
A Java API for Advanced Faults
Management

Abstract
The paper proposes an alternative for modeling managed resources using Java and
Telecommunication Network Management standards. It emphasizes functions related
to Fault Management, namely: diagnostic testing and performance monitoring. Based
on Java Management Extension (JMXTM), specific extensions are proposed to
facilitate diagnostic testing and performance measurements implementation. The new
API also called Java Fault Management Extension (JFMX) consists of managed
objects that model real resources being tested or monitored and support objects
defined for the need of diagnostic testing and performance measurements. The paper
discusses four Java implementations of a 3-tier client/server scenario focusing on the
“SystemUnderTest” package of the new API to instrument a minimalist Managed
System scenario. These implementations are respectively built on top of the
following Java based communication infrastructures: JMX/JFMX, RMI,
CORBA/Java, and VoyagerTM. The paper extends the Voyager implementation with
JMX/JFMX and uses their dynamic and advanced features to provide a highly
efficient Solution. The later implementation also uses Mobile Agent paradigm to
overcome well-known limitations of the RPC based implementations.

Keywords

Diagnostic Test, Performance Monitoring, JMX, JFMX, Mobile Agent, CORBA,
RMI, Voyager.

1 Introduction

Java is a widely used programming language that matured and became a robust
platform for advanced Enterprise Applications development. In addition to the
distributed computing capabilities provided by Remote Method Invocation [16] and
CORBA implementation [14], several other players enrich the Java Core Platform
[17, 3]. Significant contributions to Network and Systems Management are provided
by the Java Dynamic Management Kit (JDMKTM) [18] former Java Management API
(JMAPI), and the Java Management Extension (JMXTM) [19]. JMX is a Sun
Microsystems trademark that provides a standard for the instrumentation of

M. H. Guiagoussou
Open Management Software Inc.
5600 Mowry School Rd, No 220
Newark, California 94560
USA
mahamatg@omsi.com

M. Kadoch
École de Technologie
Supérieure
1100 Rue Notre-Dame Ouest,
Montréal (Québec)
H3C 1K3, Canada
kadoch@ele.etsmtl.ca

R. Boutaba
Department of Computer
Science
University of Waterloo
Waterloo (Ontario)
N2L 3G1, Canada
rboutaba@bbcr.uwaterloo.ca

0-7803-6719-7/01/$10.00 (c) 2001 IEEE

manageable resources and the development of dynamic agents to manage these
resources. It consists of a set of specification and development tools that help
developers build Java management environment and provide innovative management
solutions. JMX also includes a compatibility test suite and a validation tool. It is
based on a proven technology, which has already been used in the JDMK.

JMX specifies a management architecture that consists of three layers:
Instrumentation, Agent, and Manager layer. The Instrumentation layer allows
developers to rapidly provide Java based management solutions for both computing
and telecommunication systems. It gives instant manageability to any Java
technology-based object. The Agent layer provides a management agents API. In
JMX, agents are containers that provide core management services, which can be
dynamically extended simply by adding JMX resources. The Manager layer provides
management components that can operate as a manager or agent or both for
distribution and consolidation of management services. In order to build upon
existing management technologies, the JMX specification also provides interfaces to
the most widespread management protocols in use today including SNMP,
CIM/WBEM, and CMIP [19].

The work presented in this paper is supported by the Java Management
Extension. It proposes some Fault Management extensions on top of the JMX. The
proposed Java Fault Management Extension aims at facilitating the Development of
Diagnostic Tests and Performance Measurements Applications [6]. The JFMX API
specification defines the implementation of a set of high level abstract classes to be
used by Testing and Monitoring Applications developers. Concrete subclasses are
derived from these abstract classes to implement concepts defined in TMN tests and
performance management standards, namely X745 [7] and X.737 [8]. JFMX classes
may be extended to allow the development of more specific applications and add to
existing systems fault diagnostic and performance monitoring features. Thanks to
Java and JMX, these MBeans (Manageable Beans) can be instantiated and
experimented at runtime. We also used Voyager [13, 5] to add agency and mobility
features within JFMX. JFMX API is organized into three packages mapped to the
basic JMX layered architecture. These packages are: jfmx.DiagnosticTestsServer
(Manager layer), jfmx.TestAgentServer (Agent layer), and jfmx.SystemUnderTest
(Instrumentation layer). Core packages are related to utilities and enumerated classes
such as Managed Object States/Status, User information, and Object Reference.
Future versions of the JFMX will include additional packages related to Alarm
Management, Fault Localization and Fault Resolution.

