Policies in SNMPv3-based Management

Salima Omari Raouf Boutaba Omar Cherkaoui
Laboratoire PRiSM ECE Department Lab téléinformatique
Université de Versailles University of Toronto Université UQAM

Versailles, FRANCE Toronto, ON, CANADA Montréal, CANADA
osa@prism.uvsq.fr rboutaba@comm.utoronto.ca cherkaoui.omar@ugqam.fr

Abstract

Two important achievements in the network management area motivated the work
presented in this paper. The first one is the wide acceptance of the policy concept and
its introduction as a means for driving management procedures. The second concerns
the capabilities brought by the version 3 of the SNMP protocol for configurable and
secure network management. The deployment of SNMPv3 at equipment level allows
henceforth concretizing the policy-driven management: Refining enterprise policies;
and enforcing them down the managed network resources. This paper aims at
integrating the policy concept into the SNMPv3 framework. It proposes a set of rules
to map authorization policies to the VACM (View Based Access Control Model)
standardized as part of the SNMPv3 management framework. Policy attributes are
maintained in a configuration database local to the SNMPv3 entity and a new
application is incorporated into the SNMPv3 entity to perform the mapping. This will
ultimately allow manager and management applications to enforce enterprise
authorization policies independently of the security model(s) implemented by SNMPv3
entities.

Keywords
SNMPv3, security, authorization policies, view-based access control.

1. Introduction

The heterogeneity of network equipment in a multi-vendor environment has been, and
is still, a problem faced by network managers and management application developers.
Large efforts have been dedicated during the 20 last years to solve the heterogeneity
problem by specifying standard management interfaces and protocols. However, these
efforts provided by a number of standardization bodies, forums and consortia led to the
emergence of multiple standard management protocols and to the proliferation of
network management models. The coexistence of different management standards
raised a new heterogeneity problem. This problem is tackled in practice by developing
appropriate gateways, which ensure the mapping between information models and the
conversion of management protocols.

The Simple Network Management Protocol (SNMP) is the most widely deployed
standard protocol for managing network devices. However, the simplicity of the
protocol is obtained at the expense of a lack of functionality, which is becoming more

798 Session Twenty Two Policy Based Management

apparent with the rapid growth of current networking environments in terms of size
and number of resources attached to them. The latest version of the protocol, SNMP
version 3 [8], has been adopted within the IETF (Internet Engineering Task Force) and
enhances the capabilities of the protocol particularly in terms of security. Data
integrity, authentication, privacy and access control are supported by SNMPv3. These
new security features make SNMP-based management more reliable, and hence, ready
to be adopted for security-sensitive enterprise network management.

In addition, to deal with the complexity due to the large size of current networking
environments, the automation of management processes is increasingly demanded.
Indeed, in such environments, human managers cannot handle the large number and
the variety of resources to be managed unless appropriate and automated tools are
made available to them. The policy concept has been introduced as a means to capture
-enterprise requirements, derive management plans and drive their execution in the
network. Policies are defined as the plans of an organization to achieve its management
goals [1]. They allow to reduce the gap between high-level abstract enterprise
management goals and executable control actions and to help during the process of
making management decisions [2]. Policy-based management is now widely adopted
by network and systems management communities ([1-6]). Traditionally, high-level
management policies are written on scratch pads, saved on E-mail, or just noted
mentally. Low level management policies are hard-coded into management
applications and are hence difficult to modify to adapt to changes in network
infrastructure or to enterprise goals. Recent policy-based management approaches
specify management policies as managed objects, which can be dynamically
initialized, modified and removed, this way facilitating the evolution of management
applications.

The objective of this work is to support policy-based management within the
standard SNMPv3 management framework. This is achieved by incorporating a policy
enforcement application into the SNMPv3 entities. This application essentially
performs a mapping between policy object attributes and the information model
implemented by the entity in its local configuration database. This paper focuses on the
mapping of authorization policies ([1]) into the access control model supported by the
SNMPv3 entity. The implementation particularly considers the View-based Access
Control Model (VACM) [10] standardized within the SNMPv3 framework. It is done
as part of ModularSNMPv3 project at University of Quebec At Montreal (UQAM),
which essentially implements a working Modular SNMPv3 engine in Java.

