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INTRODUCTION
Big Data applications play a crucial role in our evolving society. They represent a large pro-
portion of the usage of the cloud [1–3] because the latter offers distributed and online storage 
and elastic computing services. Indeed, Big Data applications require to scale computing 
and storage requirements on the fly. With the recent improvements of virtual computing, 
data centers can thus offer a virtualized infrastructure in order to fit custom requirements. 
This flexibility has been a decisive enabler for the Big Data application success of the recent 
years. As an example, many Big Data applications rely, directly or indirectly, on Apache 
Hadoop [11] which is the most popular implementation of the MapReduce programming 
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122    ◾    Networking for Big Data

model [4]. From a general perspective, it consists in distributing computing tasks between 
mappers and reducers. Mappers produce intermediate results which are aggregated in a 
second stage by reducers. This process is illustrated in Figure 7.1a, where the mappers send 
partial results (values) to specific reducers based on some keys. The reducers are then in 
charge of applying a function (like sum, average, or other aggregation function) to the 
whole set of values corresponding to a single key. This architectural pattern is fault tolerant 
and scalable. Another interesting feature of this paradigm is the execution environment 
of the code. In Hadoop, the code is directly executed near the data it operates on, in order 
to limit the data transfer within the cluster. However, large chunks of data are still trans-
ferred between the mappers and reducers (shuffle phase) which thus necessitate an efficient 
underlying network infrastructure. It is important to note that the shuffle phase does not 
wait for the completion of the mappers to start as the latter already emits (key, value) pairs 
based on partial data it has read from the source (e.g., for each line). Since some failures or 
bottlenecks can occur, Hadoop tasks are constantly monitored. If one of the components 
(i.e., mappers or reducers) is not functioning well (i.e., it does not progress as fast as others 
for example), it can be duplicated into another node for balancing load. In such a case, this 
leads also to additional data transfers.

Storm [5] is another approach that aims at streaming data analytics, while Hadoop 
was originally designed for batch processing. Storm consists of spouts and bolts. Spouts 
read a data source to generate tuples and emit them toward bolts. Bolts are responsible for 

Block 1

Block 2

Block 3

Mappers(a)

(b)

Reducers

K1, V1

K2, V2

K2, V3

K3, V4

K4, V5

K1, V6
Shuffle

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

K1, func(V1, V6)

K4, func(V5)

K2, func(V2, V3)

K3, func(V4)

Spouts Bolts

FIgURE 7.1 Big Data computational model and the underlying network traffic as plain arrows: 
(a) MapReduce with K as key and V as value; (b) Storm.
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processing the tuples and eventually emit new tuples toward other bolts. Therefore, a Storm 
application is generally represented by a graph as shown in Figure 7.1b. The main differ-
ence between Storm and MapReduce is that data transfers occur all the time (streaming) 
and so are not limited to a specific phase (shuffle phase in Hadoop). As a result, among the 
diversity in Big Data applications, there are common problems, in particular optimizing 
the data transfer rate between host.

Therefore, while Big Data technological improvements were mainly highlighted by 
new computing design and approaches, like Hadoop, network optimizations are primor-
dial to guarantee high performances. This chapter reviews existing approaches to con-
figure network and schedule flows in such a context. In the following sections, we will 
cover the diverse optimization methods grouped according to their intrinsic features and 
their contributions. In particular, recent network technologies such as Software-Defined 
Networking (SDN) empowered the programmability of switching devices. Consequently, 
more complex network scheduling algorithms can be afforded to leverage the performance 
of MapReduce jobs. That is why this chapter focuses on SDN-based solutions but also 
introduces common networking approaches which could be applied as well as virtualiza-
tion techniques. The latter are strongly coupled with the network design. For example, 
end-hosts in a data center are virtual machines (VMs) which can be assigned to different 
tasks and so would lead to various traffic types, which can be better handled if the network 
is adaptive and therefore easily reconfigurable.

This chapter is structured as follows:

 1. Optimization of the VM placement: even if not dealing with network configuration, it 
has a significant impact on the same;

 2. Topology design: it is an important topic as the way the machines are wired have an 
impact on performance;

 3. Conventional networking, in particular routing and Quality of Service (QoS) sche-
duling: these might be customized to support Big Data as well.