After a review of the main JFMX packages, the paper discusses four Java
implementations of a simplified Managed System Instrumentation Scenario using the
“SystemUnderTest” package. The objective is to show how Java infrastructure can be
used to provide an integration platform of the main Java distributed programming
technologies (JDMK/JMX, RMI, CORBA/Java, and Voyager) in the context of
diagnostic testing and performance monitoring. The paper also investigates the use of
Mobile Agents [2, 4, 9] as a complementary alternative to RPC based
implementations. This allows developers to implement dynamic and highly efficient
Faults Management Applications using Java [10, 12].

Session Thirteen Fault Management I484 484

2 The Java Fault Management API

This section provides an overview of the proposed Fault Management API. It
describes the Java Fault Management Extension (Figure 1) as built on top of the
current JMX Reference Implementation [19] and VoyagerTM [13]. The Java Fault
Management Extension adds new packages for the purpose of Networks and Systems
Fault Management [6]. The JMX compatibility test suites and validation tools are
used to verify that the defined MBeans are JMX Compliant. At this early
specification of JFMX, we focused on Intelligent Diagnostic Testing and
Performance Monitoring. In order to provide a complete Fault management API,
complementary packages for alarm management and fault localization will be added
in the future. JFMX is built on top of two additional Java environments (Java
Dynamic Management Kit, and Voyager) to provide advanced dynamic, agency and
mobility features.

Figure 1: Java Fault Management Extension

JFMX API is organized into three main packages: jfmx.DiagnosticTestsServer,
jfmx.TestAgentServer, and jfmx.SystemUnderTest. In the following, these packages
are briefly described.

Diagnostic Tests Server: This package is composed of Manager MBeans
defined to implement the coordination and management of a set of performers and
lower level agents triggered by a user session request. These MBeans implement
concepts such as: Session Request Receiver, Test Conductor, Diagnostic OS,
Performance OS, Diagnostic Session, Monitoring Session, Fault and Alarm. The
package covers the implementation of tests and performance management application
MBeans that manages multiple users sessions (registration, access control, sessions

AlarmsAlarms
MgmtMgmt

Diagnostic Diagnostic TestTesting ing
and Monitoringand Monitoring

FAULT MANAGEMENT
APPLICATIONS

Repair andRepair and
RestorationRestoration

FAULT MANAGEMENT
EXTENSIONS (JFMX)

Diagnostic
Tests
Server

Test
Agent
Server

System
Under

Test

Core JFMXCore JFMX

JVM (RMI, ORB) JDMK JMX Voyager BASIC JAVA APIs

Alarms
Coorelation

Other
FM Packages

TL1
API

TL1
NE

TCPIPTCPIP
NENE

SNMP
API

CMIP
API

CMIP
NE

ASCII
API MEDIATION APIs

ASCIIASCII
NENE

TL1 SNMP CMIP ASCIITL1 SNMP CMIP ASCII

REAL RESOURCES

Java API for Advanced Faults Management485 485

creation, conductors and agents coordination, test results correlation and fault
diagnostic). The package also supports a dynamic Class Loader that allows any Fault
Management Application to load at runtime new Agent, Test Session, or Test Object
class.

Test Agent Server: This package is composed of MBeans defined to facilitate
the implementation of advanced dynamic and mobile test/performance agents. It
allows dynamic Tests/Monitoring MBeans creation, registration, and roaming, test
lifecycle management (start, stop, suspend and resume), test results collection, and
events notification. Test Object MBean is defined to model individual test activity.
Sessions aggregate one or several Test/Monitoring Objects. The Performer Agent
implements set of dynamic functionality to control test and monitoring activities.
Fault Detection Agent is defined to detect faults and perform lower level alarms
filtering and correlation. Detection and Performer agents are built with dynamic and
migration capability [4, 12] to allow them to travel the nearest possible to the
managed resources and perform their duties. This package utilizes event-driven
approach to model communication between agents and managers. It also defines
Diagnostic Test Results, scheduling Conflicts and test-related events as JMX
notifications. Tests/Monitoring scheduling is achieved using JMX Timer. A Test
Action Request Receiver (TARR) MBean is defined to implement test and
monitoring service interface as specified in the X.745 [7].

System under Test: This package is composed of MBeans modeling real
resources under test and/or monitoring. It includes tested/monitored resources
(Managed Object, Managed Object under Test, Manageable Component and
Manageable Relation), tests access views and logical test units (Associated Object)
representing test resources connected or embedded into real resources, and vendor
specific test/monitoring resources (Remote Testing Resource). The package includes
an abstract Support Object class from which all classes defined for the need of testing
and monitoring (Session, Test Object, Test Schedule and Monitoring Schedule) are
derived. The package also defines additional utility classes such as Users Contact
Information, Object Reference, Managed Object States/Status, and XML
configurations Parser.