The access control subsystem part of the standard SNMPv3 framework is designed
so as to support different access control models such as the VACM or others.
Incorporating the policy enforcement service in the SNMPv3 entity allows abstracting
the details of the supported access control model from management applications. This
will allow for automation, greater flexibility and non-conflicting network-level
management. Indeed, the (re-)configuration of access control rules will be performed
by management applications manipulating authorization policies and reflected at the
level of individual network entities by the corresponding mapping service. The latter
will automatically map the authorization policies to MIB security parameters according
to the supported access control model and transparently to management applications.

Policies in SNMPv3-Based Management 799

The paper is organized as follows. Section 2 presents an overview of the policy
concept for network and distributed systems management. Section 3 introduces the
new security features of the standard SNMPv3 framework. Section 4 introduces the
rules defined for the mapping of authorization policies into the standard View-based
Access Control Model. In section 5, we describe the implementation of the mapping
service and the policy enforcement application within the overall ModularSNMPv3
architecture. Finally section 6 concludes the paper.

2. The Policy concept

In the context of integrated network and systems management, policies define technical
management measures that are specific to a particular set of managed objects. In the
context of an organization, policies are guidelines and plans to achieve the organization
goals. There is no standard definition for designating management policies. In general,
policies are used whenever goals, rules, laws, tactics or strategies for the management
process need to be expressed. Automation of the management process can be achieved
using policies, which may help in making management decisions to respond to
particular situations observed in the network, and/or specify the control plans to be
followed in order to achieve specific goals. The followings are typical examples of
management policies:

Policy_1: Back up file servers every Friday.

Policy_2: Inventory network resources twice a year.

Policy_3: Customer may access the service if she/he has subscribed to it.

Policy_4: Service provider/manager has to maintain the QoS as contracted to users.

The previous policy examples are defined at different abstraction levels. Indeed,
policies can be applied from higher level to lower level management. High-level
policies describe roughly how a manager will reach a given goal, while low-level
policies describe precisely what control actions should be performed on the managed
resources. A process is needed to refine high level abstract policies and derive policies
that are more specific to the managed network resources and which should be easily
enforced in the system.

Large networked systems are composed of a large number of resources. Therefore, it
is unreasonable to specify a policy for each managed resource. Domains have
introduced as a means to group resources for management purposes and to distribute
management responsibilities [1], [2]. The grouping of objects into domains may be
done according to their functionality, their physical location, etc. A domain may be
composed of a set of managing objects, which apply the same management policy or a
set of managed objects to which a given policy applies [1]. Domains can also be more
sophisticated structures grouping both managed and managing objects [2].

Four types of policies have been identified [1]: positive authorization policies;
negative authorization policies; positive obligation policies; and negative obligation
policies. The two first types represent what is allowed (respectively not allowed) to be
done on the managed objects. The two last types represent what must (respectively
must not) be done on the managed objects.

800 Session Twenty Two Policy Based Management

A formal or computational specification of management policies is a prerequisite for
the automation policy-based management. For that purpose, a common set of attributes
has been proposed [1} and widely adopted to specify management policies. These are
the followings:

e The mode or modality attribute specifies the obligation or authorization mode of
policy. The obligation mode defines which activities a subject must (or must not)
do, and represents a responsibility to achieve a given set of goals. The
authorization mode defines which activities a subject is permitted (or forbidden)
on a given set of target objects.

o The subject attribute specifies the objects to which the policies apply, i.e., those
entitled to perform the policy activities.

e The target attributg represents the objects to which the policy is directed, i.e., the
objects that are affected by policy’s activities.

e The action attribute specifies the actions to be executed or those that are forbidden
according to the authorization mode.

o The constraint attribute specifies the applicability of a policy.

Additional attributes, related to the importance of management goals and actions as
well as to policies’ behavior, can also be used. Examples include the policy priority
[2], the policy life time [3], etc.

To express the previous policy attributes and thereby manipulate policies, we adopt
the notation proposed in [1], where a policy is represented as follows:

Identifier Mode Subject {Action} Target [Constraint], Where:

o Identifier : identifies the policy.

¢ Mode = {A+ (for positive authorization policy), A- (for negative authorization
policy), O+ (for positive obligation), O- (for negative obligation)}.

e Subject and Target scopes are specified using the so called scope expression as
follows using set operations as follows:
sc_expression :: = {objects} /* set of objects */
SC_expression :: = sc_expression + sc-expression /* set union */
sc_expression :: = sc_expression — sc_expresion /* set difference®/
sc_expression :: = sc_expression * sc-Expresion /¥ set intersection*/

e Actions are specific to the managed objects. Typically for MIB variables actions
are read, write and notify operations.

