules whenever a flow is created using wildcards. The cloned
rule will replace the wildcard fields using the clone’s specific information. Additionally,
DevoFlow enriches OpenFlow rules by including local routing actions (without relying
on the OpenFlow controller), such as multipath routing. This last feature allows to rapidly
reconfigure the route for a given flow leveraging the flow scheduling.

Traffic-Aware Networking

The Topology Switching approach [29] proposes to expose several adaptive logical topolo-
gies on top of a single physical one. It is similar to the allocations problem in VM place-
ment introduced in section “VM Placement for Reducing Elephant Flow Impact” by trying

(2) PacketIn

Controller

Switch
(4) PacketOut, action = port0

(3) FlowMod
match (dst_ip = X) -> action = port0, timeout = 10

(1) from Y to X (5) from Y to X

Port 0

FIgURE 7.8 SDN with open flow rules.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

Network Configuration and Flow Scheduling for Big Data Applications    ◾    133  

to assign every individual flow to a specific path to optimize an objective. The optimization
objectives can be multiple in case of Big Data applications, the most important one is the
total capacity, that is, trying to use the available bandwidth as much as possible in order
to reduce the job completion time. For example, considering a fat-tree topology as showed
in Figure 7.3, every MapReduce typical bisection traffic is considered as a separate routing
task. Thus, each task runs an instance of a particular routing system. For every routing
system, a pre-allocated bandwidth is established in the physical topology to maximize the
bandwidth. Topology Switching is implemented in a central topology server, responsible for
allocating resources but also for subtracting unused resources and collecting metrics. The
two metrics used in this approach are the bisection bandwidth and the all-to-all transfer.
Bisection bandwidth is used to measure the topology ability to handle concurrent transfers
at the physical layer. The all-to-all metric is used to evaluate how the logical topologies
react under a worst case scenario. Based on both metrics, the Topology Switching approach
runs an adaptive algorithm for readjusting the logical configurations for the virtual net-
works. Topology Switching offers an alternative to “one-size fit all” data-center design,
providing a good trade-off between performance and isolation.

Hedera [30] scheduler assigns the flows to nonconflicting paths similarly to Al-Fares
et al. [3], especially by aiming at not allocating more than one flow on routes that can-
not satisfy its network requirements in terms of aggregate bandwidth of all flows. Hedera
works by collecting flow information from the aggregation layer switches, then comput-
ing nonconflicting paths, and reprogramming the aggregation layer to accommodate the
network topology in order to fulfill the MapReduce jobs requirements. More especially,
bottlenecks can be predicted based on a global overview of path states and traffic bisection
requirements in order to change the network configuration.

Application-Aware Networking

The methods described in this section improve the network performance by schedul-
ing flows according to application-level inputs and requirements. At the transport layer,
flows are not distinguishable from each other but groups of computing nodes in Big Data
Application usually expose an application semantic. For example, an application can
be composed of several shuffle phases and each of them corresponds to a specific set of
flows. Furthermore, a Big Data application can evaluate its current stage. For instance, in
a MapReduce task, the mapper status (completion time) is computed from the proportion
of the data, from the source, which has been read and such a completion time can approxi-
mate the remaining data to transfer. Therefore, a mapper having read 50% of its data source
and having already sent 1GB of data should send approximately another 1GB. This is an
approximation and it cannot be guaranteed that the mapper will send as much informa-
tion for the remaining data it has to read. For example, a usual example where a mapper
sends a <key,value> pair for each read line can also apply some filtering and so may emit
nothing based on the input data.

Therefore, some methods build a semantic model reflecting Big Data application needs.
The semantic model used for these approaches associates the network traffic to be managed
with the characteristics and the current state of the application it originates from. This

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

134    ◾    Networking for Big Data

model might differ among the different proposed works but generally aims at assessing the
state of the Big Data applications and their related flows.

In this context, Ferguson et al. [31] propose to optimize network performance by arrang-
ing QoS policies according to application requests. Host nodes running Big Data applica-
tions can exchange messages within their proposed framework called PANE to submit
QoS policies similarly to what can be done with conventional networks (see section “Flow
Scheduling”). Naturally, this approach will lead to traffic oversubscription under high traf-
fic demand circumstances. To solve this issue, users have also to provide conflict resolution
rules for each QoS rule they submit into the system. Also, this approach can be employed
for implementing security policies such as denial of service prevention by setting a top
hierarchy policy triggered at the SDN controller.