In the JMX terminology, a JMX manageable resource (MBean) is a resource that
has been instrumented in accordance to the JMX Instrumentation Level Specification
and tested against the Instrumentation Level Compatibility Test Suite [19]. A
manageable resource is a software application, a hardware device, or a software
implementation of a service. In order to be instrumented, a resource can be fully
written in Java (one or several MBeans) or just offer a Java wrapper. While Java
provides portability and ease of prototyping, JMX ensure flexibility, inter-
operability, and dynamic management capabilities required by current service-driven
networks. JMX agent and manager levels provide flexible, distributed, and dynamic
management infrastructure to be implemented in Java.

Depending on the managed environment, several protocols (SNMP, CMIP, TL1,
and ASCII) can be used to synchronize real resources with Managed Beans and
instrument them (see lower part of Figure 1). JMX/JDMK provided an SNMP API to
allow the instrumentation of SNMP manageable Resources [19]. Outback provided
jSNMP [15] a cross-platform and higher level SNMP API. AdventNet implemented

Session Thirteen Fault Management I486 486

on top of JDMK a dynamic SNMP Access solution [1, 19]. Future releases of JMX
are expected to support CMIP/Q3 manageable telecommunication resources.
Alternatives to access Telecommunication NEs are available via Bellcore TL1
protocol. A Java based TL1 Translator developed by Advanced Network Solutions is
proposed in [20]. ASCII based protocols such as MML (Man Machine Language)
may also be used in a Java Environment to access NEs such as Wireless Switches.

3 Modeling Managed System using JFMX

The “SystemUnderTest” package is defined to allow developers instrument managed
systems which functionality is to be tested and monitored. This section describes the
classes required to build managed system views on top of which basic management
applications may be developed to detect fault conditions, perform diagnostic testing
and conduct monitoring of performance degradations. This package allows
developers to focus on advanced fault management features such as fault resolution
and troubleshooting. It provides a refined instrumentation layer and allows
implementation of Network Elements interacting with their testing resources via
static agent functions, vendor specific testing units, or Java based mobile agents [4,
10, 12].

3.1 SystemUnderTest Package Description

As illustrated by the OMT diagrams in Figures 2 and 3, the SystemUnderTest
package is composed of several types of MBeans: Managed Objects, Support
Objects, and Utilities Objects. Each MBean implements a management interface that
is compliant with JMX specifications.

Managed Objects

Managed Objects model physical or logical manageable resources. A basic Managed
Object MBean is defined with limited testing capability. Managed Object under Test
is a subclass of the basic Managed Object class extended with advanced test and
monitoring capabilities. Associated Objects are defined as Managed Objects that
represent test instruments or measurements devices. For Diagnostic and Fault
localization purpose, Managed Objects under Test are defined as aggregation of
Manageable Components at which level the localization of faults stops. Users are free
to define the level of granularity of this decomposition. The lower level of Figure 2
contains a sample decomposition that consists of software and hardware manageable
components, manageable relations and their possible associations.

Detailed descriptions of the main Managed Object MBeans are presented below.

Managed Object MBean: Any class that defines a manageable resource may extend
this basic Managed Object class (MO). This class represents objects that provide
JMX compliant software management view of physical or logical managed resources
[8, 19]. It implements limited testing and monitoring capabilities (e.g., simple ping
test).

Java API for Advanced Faults Management487 487

Figure 2: Managed Objects OMT Model

Managed Object under Test MBean: This is an advanced Managed Object that
represents managed resource which functionality is to be tested [7, 8, 19]. It is
derived from the basic Managed Object MBean and extends its diagnostic testing and
performance monitoring capabilities. Managed Object under Test MBean (MOT)
models either a simple resource or an aggregated resource. It has self-monitoring
capabilities and several interfaces to allow managers and agents to perform advanced
testing, collect detailed performance measurements, detect and diagnose faults
occurring in the target managed resource down to its Manageable Components.

Manageable Component MBean: This class also derived from the basic Managed
Object class defines a lower level of granularity for the decomposition of managed
resources. Manageable Components (MC) represent the leaf of any diagnostic tree of
their aggregated parent object (i.e., MOT). They may have dependency relations with
other Manageable Components or Managed Objects (e.g., terminate_at, mapped_to,
and served_by). In order to model complex managed resources or change the
representation of existing Managed Objects in a management information model,
Voyager Facet mechanism [5, 13] is used to dynamically add both Manageable
Components and Relations at run time

Associated Object MBean: This MBean class is a MO that models a view of testing
resource or test access points used for testing and monitoring of MOTs. Examples of
Associated Objects (AO) include Mediation Device, Test Unit, SNMP/CMIP Agent,
Monitoring Agent, and Embedded Probes.