¢ Constraints specify the conditions that trigger or restrict the application of the
policy.

Examples [5] of an authorization policy and an obligation policy are given bellow
using the previous notation.
Example authorization policy:
Policy 1 A+ *Sregion_agents {enable(); disable(), reset()} *Sregion when (time (08:
00) && (18:00)

The policy identified by “Policy 1" authorizes the objects that belong to the subject
domain Sregion_agents to perform enable(), disable() and reset() operations on the
objects belonging to Sregion during the time period 08:00 and 18:00.

Policies in SNMPv3-Based Management 801

Example obligation policy:
Policy 2 O- *Sregion_agent2 {reset();off()} *Sregion

The policy identified by “policy 2” specifies that the subject into the
Sregion_agent2 must not perform the reset() and off0 operations on objects belonging
to the Sregion domain.

Our goal is to show how policy-based management can be supported within the
standard SNMPv3 management framework. Although, the policy concept can be used
for all SNMPv3-based management functionality, this paper emphasizes access control
aspects. Therefore, only authorization policies are considered here to ensure that
managing subjects are granted access to managed targets in an authorized and
controlled manner. Prior to showing how authorization policies are enforced in
SNMPvV3 entities, we present, in the following section, an overview of the standard
SNMPv3 framework particularly highlighting is access control model.

3. SNMPv3 Framework

The new version of the Internet-Standard Management Framework (referred to as

SNMPv3) is derived from and builds upon both the original and the second Internet-

Standard Management Frameworks (SNMPv1 and SNMPv2). All three Frameworks

share the same basic structure and components.

Typically, an enterprise deploying the Internet-Standard Management Framework

contains four basic components [10]:

* Several managed nodes, each endowed with an SNMP entity which provides
remote access to management instrumentation (traditionally called an agent);

s At least one SNMP entity with management applications (traditionally called a
management station or simply a manager);

= A management protocol (SNMP) used to convey management information
between the previous entities;

* Management information structured in a standard way and stored into MIBs [7].

The SNMPv3 Framework builds on these four basic architectural components and
uses the same layering principle to define new capabilities particularly in terms of
security management. The new features of SNMPv3 include two main security
concerns:

1. Data integrity, authentication and privacy;
2. Access control.

These are implemented by two distinct components, respectively the security
subsystem and the access control subsystem, of the SNMPv3 management architecture
described bellow.

The SNMPv3 specifications of the Internet-Standard Management Framework are
based on a modular architecture [8]. The SNMP entity, either manager or agent,
consists of an SNMP engine and one or several associated applications.

The SNMPv3 engine consists of the dispatcher, the message processing subsystem,
the security subsystem, and the access control subsystem.

802 Session Twenty Two Policy Based Management

The dispatcher coordinates the communications between the various subsystems.
Essentially, it determines to which application an incoming Protocol Data Unit (PDU)
should be directed. The message processing subsystem is responsible for preparing
outgoing messages and for extracting data from received messages. It may support
several message processing models, for example SNMPv1, SNMPv3, etc.

The security subsystem provides message security services such as integrity,
authentication and privacy. Multiple security models may be supported by the security
subsystem. For instance, the User-based Security Model (USM), described in
RFC2274 [9], is the standard security model currently used with SNMPv3. It provides
integrity, authentication and privacy services by computing message authentication
codes, key management and data encryption.

The access control subsystem constitutes a decision making point to allow or not a
specific type of access (e.g., read, write, notify) to a particular object instance.
Similarly, to the security services, the access control services can be provided
according to multiple access control models to allow future updates in case the security
requirements change. The View-Based Access Control Model (VACM), described in
RFC2275 [10], is one such model currently used within SNMPv3 access control
subsystem. It basically allows restricting access to a subset of the management
information referred to as a MIB view.

At the application level of the SNMPv3 entity, the various applications ([11]) use the
services provided by the SNMPv3 engine to accomplish specific tasks. According to
the role of the SNMP entity (manager or agent), five dominant types of applications
can be enumerated: command generators; command responders; notification
generators; notification receivers; and proxy forwarders. The reader can refer to [8] for
more details about these application types or other possible applications.