 4. SDN: this highlights recent approaches that leverage a global view of the network to 
implement efficient traffic management policies.

VM PLACEMENT FOR REDUCINg ELEPhANT FLOW IMPACT
Very large flows, normally associated to long MapReduce jobs, are often called Elephant 
Flows [6]. Since any VM can be potentially hosted in any physical server, grouping VM that 
are involved in large data transfers can reduce the impact on the overall bandwidth usage 
of the network. This approach is based on the internal routing of Hypervisor systems used 
in virtualized data centers such as XEN [7], KVM [8], or VMWare [9] solutions. From a 
more general point of view, VMs can be colocated in a certain region of a network, even 
if on different physical machines. This is illustrated in Figure 7.2 where in the case of the 
original allocations (Figure 7.2a), the tasks of the same job are scattered in the network and 
so the traffic between them has to go through many hops eventually resulting in network 
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124    ◾    Networking for Big Data

congestion. In Figure 7.2b, by moving only two tasks (one from J1 and one from J3), each 
job is isolated in a single rack (under a single switch) and so no congestion occurs at higher 
level switches while improving the data transfer efficiency between tasks of the same job 
since these are connected through a single switch.

VM placement is basically related to VM allocation problems, which are optimiza-
tion problems under certain criteria. One of the criterion should be the usage of network 
resources. Because this is not the focus of this chapter, we recommend the reader to read 
Reference 10 for more details about network-aware VM placement.

The downside of existing network-aware VM placement approaches is that they lack the 
reactiveness. Normally, given the nature of MapReduce phases, it is not possible to exactly 
match in advance MapReduce jobs and needed network resources (e.g., how large the data 
transfer will be during the shuffle phase depends on the underlying data and applications). 
To cope with this practical issue, virtualized data centers may estimate the VM-to-VM 
traffic matrix but such a method works well with a known batch job only. Another solution 
is to migrate VMs during their execution, but this might be also resource consuming and 
negatively impact the finishing time of the Big Data jobs if this occurs too frequently.

TOPOLOgy DESIgN
Data-centers networks are usually organized in a tree topology [11,12] with three defined 
layers:

•	 Core layer: This layer is the backbone of the network where high-end switches and 
fibers are deployed. In this layer only L2 forwarding takes place without any packet 
manipulation. The equipment for this layer is the more expensive among the hierar-
chical network model.

•	 Aggregation or distribution layer: In this layer most of the L3 routing takes place.

•	 Access layer: This layer provides connectivity to the end nodes and so are located at the 
top of the racks. They perform the last step of L3 packet routing and packet manipula-
tion. Normally, these are the cheapest devices in the hierarchical network model.

J1 J2 J2
J3

(a) (b)

J1 J3 J1 J1 J2 J2 J3 J3

FIgURE 7.2 VM placement with three jobs (each job JI has two tasks). The width of a link repre-
sents its load. (a) Initial task allocation, and (b) optimized task allocation.
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Thanks to this hierarchical model, a low latency is achieved for traffic between two 
nodes in the same rack. This explains why approaches like Hadoop leverage rack aware-
ness to ensure fast replication of data by selecting nodes in the same rack for copying data 
(but also others out of the rack in order to guarantee data availability under a rack failure). 
In addition, this type of configuration supports a large number of ports at the access layer. 
A specific instance of the hierarchical model is the fat tree proposed in Al-Fares et al. [3] 
and illustrated in Figure 7.3, which enables fault-tolerance by ensuring redundant paths 
in a deterministic manner. The fat-tree or Clos topology was introduced more than 25 
years ago [13] to reduce the cost of telephony-switched networks. The topology layout is 
organized as k-ary trees, where in every branch of the tree there are k switches, grouped 
in pods. Actually, a pod consists in (k/2)2 end-hosts and k/2 switches. At the edge level, 
switches must have at least k ports connected as follows: half of the ports are assigned to 
end nodes and the other half is connected to the upper aggregation layer of switches. In 
total, the topology supports (k2/2) k-port switches for connecting host nodes.