Remote Testing Resource MBean: Remote Testing Resources (RTR) are derived
from AO. They are designed with remote test/monitoring management capability and
may in turn be specialized to vendor specific resources with advanced test/monitoring
features and technologies.

ServiceRelationConnectivityRelationCom mun icati onCardMemoryProcessingUnit

ManagedObject

ManageableRelationSoftware Hardware

ManageableComponent AssociatedObjectManagedObjectUnderTest

RemoteTestingResource

tested_by

Link

terminate_at

mapped_to

Session Thirteen Fault Management I488 488

Support Objects

The support objects classes defined in Figure 3 (a) represent objects needed for the
purpose of test and performance management. They do not represent real resources.

Figure 3: Support Objects Model and Utilities Classes

Support Object MBean: This class defines an abstract support object containing
common information needed for test and performance management purpose.

Monitoring Schedule MBean: This is a Support Object that contains monitoring
schedule data. It is used to keep information such as Operation State, Availability
Status of the resources on which monitoring activities are scheduled. It is used to
notify available performance measurements, monitoring test results to pre-registered
users. Indeed, a user may be granted passive monitoring of ongoing tests scheduled
by other users. These grants are configured in the monitoring schedule.

Testing Schedule MBean: This is a Support Object that contains tests scheduling
information. It contains data such as start time, stop time, scheduling status, used
AOs, and tested MOTs. At a given time two conflicting schedules may be requested
for the same MOT or AO. It is the role of the manager and agents to resolve the
conflicts by either rejecting the test request or proposing an alternative available time

UserInfo

Co ntac tIn fo
S ess ion

S upportObjec t

S chedule

Te stS ess ion

TestObjec t

1 +1 +

TestS chedule requested_for

M onitoringS ess ion

P erform anceM easures

1+1+

M onitoringS chedule

Objec tInfo

S t ate

S tatus

(a)

requested_for XMLP arser

(b)

Java API for Advanced Faults Management489 489

interval. It is also the test managers and agents responsibility to reject further
schedules when testing resources reach their maximum capacity.

The remaining Support Objects illustrated in Figure 3 (a) are not covered here. They
are part of other JFMX packages (Manager and Agent layer). These support objects
are Session, Test Session, and Monitoring Session. The later are respectively defined
as aggregation of Test Objects and Performance Measurements. Each Test Object
(respectively Performance Measurement) is associated with a predefined Test
Schedule MBean (respectively Monitoring Schedule MBean) indicating the time at
which it should start, the expected termination time and other relevant information.

Utilities Objects

Several utility classes are defined in JFMX and used by the “SystemUnderTest”
package. The utility classes described below are depicted in Figure 3 (b).

UserInfo MBean: This class defines information on tests and monitoring services
subscribers. It contains authentication data such as login and password and carry
detailed information related to user accounts (name, group, and category), and
number of ongoing tests/monitoring activities initiated by the user. Complete user
contact information is defined as an aggregated class (ContactInfo). UserInfo MBean
is used to page or send e-mail to the user at the occurrence of a fault, when critical
test results are available, or when diagnostic agents require help to complete a task.
This MBean is able to prompt the user on a web interface, paint an applet or a dialog
window, and ask for helps and information updates.

ObjectInfo MBean: This class defines a reference to a managed object or to a
support object. It is used to store information on objects defined in the JFMX
package. It is generally used to reference objects in a relation or in a list.

Other utility classes are defined and used in JFMX. These definitions cover
Managed Object and Support Objects State/Status, and also XML configuration file
parsers. The JFMX core package defines Sate/Status attributes that are used to detect
real resources manageable behaviors relevant for fault management. The state
characteristics define current behavioral information on the resource carried by
attributes such as Operational, Administrative, Usage or User defined State. Status
characterizes continual behaviors like Connectivity (bandwidth sharing), Service
(Quality Of Service), Synchronization (accurate view of the real resource), or a User
defined Status. Associated Object, Managed Object Under Test and Manageable
Components inherit the basic State/Status properties of their parent Managed Object.
Additional status characteristics are defined to track diagnostic test and monitoring
activities in MORTs (Testing/Monitoring Status), AOs (Testing/monitoring Status),
and Support Objects (Schedule, Session, and Test Object Availability Status).
Manageable Components are defined with two useful properties that allow localizing
and measuring the impact of a faulty component in the MORT: “Location in MORT”
and “Health Status”.