The subsystems, models, and applications within an SNMP entity may need to retain
their own sets of configuration information. Portions of the configuration information
may be accessible as managed objects. The collection of these sets of information is
referred to as an entity's Local Configuration Datastore (LCD).

This paper emphasizes access control issues, which falls within the activity of the
access control subsystem of the SNMPv3 engine. The VACM access control model is
detailed in the following as this one is standardized within SNMPv3 management
framework. The VACM model will be used in subsequent sections to enforce
authorization policies.

The View-based Access Control Mechanism

The access control subsystem in the SNMP engine is responsible for checking if a
specific type of access, such as read, write, notify, is allowed to a particular object
instance. The decision to allow (or not) access is determined based on access control
rules maintained by the SNMPv3 entity. The access control subsystem implements a
single service isAccessAllowed() called by applications. Four tables are used during
the verification process:

e vacmContextTable: Contains locally available contexts identified by

contextName.

Policies in SNMPv3-Based Management 803

vacmSecurityTogroupTable: This table maps a combination of securityModel and
securityName into a groupName.

vacmAccessTable: Contains access rights for groups.

vacmViewTreeFamilyTable: Locally holds information about families of sub-trees
within MIB views.

Input parameters to the service isAccessAllowed are the followings:

(a)
(b)
©
(d
(e)
®

securityModel: Security model in use;

securityName: Principal who wants to access to object instance;

securityLevel: Level of security;

viewType: Read, write, or notify view;

contextName: Context containing variableName;

variableName: OID for the managed object which is made up of the object type
object-type (m) and the object-instance (n).

securityModel (a)
who (1) —[} groupName(x) -
securityModel (b)

where (2) — contextName (e)

securityModel (a) <viewName (y)
how (3) —[
securityLevel (c)

why (4) —— viewType (d) Yes/No (z)

what(5) —— object-type (m) .
I—vanabIeName ®
which () ~—— object-instance (n)

Figure 1: VACM mechanism

Figure 1 depicts the process of making the decision to grant access or not. This is
done as follows:

The partial "who" (1), represented by the securityModel (a) and the securityName
(b), are used as the indices (a,b) into the vacmSecurityToGroupTable to find a
single entry that produces a group, represented by groupName (x).

The "where" (2), represented by the contextName (e), the "who", represented by
the groupName (x) from the previous step, and the "how" (3), represented by
securityModel (a) and securityLevel (c), are used as indices (e,x,a,c) into the
vacmAccessTable to find a single entry that contains three MIB views.

The "why" (4), represented by the viewType (d), is used to select the proper MIB
view, represented by a viewName (y), from the vacmAccessEntry selected in the
previous step. This viewName (y) is an index into the vacmViewTreeFamilyTable
and selects the set of entries that define the variableNames, which are included in
or excluded from the MIB view identified by the viewName (y).

The "what" (5) type of management data and "which" (6) particular instance,
represented by the variableName (f), is then checked to be in the MIB view or not,
e.g., the yes/no decision (z).

804 Session Twenty Two Policy Based Management

Whenever an application calls the isAccessAllowed service of the access control
subsystem, this one performs the following procedure based on the VACM model:

e The vacmContextTable is consulted to retrieve information about the SNMP
context identified by contextName. If the desired information is not available in
the table, then an errorIndication (noSuchContext) is returned to the caller.

¢ The vacmSecurityToGroupTable is consulted for mapping the securityModel and
securityName to a groupName. If the information about this combination is absent
from the table, then an errorIndication (noGroupName) is returned to the caller.

o The vacmAccessTable is consulted for information about the groupName,
contextName, securityModel and securityLevel. Several cases are then possible:

- If the requested information is not available, an error indication
(noAccessEntry) is returned to the caller.

- If the view to be used is the empty view (zero length viewName) or there is no
view configured for the specified viewType, then an error indication
(noSuchView) is returned to the caller.

- If the specified variableName (object instance) is not in the MIB view, an
error indication (notInView) is returned to the calling application.

- Otherwise, the variable is in the MIB view, and access is allowed.