OFScheduler [32] is a scheduler which assesses the network traffic while executing
MapReduce jobs and then load-balances the traffic among the links in order to decrease
the finishing time of jobs based on the estimated demand matrix of MapReduce jobs.
OFScheduler assumes that MapReduce flows can be marked (e.g., by Hadoop itself) to
distinguish those related to the shuffle from those related to the load balancing (when
a task is duplicated). The scheduling first searches for heavily loaded links and then
selects flows to be offloaded by giving the preference to (1) load-balancing flows, and (2)
larger flows in order to limit the impact on performance (cost of the offloading due to
OpenFlow rule installation). The reason for (1) is that it corresponds to a duplicated task
the original of which may finish somewhere else in the data-center unlike the others. The
rationale behind (2) is to minimize the global cost of offloading and so by moving big
flows, there are more chances to remedy the problem of the link load without reschedul-
ing additional ones.

Assuming optical links, Wang et al. [33] describe an application-aware SDN control-
ler that configures optical switches in real time based on the traffic demand of Big Data
applications. By enabling the Hadoop Job Scheduler to interact with the SDN controller,
they propose an aggregation methodology to optimize the use of optical links by leverag-
ing intermediate nodes in the aggregation. In the simplest case, when a single aggregate
has to gather data through N switches whereas the number of optical links is lower, it has
to go through multiple rounds (optical switching) in order to complete the job. The other
switches only using a single connection to the aggregating switch can also be connected
together to act as intermediate nodes to form a spanning tree rooted in the aggregator and
so to avoid the multiple rounds. Such a principle (many to one) is extended toward general
case with any to many jobs or when multiple single aggregation overlaps (e.g., different
sources overlap their aggregators). This requires more complex topologies such as torus.
Other data center network topologies discussed in this chapter such as DCell or CamCube
also make use of high redundancy to build similar shaped topologies. Building a torus
topology is more complicated than a tree because the search space for suitable neighbors
is larger, a greedy heuristic is used to support the traffic demand as much as possible. The
routing algorithm within the torus topology is meant to exploit all possible optical paths.
Authors also propose to assign weights to the optical links for load-balancing purposes on
the torus topology.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

Network Configuration and Flow Scheduling for Big Data Applications    ◾    135  

FlowComb [34] is a combination of proactive and reactive methods for flow schedul-
ing. It allows the Hadoop controller to specify requirements but also promotes the use of
a statistic-based method that predicts based on the network load of previous runs. Hence,
this approach lies between application-aware and traffic-aware. Based on that, any routing
or scheduling approach described in section “Traffic-aware Networking” could be applied,
especially Hedera [30] which has been chosen by the authors. The central decision engine
gathers all the job pertinent data and creates a set of Open Flow rules to be installed tem-
porarily and erased after job completion. However, the main drawback of the proactive
method using estimation is that about 30% of jobs are detected after they start, and 56%
before they finish.

Coflow [35] proposes a full reactive method, which only after receiving the Hadoop Job
Scheduler network requirements is able to yield results. Its implementation exposes an
API for declaring flows at application level. This API can be used, for example, from the
Hadoop Job Scheduler as it is mentioned by the authors to express on demand bandwidth
requirements at the different phases of a MapReduce job. Actually, CoFlow introduced an
abstraction layer to model all dependencies between flows in order to schedule an entire
application, that is, a set of flows, and not only a single flow.

In contrast with the methods described previously, Dixit et al. [36] propose an approach
for routing on a packet basis by splitting the flows in chunks similarly to TCP. These chunks
are distributed to the available ports of a switch using different strategies: random, round
robin, and counter based. However, the main limitation of this approach is the necessity to
reorder the chunks.

CONCLUSIONS
Big Data applications are a major representative in today’s cloud services, which have also
guided the network design and configuration for performance purposes. For example,
the fat-tree network topology is a popular choice among data-centers hosting Big Data
applications. Also, the usage of ECMP as a routing algorithm leverages the notion of flow
routing for a better efficiency in redundant-linked networks. Complementary to the fat-
tree approach, the DCell and BCube design patterns propose a high degree or almost full
connectivity between the nodes of the data-center. The usage of these kind of topologies
is tightly related to the type of applications running over the network. Therefore, one size
(network architecture/topology) does not fit all applications and some will experience
degraded performance. To cope with this situation, alternatives in the field of dynamic
routing and flow scheduling have been proposed.

The network topology can be adapted dynamically to meet the application bandwidth
needs in terms of data transfer but also to reduce the latency and improve the Big Data job’s
finishing time. Many of the solutions proposed in this field consist in regrouping applica-
tion nodes (VMs) that concentrate a high volume of data to be transferred.

Programmable networks are more flexible in having a central controller that can take
a lead role in flow scheduling. Many Big Data applications have an observable traffic pat-
tern which is exploited by several works to propose specific scheduling to make more effi-
cient network usage (e.g., load balancing, traffic management, and resources allocation).