The remaining of the paper focuses only on the use of JFMX, specifically that of
a reduced set of MBeans defined in the “SystemUnderTest” package to model and
instrument real manageable systems.

Session Thirteen Fault Management I490 490

4 JFMX Implementations of a System Under Test

In this section we consider a minimalist Client/Server test application scenario and
implement it using the ”SystemUnderTest” package. Four implementation
alternatives based on JMX, RMI, CORBA and Voyager are also presented here.

4.1 Generic Scenario Description

The scenario considered for implementation is illustrated in Figure 4. It is a test and
monitoring application composed of multiple User Interfaces in the client tier, a
Server/Manager and an Agent in the middle tier, and Managed Resources Accesses in
the last tier.

The generic test server provides a limited test access to a number of MBeans
implementing different views of managed resources. The server also provides its
clients with access to MBeans that represent implementation of management services
such as Configuration, Diagnostic Testing and Performance Monitoring.

Figure 4: Generic Test Management System

The test and monitoring server is implemented as a Java Server with the
following typical behavior:

(1) set required Orbs (HTML/XML/HTTP, Orb-1, Orb-2) parameters,
(2) create and export managed objects (MOs, MOTs, and MCs),
(3) create services support objects (SARR/TARR, TC/TP, AOs and RTRs),
(4) listen to multiple clients, perform test actions and responds to requests,
(5) return to client available results, state/status values, and performance data.

AO

MORT

Test Access
Server

MC MC MC

Monitor
Schedule

Test
Schedule

Server
Controller

TC

TC

TC

TP

TP

 Manager

Orb-1
HTML
XML
/HTTP

Java
Client

Applet

Other
Client
Client Tier

M
an

ag
ed

 S
ys

te
m

 T
ie

r

MANAGED
RESOURCES
UNDER TEST

MBeans

S
A
R
R

 Agent

MBeans

T
A
R
R

MO
MO

M
id

dl
e

T
ie

r

O
rb-2

Java API for Advanced Faults Management491 491

4.2 JFMX Implementation

The scenario illustrated in figure 4 is implemented here using the JFMX API. Figure
5 depicts the implementation and shows the interactions between the involved
JMX/JFMX and non-JMX components.

Figure 5: Pure JMX Implementation of the Test Server

The implementation of the Test Access Server using JFMX is as follows:

Step 1: Definition of MBean interfaces (implementation). Real resource MBeans
include: Managed Object MBean (Managed Object), Manageable Component
MBean (Manageable Component), Associated Object MBean (Associated Object),
and Managed Object Under Test MBean (Managed Object Under Test). Services
MBeans include Monitoring Schedule MBean (Monitoring Schedule) and Testing
Schedule MBean (Testing Schedule).

Step 2: Creation of a JMX MBeans Server: create and run the Test and Monitoring
Access Server by creating one MBeans Server to provide access, configuration,
monitoring and testing of MBeans created in step 1. JMX provides a sample MBean
server called BaseAgent. This agent can be used as it is, or a customized MBeans
Server can be defined as Test/Monitoring Access Server.

Step 3: Running a Web Browser as a client: A Web browser can then be launched
and connected to the BaseAgent. This allows to dynamically manipulate the
previously created MBeans (create, configure, perform test/monitoring actions, and
unregister).

//

W eb Brow ser

W eb Brow ser

Real Resouces

JFM X A ccessServer

H
T

M
L

 A
D

A
P

T
O

R
H

T
M

L
 A

D
A

P
T

O
R

M onitor Schedule

Test Schedule

W eb Brow ser

M
b

ea
n

s
S

er
v

er

H TTP
over TCPIP A O

M O

M O

M O

A O

R TR

M O R T

M O R T
M CM C M CM C M CM C

Test Schedule

M O
M O

PRO X Y PRO X Y

Session Thirteen Fault Management I492 492

Step 4: Creation of System Under Test scenario: the last step proceeds with
administrative tasks by using the interface provided by the HTML Adapter (or any
similar service in a customized MBeans Server). An HTML adapter is created when
the BaseAgent is started in step 3. This can be used as a web interface to create,
register and remove MBeans instances. When the MBeans needed to run the Test
Server scenario are successfully created, the user can then browse the MBeans by
defining a selection criteria (filtering scope), view each MBean attribute, invoke
MBeans test and monitoring operations, and experiment with the MBeans. The
experimentation consist to get and set MBeans attributes, perform operations on
these MBeans (e.g., testing and collection of monitoring data), create new instances
of MBeans, register as event listener and receive notifications generated by the
MBeans.