The local configuration datastore (LCD) contains configuration information local to
the SNMP entity. Such information is modeled as managed objects and can be
remotely configured. The VACM MIB is defined in the branch SMI MIB
(1.3.6.1.6.3.16). As described previously, the VACM MIB is structured into four
tables, namely vacmContextTable, vacmSecuritytogroupeTable, vacmAccessTable,
and the vacmViewTreeFamilyTable. These tables implement access control rules. In
order to allow for policy-based management applications, policy object attributes need
to be into the corresponding entries in VACM tables. The following section describes
such mapping. '

4. Mapping of policy object attributes to VACM-MIB tables

The mapping of authorization policies into VACM tables is realized by a process,
which translates policy templates into VACM MIB tables. The mapping process can be
complex when policy templates are abstract and apply to a set of objects while Internet
MIBs define scalar variables and tables.

It is worth mentioning that the policies processed by the implemented mapping
process are the leaves of the enterprise policy hierarchy. In other words the considered
policies are specific to the managed resources represented by the corresponding
SNMPv3 agents. In this paper, we assume that the management platform includes
policy distribution and refinement services. These services are provided by policy and
domain servers that can be accessed by management applications to create, modify and
remove management domains and policies. The mapping scheme of policy attributes to
VACM tables is shown in Figure 2 and detailed in the following subsections.

Policies in SNMPv3-Based Management 805

Subject targets constraints
gourpN gourpN viewNamel viewNameN contextl contextN
securityModell securityModelN
a) b) securityNamel securityNameN
9

Figure 2: Mappings of attributes

4.1 Mapping policy subject

According to SNMPv3 specifications a group defines the access rights guaranteed to
all security names that belong to this group. A security name represents a principal on
behalf of, which services are provided, or processing takes place. The so-called
principal can be an individual acting in a particular role; a number of individuals each
acting in a certain role; an application, several applications; or any combination of
these.

The subject attribute of an authorization policy specifies the objects to which the
policy applies. It is given by a domain scope expression, which is specified in terms of
explicit objects and domains. In case the used access control model is VACM, access
rights are granted to a group. Hence, the subject represents one or several groups to
which the policy applies. A different mapping can be required if a different access
control model is used within the SNMP entity.

Mapping a subject attribute to groups is a one to many mapping. The mapping
process generates the PDU actions that affect the SecurityToGroupTable. The mapping
process adds the association between the securityName and the generated group if the
latter doesn't exist in the securityToGroupTable. This is achieved as follows:
subject-groups (s: subject)

For all objects that define the subject s

Associate adequate groups;
If the group doesn’t exist in securityToGroupTable
Then add the rows securityName-group in the securityToGroupTable;

EndFor;

A given authorization policy is applied to all users belonging to a group. This means
that the VACM model assumes that an user must belong to a given group. Another
limitation of the VACM model is the case where a person belongs to more than one
group, which is often the case. Indeed, in such case, the person has to have several
distinguished security names as in the SecurityToGroupTable a security name is
unique.

4.2 Mapping policy target

The policy target attribute represents the objects to which the policy is directed. It
specifies the objects on which the action(s), specified by the policy, can be performed.
In the VACM, a group has access to a set of managed objects through the notion of

806 Session Twenty Two Policy Based Management

MIB view. A view specifies the objects accessible by the group. It is identified by a
viewName, which is given in the vacmViewTreeFamilyTable.

Hence, the target attribute is specified by a set of viewNames. Consequently, the
mapping of a policy to a viewName is a one to many mapping. The process of mapping
policy target operates as follows.

Target-viewName (t:target)
For all objects that define the target t
Associate the viewName;
If viewName does not exist in the vacmViewTreeFamilyTable

Then create the view name entry in this table;
EndFor;

4.3 Mapping policy action

The action of an authorization policy specifies what the subject can do to the target. In
practice, it corresponds to the name of a method of the target object. As mentioned
above, the policies considered by the mapping process belong to the leaves of policies’
hierarchy. This means that their actions should be conform to those supported by the
SNMP entity, i.e., read, write and notify actions. Each action, specified in the actions’
attribute, will affect the corresponding view in the vacmAccessTable.

According to the value of the read/write/notify attribute, the WriteViewName is, the
ReadViewName or the object NotifyViewName affected. This way, the policy action
attribute is used during the process of mapping policy target, but there is no direct
mapping with the VACM tables.

4.4 Mapping policy constraints

The applicability of an authorization -policy may be limited by specifying a policy
constraint. The constraint may be applied to restrict the subject actions or limit the
target space. A typical constraint is the one that places time restriction on the policy
action such as an expiry date or an authorized time interval. We assume that this type
of constraints is taken into account at the management application level.