DCell [14] is a recursively interconnected architecture proposed by Microsoft. Compared 
to a fat-tree topology, DCell is a fully interconnected graph in order to be largely fault 
tolerant even under several link failures. In fact, high-level DCell nodes are recursively 
connected to low level ones, implemented with mini switches to scale out as shown in 
Figure 7.4.

Experimental results have showed that a 20 nodes network can twice outperform a large 
data center used for MapReduce. As a downside, DCell requires a full degree of connectiv-
ity, making it in practice costly to maintain and deploy. To enhance network connectivity 
between servers, CamCube [15] is a torus topology where each server is interconnected to 

Core

Aggregation

Edge/
access

Pod 0 Pod 1 Pod 2 Pod 3

FIgURE 7.3 Example of a hierarchical network model: Multirooted network topology.
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126    ◾    Networking for Big Data

other six servers and all communications go through them, without any switch for internal 
communication. Finally, recent propositions like Singla et al. [16] promote a high flexibility 
by alleviating the need for a well-defined fixed graph structure, as the fat trees are, and do 
so by introducing some randomness in the topology bounded by some criteria.

CONVENTIONAL NETWORkINg
Routing

Data-center network topologies like fat trees imply a large number of links leading to 
redundant paths. Therefore, routing algorithms can take that benefit to achieve a higher 
bandwidth. As an illustrative example in Figure 7.5a, the shortest path is used to route the 
traffic between the two tasks of the job J1. Unfortunately, it goes through a congested link. 
Hence, a redundant path can be used (Figure 7.5b) and even multiple of them conjointly 
(Figure 7.5a). Although these approaches have been proposed for routing in general, they 
are also used in data-centers to improve the performance of the Big Data applications. This 
is the reason why this section covers some propositions about how to use these principles 
in case of Big Data. However, the general issues are (1) to predict the traffic patterns and 
(2) to be able to rapidly change the configuration of the routing when the traffic suddenly 
changes, which is the case in a cloud infrastructure.

Nowadays, a major representative of such an approach is the equal cost multipath 
(ECMP) algorithm [17]. ECMP leverages the opportunity to route flows among multiple 
paths. Unlike traditional routing algorithms like OSPF which consider a single best path, 

Mini-switch

DCell [1]

DCell [2]

DCell [3]

DCell [0]DCell [4]

Server

FIgURE 7.4 A DCell topology for five cells of level 0, each containing four servers. (From Guo, C. 
et al., in Conference on Data Communication, SIGCOMM, ACM, 2008.)
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ECMP considers all the best multipaths according to any metric (as, e.g., the number of 
hops) among which a single one is selected for a given flow through a load balancer. The 
number of multiple paths is dependent on the router implementation but is usually bounded 
to 16. Hence, this may yield a lower performance than expected for large data-centers. In 
fact, the amount of entries in the routing tables grows at an exponential rate, increasing 
the latency of the routing algorithm. Commercial solutions promoting multipath routing 
include FabricPath by Cisco Systems, BCube, VL2, and Oracle Sun data-center InfiniBand.

In addition to promoting the fat-tree topology usage for data-centers, Al-Fares et al. [3] 
proposed a dedicated routing algorithm based on an approach called Two-Level Routing 
Tables, where the routing tables are split into two hierarchical tables linked on the prefix 
length of the network address. A two layer table approach aims at leveraging the routing 
algorithm speed for establishing a route. This is possible because the authors introduced 
a private addressing system respecting a pre-established pattern like 8.pod.switch.host 
assuming a class A network. The first table index entries use a left-handed prefix length (e.g., 
8.1.2.0/24, 8.1.1.0/24). The entries of the first table are linked to a smaller secondary table 
indexed by a right-handed suffix (e.g., 0.0.0.1/4, 0.0.0.4/4). For example, to find the route to 
the address 8.8.8.8, the algorithm will look up the first table, find the corresponding entry 
for the first part of the network address 8.8.8.0/24, then jumps to the secondary table and 
finds the remainder of the route. Since each switch of the aggregation layer in a fat-tree 
topology has always a k/2° of connectivity to the access layer, Two-Level Routing Tables are 
bounded in the worst case to k/2 entries for suffixes and prefixes. Moreover, flows can be 
actually classified by duration and size. Then, the proposed algorithm in Al-Fares et al. [3] 
minimizes the overlap between the paths of voluminous flows. To achieve this, a central 
scheduler is in charge of keeping track of used links in the network in order to assign a new 
flow to a nonused path. From this perspective, it falls into the category of centralized net-
working (see section “Software-Defined Networks”), where a server acts as the controller 
by informing other ones about the link to use to forward specific packets of a flow.