4.3 RMI/CORBA Implementations

RMI-Implementation and CORBA-Implementation are quite similar and hence
described together. In the case of CORBA there is a need for IDL definition and
additional compilation of IDL files by an idl2java compiler. The RMI
implementation does not require IDL files, but still interface definitions are required
to follow certain rules. For example each interface must extend java.rmi.Remote and
all of their methods must throw RemoteException. In addition, the implementation of
these interfaces should extend java.rmi.UnicastRemoteObject and implements a
default constructor that throws RemoteException. Finally, the rmic tool must be used
on the interface implementations to generate the appropriate stub and skeleton
classes. This should be done any time a change is made on the interface
implementations. The MBeans defined by JFMX can be used directly by the RMI
and CORBA implementations.

RMI/CORBA implementations of the Test Access Server is build as follow:

Step 1: Definition and Implementation of MBeans Interfaces (IDL definition and
Implementation): same as in the JMX implementation, except that the previous set of
rules related to RMI should be respected both by the interfaces and their
implementations (idl2java compilation required in the case of CORBA).

Step 2: Implementation of the Server: an RMI security manager is installed (ORB
and BOA are initialized for CORBA), then instances of “SystemUnderTest” MBeans
classes are created and bound in the RMI registry (exported to the ORB), and the
server then loops on listening to possible clients.

Step 3: Implementation of Client: client program will simply installs an RMI security
manager (initialize an ORB), obtains a proxy to the MBeans objects exported by the
test access server, bound to them in the RMI registry (bind to the CORBA Server
Objects) and use them remotely.

4.4 Voyager Implementation

Voyager implementation is similar to the RMI/CORBA implementation with the
following difference: it is much more easier as it does not require to follow rules like
those used in RMI or CORBA. Like RMI it requires a Java interface to either extend

Java API for Advanced Faults Management493 493

java.rmi.Remote or Voyager interface com.objectspace.voyager.IRemote. Unlike
RMI and CORBA, Voyager does not require that methods throw RemoteException,
idl2java/rmic compilation. There is no need for stub and skeleton generation. This is
done automatically by Voyager. The steps for the implementation of the Access
Server scenario based on Voyager are as follow.

Step 1: Definition and Implementation of MBeans Interfaces: same as in the case of
the JMX implementation with the appropriate extension needed for each interface.

Step 2: Implementation of a Voyager Server: a server program is started on a given
port in the local or remote host, its built-in HTTP server is then enabled, instances of
SystemUnderTest MBeans classes are created and bound to their provided names in
Voyager naming service. The server then listens to eventual request from clients and
process them.

Step 3: Voyager Client Implementation: a client program is started on a given port in
the “localhost” or any other host, then a proxy to the MBean objects is bound to the
server defined in step 2 (VoyagerAccessServer). The remote Voyager Objects can
then be experimented by performing the desired tests and monitoring actions.

We presented in this section four alternative implementations of a sample
scenario based on the “SystemUnderTest” package of JFMX: a web based JMX
instrumentation, a full Java RMI, a CORBA-based, and Voyager implementation.
Due to the simplicity and ease of use of the provided APIs, the total development
cost was significantly low [5].

5 Advanced Communication and Mobility Features

In this section, we analyze the benefits provided by advanced JMX and Voyager
capabilities such as dynamic classes loading, dynamic aggregation [5, 13], agency
and mobility [10, 12, 13]. We also discuss the way Voyager can be used as a
Universal ORB to access non-Voyager implementations.

5.1 Dynamic Aggregation, Agency and Mobility

Both JMX [18, 19] and Voyager [5, 13] provided us with several attracting features:
dynamic class loading, dynamic aggregation, object serialization and mobility, and
agent autonomy and mobility. Dynamic aggregation is a Voyager feature that allows
a developer to add at runtime secondary objects as facets to an existing object. This
is a step forward in object modeling that complements traditional inheritance and
polymorphism. For example, Manageable Components and Manageable Relations
MBeans can be dynamically added to Managed Objects under Test to reflect addition
of software features or extension of hardware in a real managed resource. JMX
provides another interesting dynamic mechanism based on MLET (Management
Applet) concept. MLET are MBeans obtained from remote URLs [18, 19]. Adding to
these two features, object serialization and class loading, we obtain a workable
MBeans migration infrastructure. Thanks to Voyager, more advanced object/agent
mobility (Figure 6) can be achieved [13].