In VACM, access is granted to a group if some conditions are verified: the level of
security and the context in which the PDU is transported. For a member of the group
different access rights can be defined for different security levels. In the User Security
Model (USM), three security levels are defined, namely, noAuthNoPriv, authNoPriv
and authPriv. In the first level, neither authorization processing nor privacy checking
are performed when the SNMPv3 entity receives the PDU. In the second level,
authorization processing without privacy checking is performed. In the third security
level, both the authorization and the privacy processes are performed.

The context is a collection of management information accessible by an SNMP
entity. An SNMP entity potentially has access to many contexts. A ContextName
identifies a context.

The context, the security level and the security model are communicated by the PDU
that requesting the access. In our implementation, policy constraints are limited to
security level and to context name. As a result, the mapping of policy constraint a is

Policies in SNMPv3-Based Management 807

one-to-many mapping, as a manager can specify a sequence of constraints. The policy
constraint mapping process is defined as follows:

constraints-securityLevel (c: constraints)
For each constraint sequence
Associate the security level;
Associate the contextName

EndFor;
Tablel summarizes the variables affected by the overall policy mapping process.

Tablel: Mapping policy attributes to VACM MIB

Policy attribute VACM Table SNMP Variables

Subject vacmSecurityToGroupeTable vacmSecurityName
vacmGroupName

Target vacmAccessTable vacmAccessReadViewName

vacmA ccessWriteViewName
vacmAccessNotifyViewName

vacmViewTreeFamilyTable vacmViewTreeFamilyViewName
vacmViewTreeFamilyMask
vacmViewTreeFamilySubtree
vacmViewTreeFamilyType

Constraints vacmContextTable contextName

vacmAccessTable vacmAccessSecurityModel

vacmAccessSecurityLevel

The main policy mapping process used for enforcing management policies into the
SNMPv3 framework is summarized by the following pseudo code:
PolicyMapping (subject, target, action, constraint)
For all policies
group= subject-group (subject);
If action = read then ReadViewName == Target-ViewName(target)
If action = write then WriteViewName == Target-ViewName(target)
If action = notify then NotifyViewName == Target-ViewName(target);
Security-levels == constraints-securityLevel(constraint);
add_to_VacmAccessTable (group, ReadViewName, WriteViewName,
NotifyViewName, securitylevel)
EndFor
To illustrate the mapping process, let us consider the following example of VACM
initialization parameters.
People that belong to the "initial” group are authorized to read, write, and notify the
"Internet” View, if the context is null and if the USM Model is used with the "authPriv"
security level.
This policy is expressed as follows:
Policy_1: (A+, "initial", "Internet", all accesses, authorization and privacy)

808 Session Twenty Two Policy Based Management

Examples of the resulting VACM tables generated by the mapping process are:

— vacmViewTreeFamilyTable:
vacmViewTreeFamilyViewName : "internet"
vacmViewTreeFamilySubtree : 1.3.6.1
vacmViewTreeFamilyMask : ""
vacmViewTreeFamilyType : 1 (included)

— vacmAccessTable:
vacmGroupName : "initial"
vacmAccessContextPrefix :
vacmAccessSecurityModel : 3 (USM)
vacmAccessSecurityLevel : authPriv
vacmAccessContextMatch : exact
vacmAccessReadViewName : "internet”
vacmAccessWriteViewName : "internet”
vacmAccessNotifyViewName : "internet"

e

5. Policy enforcement application: Implementation architecture

The policy mapping capability introduced in the previous section has been
implemented as part of the ModularSNMPv3 project [12]. ModularSNMPv3
essentially implements an SNMPv3 framework as a set of configurable modules
written in Java. It allows dynamic binding and unbinding of the modules at run time as
well as their remote configuration. The overall Modular SNMPv3 system is operational
and available on the Web at [14]. In addition a set of reusable classes of managed
objects are created using the large number of standardized managed objects. These
classes together with the reusable SNMPv3 framework modules are made available to
developers of secure network management applications.

The overall implementation architecture is depicted by Figure 3. As mentioned
previously, our implementation consists of a set of modules with their respective
MIBs. These modules are structured into an engine layer and an application layer. The
implemented engine includes the following modules:

e The dispatcher, which coordinates the communications between the modules in the
engine and the application layer. Basically it direct incoming SNMP PDUs to the
appropriate application.

e The SNMPvl and SNMPv3 message processing modules, responsible for
preparing outgoing messages and extracting data from incoming messages. The
SNMPv1 module implements SNMPv1 messages format while SNMPv3 module
process SNMPv3 messages format. These modules allow SNMPv3 secure
management as well as interoperability with integrated exiting SNMPv1 entities.

e A security subsystem is implemented based on the User Security Model (USM)
specified in RFC2274 [9]. It is composed of three modules (SHAModule,
DESModule and MD5Module) and the corresponding MIBs (USM User MIB and
Stats MIB). The modules support the security features of data integrity,
authentication and privacy.