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

136    ◾    Networking for Big Data

In this direction, several authors have highlighted the notion of “network awareness”. In
general, two kinds of application state-full controllers and network architectures have been
proposed: Passive application controllers (traffic-awareness) are those that take the traffic
matrix as input; on the active controllers, there is an interface that allows the application,
for instance the Hadoop Job Scheduler, to interact with the network controller about the
job status.

Furthermore, applications can also leverage network awareness such that they adapt
themselves to network conditions like for instance bandwidth usage and topology. This has
been demonstrated in Chowdhury et al. [37] for different types of applications including
Big Data ones.

In summary, network awareness seems to be a very promising direction for Big Data
applications and its early adoption has already shown improvements. Programmable net-
works are a fundamental enabler for leveraging the statefulness of the controllers, and
accordingly provide customized support for Big Data applications.

REFERENCES
 1. Armbrust, M., Fox, A., Griffith, et al. A view of cloud computing. Communications of the ACM

53 (4), 2010, 50–58.
 2. Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. In International Conference on Cluster,

Cloud and Grid Computing, CCGrid, IEEE/ACM, Illinois, USA.
 3. Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable, commodity data center network archi-

tecture. SIGCOMM Computer Communication Review 2008, vol. 38, ACM, New York, NY,
USA, pp. 63–74.

 4. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y. D., and Moon, B. Parallel data processing with mapre-
duce: A survey. SIGMOD Record 40 (4), 2012, 11–20.

 5. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S., Jackson, J. et al.
Storm@twitter. In SIGMOD International Conference on Management of Data 2014, ACM,
Utah, USA, p. 18.

 6. Pandey, S., Wu, L., Guru, S. M., and Buyya, R. A particle swarm optimizationbased heuristic
for scheduling workflow applications in cloud computing environments. In International
Conference on Advanced Information Networking and Applications 2010, AINA, IEEE, Perth,
Australia, pp. 400–407.

 7. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and
Warfield, A. XEN and the art of virtualization. ACM SIGOPS Operating Systems Review 37 (5),
2003, 164–177.

 8. Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A. KVM: The Linux virtual machine
monitor. In Proceedings of the Linux Symposium, Ottawa, Canada, 2007, vol. 1, pp. 225–230.

 9. Rosenblum, M. VMWare’s virtual platform. In Proceedings of Hot Chips, Palo Alto, CA, USA
1999, 185–196.

 10. Yao, Y., Cao, J., and Li, M. A network-aware virtual machine allocation in cloud datacenter.
In Network and Parallel Computing, vol. 8147 of Lecture Notes in Computer Science. Springer,
New York, USA, 2013.

 11. Cisco Data Center Infrastructure 2.5 Design Guide. 2008. http://www.cisco.com/c/en/us/td/
docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.html.

 12. Niranjan Mysore, R., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S.,
Subramanya, V., and Vahdat, A. Portland: A scalable fault-tolerant layer 2 data center network fab-
ric. In Conference on Data Communication 2009, SIGCOMM, ACM, Barcelona, Spain, pp. 39–50.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.html
mailto:Storm@twitter

Network Configuration and Flow Scheduling for Big Data Applications    ◾    137  

 13. Leiserson, C. E. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE
C-34 (10), 1985, 892–901.

 14. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., and Lu, S. DCell: A scalable and fault-tolerant
network structure for data centers. In Conference on Data Communication 2008, SIGCOMM,
ACM, Seattle, WA, USA.

 15. Abu-Libdeh, H., Costa, P., Rowstron, A., O’Shea, G., and Donnelly, A. Symbiotic routing in
future data centers. Computer Communication Review 40 (4), 2010, 51–62.

 16. Singla, A., Hong, C.-Y., Popa, L., and Godfrey, P. B. Jellyfish: Networking data centers ran-
domly. In Conference on Networked Systems Design and Implementation 2012, NSDI, USENIX
Association, San Jose, California.

 17. Iselt, A., Kirstadter, A., Pardigon, A., and Schwabe, T. Resilient routing using MPLS and ECMP.
In Workshop on High Performance Switching and Routing 2004, HPSR, IEEE, Arizona, USA,
pp. 345–349.

 18. Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H. H., Subramanya, V., Fainman, Y.,
Papen, G., and Vahdat, A. Helios: A hybrid electrical/optical switch architecture for modular
data centers. In SIGCOMM 2010, ACM, New Delhi, India, pp. 339–350.

 19. Lu, G., Guo, C., Li, Y., Zhou, Z., Yuan, T., Wu, H., Xiong, Y., Gao, R., and Zhang, Y. Serverswitch:
A programmable and high performance platform for data center networks. In Conference on
Networked Systems Design and Implementation 2011, vol. 11 of NSDI, USENIX, San Jose,
California, pp. 15–28.