Session Thirteen Fault Management I494 494

Figure 6: Mobile Agent Implementation of the Test Access Server

We used the previous dynamic features to enhance the traditional RPC based
implementations presented in the previous sections. In particular, we implemented
the Test and Monitoring Access Server with Mobile Agents [4, 9, 10] using Voyager
[5, 13] and JFMX [6]. In Voyager any serializable object can be easily moved
between programs at runtime as illustrated in the Figure 6. A proxy mechanism is
used to forward a message sent from an object's old location. The proxy is
automatically updated with the new location and messages are resent. Mobile
autonomous agents that move themselves between programs and continue to execute
upon arrival are easily created using Voyager facet mechanism.

The steps involved in the full Mobile Agent based implementation of the generic
scenario presented in section 4.1 are as follow:

Step 1: Definition and Implementation of Test/Monitoring Access Server: one of the
RPC implementations (i.e., JFMX, RMI, CORBA, or Voyager) can be used. The
Test Access Server should be started on Host A.

Step 2: Implementation of a mobile Object/Agent: an object that will be downloaded
the nearest possible to the Access Server implemented in step 1 should be
implemented with test/monitoring performer capability. With the current JFMX, one
of the following test agents may be directly used: Associated Object, Remote Test
Resource, Test Performer, or Diagnostic/Monitoring Agent.

Objects/Agents
Factory

MORT
MC MC MC

AO

AO

moveTO

MORT
MC MC MC

Test Schedule

AO

AO

(1) moveTO

Network

MORTMORT
MCMC MCMC MCMC

AO

Host AHost A

Host BHost B

Host CHost C

(4) moveTO

(2) moveTO

(3) moveTO

RMI/CORBA Managed System

JMX Managed System

Voyager :7000

Mobile
Test Agent

Voyager:8000

Mobile
Test AgentVoyager:9000

Mobile
Test Agent

Voyager:6000

Mobile
Test

Agent

MO
MO

MO

MOMO
MOMO

MOMO

MO
MO

MO

Voyager Managed System

Monitor Schedule

Test Schedule

M
be

an
s

Se
rv

er

Monitor Schedule

Monitor Schedule

Test Schedule

Monitor Schedule

Test Schedule

Test Schedule

Java API for Advanced Faults Management495 495

Step 3: mobile Object/Agent factory: create locally an instance of the mobile
objects/agents factory in the same Voyager daemon (running on Host A). The agent
factory is then used to create an instance of the object/agent to be migrated. It then
converts it to a mobile agent (by adding the Mobility facet to the selected agent
MBean). And finally moves it to another Voyager enabled host (by invoking its
moveTo method).

The agent may performs a round trip for example interacting with a Voyager
Access Server on the same Host (A), an RMI or CORBA Access Server on remote
Host B, and a JFMX Access Server on Host C. At each step the agent may
autonomously decides its itinerary moving to one of these destinations based on
scheduled activities or other embedded knowledge skills. The agent will then perform
test/monitoring tasks and send back results or returns to its original location (Host A).
Meanwhile, any agent, service MBean, or remote client may call an exported method
of the roaming object. As stated earlier, Voyager keeps an updated reference to the
current location of the roaming agent MBean

The main motivation [2, 4, 9] of mobility in this implementation alternative is to
reduce management information traffic in the network during period of stress and to
faster the response time to network events and faults. Coupling mobility feature with
other JFMX/JMX dynamic features, we were able to achieve a highly efficient web
based solution for Diagnostic Testing and Performance Monitoring.

5.2 Communication and Interoperability

A Voyager program is both a universal client and a universal server [5, 13]. It
communicates with other Voyager programs using its own protocol called VRMP
(Voyager Remote Method Protocol), and supports simultaneous bi-directional
communication with other programs (JMX/JFMX, RMI/CORBA, and DCOM). A
Java component does not have to be modified to send or receive messages using
these standards. No stub generators or helper classes are required. Since Voyager is a
Universal Client, the original Voyager client program is automatically a JFMX/JMX
client, an RMI/CORBA client, or a COM client and can bind to any type of Test
Access Server. This means that all the Access Server implementations do not need to
any modification to be managed by a fixe or a mobile Manager/Agent developed with
JFMX and Voyager. Voyager has another interesting feature with respect to
interoperability issue. It is a universal gateway, which means that Voyager
automatically translates messages between non-Voyager implementations such as
RMI, CORBA, or COM programs. For example, if an RMI or CORBA server binds
an object into a Voyager naming service and a COM client looks up the object,
messages sent from the COM client to the RMI /CORBA server are automatically
routed through the Voyager naming service and translated to VRMP and vice-versa.
Note that Sun implementation of IIOP (Internet Inter Orb Protocol) provides similar
gateway to make RMI programs communicate with CORBA programs.