¢ Finally an access control module is implemented based on the VACM model (dark
Grey box at the top of Figure 3) supported within the so-called VACM MIB.

Policies in SNMPy3-Based Management 809

At the application layer of the SNMPv3 entity, a number of specific purpose
applications are implemented including the proxy, the requester, and a number of
MIBs and MIB manipulation modules. Details of these applications can be found in
[11]. The implemented application of interest here is the policy enforcement module
incorporated at the application layer of the SNMPv3 entity as shown in Figure 3 in a
dark Grey box.

VACM mMiB
136.1.6.3

snmpMPOStats MIB
EnginelD, Boots, Time...
s 136.163.11.2.1

(Passed to DispatcherMIB app)

System MiB
System Description,
UpTime, Contact...

1.36.1.2.1.1 /

Framework MIB
EnginelD, Boots, Time...
1.36.16.3.1021

SNMP MIB
snmpinPkts, snmpQOutPkts...
1.36.1.2.1.11
Passed to SNMPv2MIB app)

USH Stats MiB
StatsUnsupportedSecLevels,
USM User MIB NotinTimeWindows...

UserName, UserPrivProtocol... 1.3.6.1.6.3.15.1.1
136.16.3.151.2

Figure 3: ModularSNMPv3 architecture

The mapping process is impleménted by an application incorporated at the
application layer of the SNMPv3 entity that represents an SNMPv3 agent such as the
one depicted by Figure 3. Authorization policies are modeled as objects and stored in
the Local Configuration Datastore (LCD) within the SNMPv3 agent. They can be
modified remotely by an authorized SNMPv3 manager entity or an authoritative user
identified by a security name. The mapping process runs in the agent entity and is
launched whenever access to managed objects represented by the agent is requested. Its
role is to map the authorization policy attributes to the appropriate access control
model supported by the agent, i.e., VACM in our implementation. Requests of the
manager, which are sequences of actions, are encapsulated by appropriate SNMP
PDUs. When receiving these SNMP PDUs, the agent enforces the encapsulated
policies by mapping them to the corresponding VACM MIB tables. As a result,
SNMP-SET actions, mainly, change MIB attributes’ values. The mapping rules
between authorization policies and view based access control implemented by the
mapping process are those described in section 4. The advantage of our
implementation scheme is that the administrator and management applications only
manipulate policies and enforce them in the managed system. The security model
implemented by SNMPv3 entities is transparent to the management application and
can be changed without affecting this one. Indeed, the standard SNMPv3 management

810 Session Twenty Two Policy Based Management

framework is designed to support multiple and different security models. Policy-based
management applications will manipulate object-oriented policies such as those
described in this paper regardless of the security model supported by the managed
system or the SNMPv3 agents representing the managed system resources. Note that
the same access control scheme applies when remote managers access VACM tables in
the LCD to (re-)configure them.

6. Conclusion

The recently standardized version of the SNMP management protocol, SNMP version
3, has filled the gap left by the earlier versions of the protocol in terms of security. This
lack of security has, until recently, hampered the acceptance and deployment of the
SNMP protocol in security-sensitive enterprise network management. An enterprise
has its own management policies that reflect its corporate and management goals. Such
policies have to be taken into account in the process of managing the network
resources employed by the enterprise in order to achieve the goals of this enterprise.
These last years research and developments have witnessed the maturity of the policy-
based management approach. Indeed, informational and computational models for
expressing and manipulating policies are now available.