The flow establishment is also leveraged by the previously described route lookup. In 
this approach, instead of routing traffic at a packet level, streams of data are grouped into 
flows and routed as a whole entity. One of the benefits of this approach is a faster route 

(a) (b)

J1 J1 J1 J1 J1 J1

(c)

FIgURE 7.5 Routing decisions for one job with two tasks. The width of a link represents its load. 
(a) Shortest path routing, (b) high throughput, and (c) multipath routing.
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128    ◾    Networking for Big Data

computation as it is reduced in a similar fashion as in circuit switching legacy technology. 
For example, if a host node requires to transfer a large data file as a part of a Big Data job, 
the whole stream will follow a pre-established route, reducing the latency of establishing a 
different route for each packet of the stream.

In order to enhance routing and network speed, hardware plays a core role. Therefore, 
there have been propositions to replace standard hardware. In particular, Farrington et al. 
[18] argue for a hybrid optical–electric switch as optical links achieve higher throughput but 
are not well adapted to bursty traffic. Combining both technologies thus helps in obtain-
ing a good trade-off between accuracy and cost. Moreover, the technological availability 
of programmable circuits also leads to the possibility of implementing switching devices, 
especially in the aggregation and core layer using ASIC and FPGA devices. Lu et al. [19] 
propose an approach for implementing switching cards with a PCI-E interface. A recent 
proposal [20] addresses dynamic routing by replacing the traditional dynamic host con-
figuration protocol (DHCP) address configuration by an another automated address con-
figuration system. In this approach, the network is automatically blue printed as a graph. 
Then, by interpreting a set of labels assigned to each computing node, the system tries to 
find an isomorphism that minimizes the traffic at the aggregation layer. From the prelimi-
nary results, this approach has yielded promising results. However, it actually runs only 
over BCube or DCell because they have a fully connected topology.

Flow Scheduling

Network operators perform various traffic engineering operations in order to provide dif-
ferent network services on a shared network. This consists in classifying the traffic accord-
ing to the intrinsic characteristics of each service or application using the network. For 
example, it is possible to define policies to specially treat Big Data applications. Similarly, 
the IPv6 Traffic Class includes the possibility of injecting information specific to applica-
tions in the packet stream. Other types of support for enabling network infrastructure to 
perform management of traffic are proposed in request for comments (RFCs) [21] and [22]. 
The first (DiffServ) proposes a protocol for differentiating services and its network behav-
ior. The latter, Resource Reservation protocol (RSVP), specifies also a protocol that enables 
applications to reserve network resources in advance of initiating a data transfer.

As highlighted in the introduction, Big Data applications include both batch processing 
and streaming analytics, which are different by nature. In particular, batch processing jobs 
are more prone to use the network heavily during certain phases while streaming uses the 
network constantly with various rates. Therefore, the apparition of a batch job (Hadoop) 
may suddenly impact the network and so the other underlying applications. Dogar et al. 
[23] have proposed to schedule flows from BigData applications in a data center using 
a variation of first-in first-out (FIFO) scheduling that allows some level of multiplexing 
between the flows. The authors propose to schedule flows in the order of arrival with a 
certain degree of freedom and allow multiplexing over a limited number of flows which 
in turn allows small flows to be processed alongside large flows. This approach allows the 
co-execution of batch and streaming Big Data applications.
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Limitations

It is worth mentioning that, in traditional data center networks, only aggregation and core 
layer switches have the capability of scheduling flows. This is a limitation imposed by the 
hardware. To be able to exploit the full potential of flow scheduling, an additional network 
function is required. This is often implemented in a central controller, this way allowing 
core and aggregation switches to be replaced by simple switches. One of the main advan-
tages of using this approach is the reduced cost of switching and forwarding (L2) devices.