Session Thirteen Fault Management I496 496

6 Conclusion

Based on the Java Management Extension (JMX), we have proposed a Fault
management API, the Java Fault Management Extension (JFMX). The API is
composed of three main packages mapped to the JMX architecture: Instrumentation
layer (jfmx.SystemUnderTest), Agent layer (jfmx.TestAgentServer), and Manager
layer (jfmx.DiagnosticTestsServer). The paper presented a simple test and monitoring
Client/Server scenario and discussed four implementations of this scenario based on
JMX/JFMX, RMI, CORBA and Voyager. The objective was to propose extensions
for Fault Management (JFMX), show the practical usefulness of some advanced and
dynamic features provided by JDMK/JMX, then combine these features with
mobility and agency using Voyager. The performance of the integrated alternative
revealed to be significantly better than that of basic RPC implementation with
Voyager, RMI, CORBA, JMX and JFMX.

Through these implementations, we showed how a manageable system can be
easily and rapidly instrumented using JFMX with a focus on testing and monitoring.
We also showed how to use Mobile Agents to test and monitor Managed Resources
instrumented in JFMX. Agency and mobility features are added at run-time. Neither
additional efforts, nor development delay were added, and the scenario was
successfully implemented with Mobile Agent mechanism without any change to the
RPC based implementations.

The new Java Fault Management Extension (JFMX) will facilitate the
automation of diagnostic tests, performance measurements and other fault
management functions implementation using a fully distributed environment. Using
Voyager objects/agents mobility and other dynamic features of JMX, the proposed
API enhances significantly existing development environments by providing
flexibility, scalability, efficiency, robustness, and lower operation cost.

7 References

[1] AdventNet, AdventNet SNMP Release 3.0, http://www.adventnet.com/
[2] M. Baldi, S. Gai and G.P. Pico, Exploiting Code Mobility in Decentralized and

Flexible Network Management, Proceedings of the First Intl. Workshop on
Mobile Agents, Berlin, Germany, April 1997.

[3] NicholasKassem, Designing Enterprise Applications with Java2 Platform,
Enterprise Edition. Addition Wesley, June 2000.

[4] M. El-Darieby, A. Bieszczad, Intelligent Mobile Agent: Toward Network Fault
Management Automation, in Integrated Network Management VI, Distributed
Management for the Networked Millenium, Boston, USA, May 1999.

[5] Graham Glass, Reducing Development Effort using ObjectSpace Orb, CTO
ObjectSpace, 1999.

[6] Guiagoussou Mahamat, Michel Kadoch, Java Fault Management Extension
(JFMX), Technical Report, June 2000.

[7] ITU-T Recommendation X.745, Diagnostic and Confidence Tests Categories,
Geneva 1992.

Java API for Advanced Faults Management497 497

[8] ITU-T Recommendation X.737, Test Management Function Management
function, Geneva 1992.

[9] Susilo, G., Bieszczad, A. and Pagurek, B. (1998), Infrastructure for Advanced
Network Management based on Mobile Code, in Proceedings of the IEEE/IFIP
Network Operations and Management Symposium NOMS’98, New Orleans,
Louisiana, February 1998.

[10] David Wong, Noemi Paciorek, and Dana Moore, Java-based Mobile Agents,
Communications of the ACM, Mars 1999.

[12] Jeff Nelson, Programming Mobile Object with JavaTM, Wiley Computer
Publishing, 1999.

[13] Object Space Inc, Voyager, http://www.objectspace.com/home.htm
[14] Robert Orfali, Dan Harkey, Client/Server programming with JAVA and

CORBA, Second Edition, Wiley Computer Publishing, 1998.
[15] OUTBACK Resouce Group, Inc. JSNMP EntrepriseTM, Java-Based SNMP

Package User's Guide http://www.outbackinc.com/, 2000
[16] Sun Microsystems Corporation, Java RMI Specification,

ftp://ftp.javasoft.com/docs/jdk1.1/rmi-spec.pdf.
[17] Sun Microsystems Corporation, Java Entreprise Bean:

http://www.javasoft.com/products/ejb/index.html
[18] Sun Microsystems Corporation, Java Dynamic Management Kit,

http://www.sun.com/software/java-dynamic/
[19] Sun Microsystems Corporation, Java Management Extension:

http://java.sun.com/products/JavaManagementExtension/.
[20] Advanced Network Solutions, JavaTM TL1 Translator 1.0: http://www.ans.it/jtt/

Session Thirteen Fault Management I498 498