The work presented in this paper was devoted to the implementation of policy-based
management in the standard SNMPv3 management framework. It particularly focused
on security policies and their enforcement into SNMPv3 management entities. In the
SNMPv3 framework, security is handled by the security subsystem and the access
control subsystem of the SNMPv3 entity (manager and/or agent). In.the first
subsystem, security rules are used for message encryption, authentication, and privacy,
while in the second one they are used for checking access rights. The approach of
policy enforcement in the SNMPv3 framework presented in this paper has been
illustrated by emphasizing authorization policies and their mapping to access control
attributes maintained by the access control subsystem. We particularly considered the
View-based Access Control Model (VACM) standardized within the SNMPv3
framework and implemented a mapping of authorization policies to VACM MIB
tables. The mapping process is provided by a gateway application incorporated at the
application layer of the SNMPv3 entity. It is worth mentioning that an equivalent
mapping process can be performed for obligation policies, for example to demand the
implementation of an authentication process according to a given authentication
protocol. In this case, the example obligation policy will be mapped to a security
subsystem MIB variable such as the UsmUserAuthProtocol, specified by the standard
User Security Model (USM).

By introducing policies into SNMPv3, we allow the administrator or the
management application developer to manipulate policy objects rather than SNMP
access control variables. Furthermore, in our implementation policy objects are
enforced into the SNMP agent are maintained in the entity’s Local Configuration
Datastore (LCD) which can be accessed and modified remotely, thanks to the
configurability feature of the implemented SNMPv3 framework. This allows
customizing the access control and security models (VACM and USM) implemented
by the entities or use alternative models according to the enterprise-specific security

Policies in SNMPv3-Based Management 811

requirements. In all cases the security models supported by the SNMPv3 entities are
transparent to management applications.

The limitation of our framework, which is shared by the majority of gateway-based
approaches, is the performance issue. Indeed, the mapping process introduces an
additional processing cost and delay. However, this is the price to pay to allow for
open but secure policy-based management.

As to the future, we plan to extend our gateway application to integrate other
security models. Also a demonstrator is being built to support differentiated services IP
over an ATM network endowed with SNMPv3 capable agents. The demonstrator also
includes a policy server being developed according to the Common Open Policy
Service and protocol [13] to be used by policy-based network management
applications.

References

{11 Sloman, M., "Policy Driven Management for Distributed Systems", in Journal of
Network and Systems Management, vol.2 part 4, 1994.

[2] Boutaba, R., "A Methodology for Structuring Management of Networked
Systems", in IFIP Transactions, pp. 225-242, North-Holland, 1994.

{31 Wies, R, "Policies in Integrated Network and Systems Management”, Phd
Thesis, June 1995.

[4] Alpers, B., Plansky, H., "Concepts and Application of Policy-based
Management", Proceeding of the 4 International Symposium On Integrated
Network Management, Santa Barbara, IFIP, Chapman and Hall, May 1995.

[S] Lupu, E., Sloman, M., “Conflict Analysis For Management Policies”

Proceeding of the 5 International Symposium On Integrated Network
Management IM’97, Santa Barbara, IFIP, Chapman and Hall, May 1997.

[6] Koch, T., Kramer, B., Rohde, G ., "On a Rule Based Management Architecture",
Proceeding IEEE 2 International Worshop on Services in Distibuted and
Networked Environments, Whistler, BC, Canada, June 1995.

[7]1 Case, J, M. Fedor, M. Schoffstall, and J. Davin, "The Simple Network
Management Protocol", STD 15, RFC 1157, University of Tennessee at
Knoxville, Performance Systems International, Performance International, and
the MIT Laboratory for Computer Science, May 1990.

[8] Harrington, D., Presuhn, R., B. Wijnen, "An Architecture for describing SNMP
Management Frameworks", RFC 2271, January 1998.

[9] Blumenthal,U., Wijnen,B., “User-based Security Model (USM) for version 3 of
Simple Network Management Protocol (SNMPv3)”, RFC 2274, November 98

[10] Wijnen, B., Presuhn, R., K. McCloghrie, "View-based Access Control Model for
the Simple Network Management Protocol (SNMP)", RFC 2275, January 98

{11] Levi, D., Meyer, P., B. Stewart, "SNMPv3 Applications", RFC 2273, January 98.

[12] Cherkaoui, O., Saint Hillaire, Y., Mili,H., Serhouchni,A., "Towards a modular
and interoperable SNMPv3", IEEE NOMS’98, New Orleans 98.

[13] Boyle, J., Cohen, R., Durham, D., Herzog, S., Rajan , R., Sastry, A., "The COPS
(Common Open Policy Service) Protocol ", Internet Draft. November 98.

[14] Working Java-based Modular SNMPv3 http://www.teleinfo.ugam.ca/snhmp.

812 Session Twenty Two Policy Based Management