Another disadvantage of traditional networking is that the network configuration 
remains static and so impacts on the maintenance cost of the infrastructure because any 
modification of the topology must be wired manually by the network administrators. 
Virtualized networks come into play for coping with the lack of flexibility in traditional 
networks, and have become popular over the last years, thanks to the emerging virtualiza-
tion technologies and computing power to support them. As a result, data-center owners 
offer their clients not only VMs (known as Virtual Private Servers [VPS]) but also virtual 
network infrastructure. This allows VPS users to create customized topologies. Virtual 
LANs (VLAN) have been popular in the past decades for splitting large organizational 
networks into smaller ones. However, this approach fails to segregate application traffic 
because of the coarse routing granularity inside a VLAN. A possible solution to this issue 
is to use a dynamic topology that adapts to the specific needs of each application. In such a 
scope, the section “Software-Defined Networks” covers emerging technologies facilitating 
dynamic network configuration using a centralized control plane implemented in software.

SOFTWARE-DEFINED NETWORkINg
This section covers both theoretical approaches as well as practical implementations. 
Solutions highlighted in the following paragraphs combine three aspects: computational 
patterns present in most of Big Data services, data-centers network architectural improve-
ments such as hierarchical topologies (e.g., fat trees) and dynamic routing algorithms lever-
aged by the adoption of technologies such as SDN. These three aspects combined together 
allow the adaptation of the network configuration from the core to the aggregation infra-
structure layer to better suit Big Data application needs.

Routing and scheduling decisions rely on the traffic matrix. Such a matrix can be observed 
in real-time at the network level but can also be predicted in order to plan next course of 
action. The traffic matrix usually reflects the flow’s size, duration and frequency for each 
pair of nodes and eventually application instances or even between multiple tasks of a single 
job. Alternatively, Big Data applications can interact with a central controller to expose their 
current usage and needs. These two types of approaches are differentiated in Figures 7.6a 
and 7.6b. In every cases, there is a Big Data application controller or manager (e.g., the job-
tracker or the resource manager in Hadoop), which is in charge of triggering and monitor-
ing the tasks. In Figure 7.6a, a monitoring service gathers traffic from forwarding devices 
and sends the information to the network controller itself which is in charge of taking rout-
ing decisions. The monitoring can even be done by OpenFlow as an OpenFlow controller 
can request such statistics from OpenFlow switches [24]. In this case, both the monitor and 
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130    ◾    Networking for Big Data

Monitoring

Monitoring

Network monitor
(a)

(b)

(c) Network monitor

Network controller

Network controller

Network controller

Configuring

Configuring

Configuring

Big Data
application controller

Big Data
application controller

Big Data
application controller

Big Data controlling and reporting

Big Data controlling and reporting

Big Data controlling and reporting

FIgURE 7.6 The different type of *-aware networking (small circles represent a task of a Big Data 
process). (a) Traffic-aware networking, (b) application-aware networking, and (c) hybrid awareness.
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controller are merged in a single entity. In a second scenario (Figure 7.6b), the Big Data 
controller itself sends information about the running jobs to the network controller which 
can thus take proper configuration actions. Finally, it is also possible to imagine a hybrid 
approach (Figure 7.6c) where both types of information are made available to the controller. 
It might be useful if the level of details from the Big Data controller is coarse-grained.

To summarize, the different methods covered in the following subsections are actually 
similar to conventional networking (select better paths, minimize congestion, etc.), but 
they rely on a higher and more dynamic coupling between the network configuration and 
applications (or the corresponding traffic).

Software-Defined Networks

In recent years, SDN emerged introducing a new layer of abstraction for more flexible net-
work management. Under this approach, switches are just forwarding devices while most 
of the control (e.g., routing decisions) is performed in a central controller. As a result, a 
network can be built with merchant silicone and can be programmatically controlled by 
the central control plane. This eventually results in reduction of both capital expenditures 
(CAPEX) and operation expenditures (OPEX).