 20. Chen, K., Guo, C., Wu, H., Yuan, J., Feng, Z., Chen, Y., Lu, S., and Wu, W. Dac: Generic and
automatic address configuration for data center networks. Transactions on Networking 20 (1),
2012, 84–99.

 21. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and Weiss, W. RFC 2475: An Architecture
for Differentiated Service, IETF, California, USA, 1998.

 22. Braden, R., Zhang, L., Berson, S., Herzog, S., and Jamin, S. RFC 2205: Resource ReSerVation
Protocol (RSVP)—Version 1 Functional Specification, September 1997.

 23. Dogar, F. R., Karagiannis, T., Ballani, H., and Rowstron, A. Decentralized task-aware schedul-
ing for data center networks. In SIGCOMM New York, NY, USA, 2014, ACM.

 24. Chowdhury, S. R., Bari, M. F., Ahmed, R., and Boutaba, R. PayLess: A low cost network moni-
toring framework for software defined networks. In Network Operations and Management
Symposium 2014, NOMS, IEEE/IFIP, Krakow, Poland, p. 16.

 25. Roschke, S., Cheng, F., and Meinel, C. Intrusion detection in the cloud. In Dependable,
Autonomic and Secure Computing, 2009. DASC’09. Eighth IEEE International Conference on
2009, IEEE, Chengdu, China, pp. 729–734.

 26. Dinh, H. T., Lee, C., Niyato, D., and Wang, P. A survey of mobile cloud computing: Architecture,
applications, and approaches. Wireless Communications and Mobile Computing 13 (18), 2013,
1587–1611.

 27. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., and Turner, J. Openflow: Enabling innovation in campus networks. SIGCOMM Computer
Communication Review 38 (2), 2008, 69–74.

 28. Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., and Banerjee, S. Devoflow:
Scaling flow management for high-performance networks. In Computer Communication
Review 2011, vol. 41, ACM SIGCOMM, Toronto, ON, Canada, pp. 254–265.

 29. Webb, K. C., Snoeren, A. C., and Yocum, K. Topology switching for data center networks. In
Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services 2011, Hot-
ICE, USENIX, Boston, MA.

 30. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vahdat, A. Hedera: Dynamic
flow scheduling for data center networks. In Symposium on Networked Systems Design and
Implementation, NSDI, USENIX, San Jose, California.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

138    ◾    Networking for Big Data

 31. Ferguson, A. D., Guha, A., Liang, C., Fonseca, R., and Krishnamurthi, S. Participatory network-
ing: An api for application control of SDNS. In SIGCOMM 2013, ACM, Hong Kong, China,
pp. 327–338.

 32. Li, Z., Shen, Y., Yao, B., and Guo, M. Ofscheduler: A Dynamic Network Optimizer for Mapreduce
in Heterogeneous Cluster. Springer, New York, USA, pp. 1–17.

 33. Wang, G., Ng, T. E., and Shaikh, A. Programming your network at run-time for big data appli-
cations. In First Workshop on Hot Topics in Software Defined Networks 2012, HotSDN, ACM,
Helsinki, Finland, pp. 103–108.

 34. Das, A., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., and Yu, C. Transparent and flexible net-
work management for big data processing in the cloud. In Workshop on Hot Topics in Cloud
Computing, Berkeley, CA, 2013, USENIX.

 35. Chowdhury, M. and Stoica, I. Coflow: A networking abstraction for cluster applications. In
Workshop on Hot Topics in Networks, 2012, HotNets, ACM, Redmond, WA, USA, pp. 31–36.

 36. Dixit, A., Prakash, P., and Kompella, R. R. On the efficacy of fine-grained traffic splitting pro-
tocolsin data center networks. In SIGCOMM 2011, ACM, Toronto, ON, Canada.

 37. Chowdhury, M., Zaharia, M., Ma, J., and Jordan. Managing data transfers in computer clusters
with orchestra. In SIGCOMM Computer Communication Review 2011, vol. 41, ACM, Toronto,
ON, Canada, pp. 98–109.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
W

at
er

lo
o]

 a
t 1

5:
41

 0
3

N
ov

em
be

r
20

15

	Chapter 7: Network Configuration and Flow Scheduling for Big Data Applications
	Introduction
	VM Placement for Reducing Elephant Flow Impact
	Topology Design
	Conventional Networking
	Routing
	Flow Scheduling
	Limitations

	Software-Defined Networking
	Software-Defined Networks
	Traffic-Aware Networking
	Application-Aware Networking

	Conclusions
	References