SDN decouples the data and the control plane as shown in Figure 7.7, where

•	 Control plane: The concept of the control plane is to have a dedicated communication 
channel for exchanging signalization messages among forwarding and management 
devices. Most of the available products for SDN expose a North Bound application 
programming interface (API) for applications to subscribe to real-time statistics and 
service usage.

•	 Data plane: This layer, also referred as the forwarding plane, performs the actual 
switching/forwarding of the network traffic. The traffic in this plane is accounted and 
measured but not interpreted by any decisional algorithms.

SDN controller

Data plane

Control
plane

SDN applications

FIgURE 7.7 SDN architecture example.
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132    ◾    Networking for Big Data

Additionally, the application layer is composed of custom-made applications. The latter 
subscribe to the North Bound API of the SDN controller to enable extra functionality not 
provided by the out of the box controller. For example, these applications might be secu-
rity oriented [25] or for routing purposes [26]. OpenFlow [27] is adopted as de facto stan-
dard control protocol. OpenFlow acts as the communication protocol between switches 
and controllers (e.g., NOX, Floodlight, POX). An OpenFlow rule consists of two parts: 
a match field, which filters packet headers, and instructions, indicating what actions to 
take with the matched packets. Upon arrival of a packet at a switch, the controller decides 
on the route of the packet and sends the corresponding rule to the switch. This event is 
known as FlowMod. Finally, the packet is sent (PacketOut). Figure 7.8 illustrates an exam-
ple where a routing action is taken upon arrival of a packet with destination X and source 
Y. Additionally, a controller can provision switches with flow tables entries in advance. 
Hence, a PacketIn message is not required to emit an event FlowMod. The rules also have 
soft (last seen packet) and hard (maximum absolute value) timeouts, and after expiration 
of these timeouts the rule is removed.

While originally proposed for campus networks, the modification proposed by Curtis 
et al. [28] consists of reducing the overhead induced by OpenFlow to enable a more efficient 
flow management for Big Data analytics applications networking through the extensive 
use of wildcard rules within the switches to avoid invoking the OpenFlow controller for 
each new flow. However, the extensive use of wildcards on OpenFlow might cause loss of 
granularity in the statistics derived from the counters on the controller and evidently on 
routing and scheduling decisions. As mentioned in Curtis et al. [28], DevoFlow aims to 
devolve control by cloning rules whenever a flow is created using wildcards. The cloned 
rule will replace the wildcard fields using the clone’s specific information. Additionally, 
DevoFlow enriches OpenFlow rules by including local routing actions (without relying 
on the OpenFlow controller), such as multipath routing. This last feature allows to rapidly 
reconfigure the route for a given flow leveraging the flow scheduling.

Traffic-Aware Networking

The Topology Switching approach [29] proposes to expose several adaptive logical topolo-
gies on top of a single physical one. It is similar to the allocations problem in VM place-
ment introduced in section “VM Placement for Reducing Elephant Flow Impact” by trying 

(2) PacketIn

Controller

Switch
(4) PacketOut, action = port0

(3) FlowMod
match (dst_ip = X) -> action = port0, timeout = 10

(1) from Y to X (5) from Y to X

Port 0

FIgURE 7.8 SDN with open flow rules.
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to assign every individual flow to a specific path to optimize an objective. The  optimization 
objectives can be multiple in case of Big Data applications, the most important one is the 
total capacity, that is, trying to use the available bandwidth as much as possible in order 
to reduce the job completion time. For example, considering a fat-tree topology as showed 
in Figure 7.3, every MapReduce typical bisection traffic is considered as a separate routing 
task. Thus, each task runs an instance of a particular routing system. For every routing 
system, a pre-allocated bandwidth is established in the physical topology to maximize the 
bandwidth. Topology Switching is implemented in a central topology server, responsible for 
allocating resources but also for subtracting unused resources and collecting metrics. The 
two metrics used in this approach are the bisection bandwidth and the all-to-all transfer. 
Bisection bandwidth is used to measure the topology ability to handle concurrent transfers 
at the physical layer. The all-to-all metric is used to evaluate how the logical topologies 
react under a worst case scenario. Based on both metrics, the Topology Switching approach 
runs an adaptive algorithm for readjusting the logical configurations for the virtual net-
works. Topology Switching offers an alternative to “one-size fit all” data-center design, 
providing a good trade-off between performance and isolation.

Hedera [30] scheduler assigns the flows to nonconflicting paths similarly to Al-Fares 
et al. [3], especially by aiming at not allocating more than one flow on routes that can-
not satisfy its network requirements in terms of aggregate bandwidth of all flows. Hedera 
works by collecting flow information from the aggregation layer switches, then comput-
ing nonconflicting paths, and reprogramming the aggregation layer to accommodate the 
network topology in order to fulfill the MapReduce jobs requirements. More especially, 
bottlenecks can be predicted based on a global overview of path states and traffic bisection 
requirements in order to change the network configuration.

Application-Aware Networking

The methods described in this section improve the network performance by schedul-
ing flows according to application-level inputs and requirements. At the transport layer, 
flows are not distinguishable from each other but groups of computing nodes in Big Data 
Application usually expose an application semantic. For example, an application can 
be composed of several shuffle phases and each of them corresponds to a specific set of 
flows. Furthermore, a Big Data application can evaluate its current stage. For instance, in 
a MapReduce task, the mapper status (completion time) is computed from the proportion 
of the data, from the source, which has been read and such a completion time can approxi-
mate the remaining data to transfer. Therefore, a mapper having read 50% of its data source 
and having already sent 1GB of data should send approximately another 1GB. This is an 
approximation and it cannot be guaranteed that the mapper will send as much informa-
tion for the remaining data it has to read. For example, a usual example where a mapper 
sends a <key,value> pair for each read line can also apply some filtering and so may emit 
nothing based on the input data.

Therefore, some methods build a semantic model reflecting Big Data application needs. 
The semantic model used for these approaches associates the network traffic to be managed 
with the characteristics and the current state of the application it originates from. This 
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model might differ among the different proposed works but generally aims at assessing the 
state of the Big Data applications and their related flows.

In this context, Ferguson et al. [31] propose to optimize network performance by arrang-
ing QoS policies according to application requests. Host nodes running Big Data applica-
tions can exchange messages within their proposed framework called PANE to submit 
QoS policies similarly to what can be done with conventional networks (see section “Flow 
Scheduling”). Naturally, this approach will lead to traffic oversubscription under high traf-
fic demand circumstances. To solve this issue, users have also to provide conflict resolution 
rules for each QoS rule they submit into the system. Also, this approach can be employed 
for implementing security policies such as denial of service prevention by setting a top 
hierarchy policy triggered at the SDN controller.

OFScheduler [32] is a scheduler which assesses the network traffic while executing 
MapReduce jobs and then load-balances the traffic among the links in order to decrease 
the finishing time of jobs based on the estimated demand matrix of MapReduce jobs. 
OFScheduler assumes that MapReduce flows can be marked (e.g., by Hadoop itself) to 
distinguish those related to the shuffle from those related to the load balancing (when 
a task is duplicated). The scheduling first searches for heavily loaded links and then 
selects flows to be offloaded by giving the preference to (1) load-balancing flows, and (2) 
larger flows in order to limit the impact on performance (cost of the offloading due to 
OpenFlow rule installation). The reason for (1) is that it corresponds to a duplicated task 
the original of which may finish somewhere else in the data-center unlike the others. The 
rationale behind (2) is to minimize the global cost of offloading and so by moving big 
flows, there are more chances to remedy the problem of the link load without reschedul-
ing additional ones.

Assuming optical links, Wang et al. [33] describe an application-aware SDN control-
ler that configures optical switches in real time based on the traffic demand of Big Data 
applications. By enabling the Hadoop Job Scheduler to interact with the SDN controller, 
they propose an aggregation methodology to optimize the use of optical links by leverag-
ing intermediate nodes in the aggregation. In the simplest case, when a single aggregate 
has to gather data through N switches whereas the number of optical links is lower, it has 
to go through multiple rounds (optical switching) in order to complete the job. The other 
switches only using a single connection to the aggregating switch can also be connected 
together to act as intermediate nodes to form a spanning tree rooted in the aggregator and 
so to avoid the multiple rounds. Such a principle (many to one) is extended toward general 
case with any to many jobs or when multiple single aggregation overlaps (e.g., different 
sources overlap their aggregators). This requires more complex topologies such as torus. 
Other data center network topologies discussed in this chapter such as DCell or CamCube 
also make use of high redundancy to build similar shaped topologies. Building a torus 
topology is more complicated than a tree because the search space for suitable neighbors 
is larger, a greedy heuristic is used to support the traffic demand as much as possible. The 
routing algorithm within the torus topology is meant to exploit all possible optical paths. 
Authors also propose to assign weights to the optical links for load-balancing purposes on 
the torus topology.
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FlowComb [34] is a combination of proactive and reactive methods for flow schedul-
ing. It allows the Hadoop controller to specify requirements but also promotes the use of 
a statistic-based method that predicts based on the network load of previous runs. Hence, 
this approach lies between application-aware and traffic-aware. Based on that, any routing 
or scheduling approach described in section “Traffic-aware Networking” could be applied, 
especially Hedera [30] which has been chosen by the authors. The central decision engine 
gathers all the job pertinent data and creates a set of Open Flow rules to be installed tem-
porarily and erased after job completion. However, the main drawback of the proactive 
method using estimation is that about 30% of jobs are detected after they start, and 56% 
before they finish.

Coflow [35] proposes a full reactive method, which only after receiving the Hadoop Job 
Scheduler network requirements is able to yield results. Its implementation exposes an 
API for declaring flows at application level. This API can be used, for example, from the 
Hadoop Job Scheduler as it is mentioned by the authors to express on demand bandwidth 
requirements at the different phases of a MapReduce job. Actually, CoFlow introduced an 
abstraction layer to model all dependencies between flows in order to schedule an entire 
application, that is, a set of flows, and not only a single flow.

In contrast with the methods described previously, Dixit et al. [36] propose an approach 
for routing on a packet basis by splitting the flows in chunks similarly to TCP. These chunks 
are distributed to the available ports of a switch using different strategies: random, round 
robin, and counter based. However, the main limitation of this approach is the necessity to 
reorder the chunks.

CONCLUSIONS
Big Data applications are a major representative in today’s cloud services, which have also 
guided the network design and configuration for performance purposes. For example, 
the fat-tree network topology is a popular choice among data-centers hosting Big Data 
applications. Also, the usage of ECMP as a routing algorithm leverages the notion of flow 
routing for a better efficiency in redundant-linked networks. Complementary to the fat-
tree approach, the DCell and BCube design patterns propose a high degree or almost full 
connectivity between the nodes of the data-center. The usage of these kind of topologies 
is tightly related to the type of applications running over the network. Therefore, one size 
(network architecture/topology) does not fit all applications and some will experience 
degraded performance. To cope with this situation, alternatives in the field of dynamic 
routing and flow scheduling have been proposed.

The network topology can be adapted dynamically to meet the application bandwidth 
needs in terms of data transfer but also to reduce the latency and improve the Big Data job’s 
finishing time. Many of the solutions proposed in this field consist in regrouping applica-
tion nodes (VMs) that concentrate a high volume of data to be transferred.

Programmable networks are more flexible in having a central controller that can take 
a lead role in flow scheduling. Many Big Data applications have an observable traffic pat-
tern which is exploited by several works to propose specific scheduling to make more effi-
cient network usage (e.g., load balancing, traffic management, and resources allocation). 
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In this direction, several authors have highlighted the notion of “network awareness”. In 
general, two kinds of application state-full controllers and network architectures have been 
proposed: Passive application controllers (traffic-awareness) are those that take the traffic 
matrix as input; on the active controllers, there is an interface that allows the application, 
for instance the Hadoop Job Scheduler, to interact with the network controller about the 
job status.

Furthermore, applications can also leverage network awareness such that they adapt 
themselves to network conditions like for instance bandwidth usage and topology. This has 
been demonstrated in Chowdhury et al. [37] for different types of applications including 
Big Data ones.

In summary, network awareness seems to be a very promising direction for Big Data 
applications and its early adoption has already shown improvements. Programmable net-
works are a fundamental enabler for leveraging the statefulness of the controllers, and 
accordingly provide customized support for Big Data applications.
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