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Abstract. The main contribution of this paper is a new online routing
algorithm, called Dynamic Online Routing Algorithm (DORA), for
dynamic setup of bandwidth guaranteed paths in MPLS networks. The
goal of DORA is to accept as many network path setup requests as
possible by carefully mapping paths with reserved bandwidth evenly
across the network. The key operation behind DORA is to avoid routing
over links that: 1) have high potential to be part of any other paths,
and 2) have less residual bandwidth available. We compare DORA
against other existing constraint-based routing algorithms based on
two performance metrics: path setup rejection ratio and percentage of
successful reroutes. Our result shows that DORA performs better than
the other algorithms in both metrics.
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1 Introduction

We present a new online routing algorithm, called Dynamic Online Routing
Algorithm (DORA), for construction of bandwidth guaranteed paths. DORA
aims to utilize existing network resources and minimize network congestions by
carefully mapping paths with specific bandwidth requirement evenly across the
network topology. The main objective of DORA is to allow more path setups
to be accepted into the network, and as a result, increased revenue for service
providers.
The problem of establishing bandwidth guaranteed paths, as path setup re-

quest arrives one-by-one with no advance about future requests, has been studied
elsewhere in [KL00,SWW01,FT00]. Our work is inspired by the Minimum In-
terference Routing Algorithm proposed in [KL00], but performs better in terms
of request rejection ratio and rerouting percentage upon link/node failures with
much less computation complexity. We will describe our algorithm in the con-
text of MPLS-enabled networks. In a Multi-Protocol Label Switching (MPLS)
network, incoming packets are assigned a label at the ingress node. Each packet
follows a pre-computed path, which is identified by a set of labels, to reach its
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destination node. Constraint-based Routing (CR) extends MPLS path compu-
tation by ensuring that the resulting path satisfies a set of constraints. In this
paper, we will consider path computation with bandwidth requirement as the
constraint.
The organization for the rest of this paper is as follows: Section 2 identifies

important design issues for routing algorithms in a MPLS network. In Section
3, we discuss some related works. Section 4 describes the details of DORA algo-
rithm. Section 5 evaluates and compares DORA against other existing routing
algorithms through network simulations. Section 6 summarizes the important
points in the paper and proposes future work.

2 Design Issues of Constraint-Based Routing Algorithms

In this section, we briefly describe some of the important properties of a useful
routing algorithm in the MPLS domain.

1. Routing Constraint: Constraints may include delay, jitter, loss ratio,
bandwidth, administrative constraints and so on. It has been proven
that finding the optimal route subjected to two or more additive and/or
multiplicative metrics is NP-complete [GJ79]. In addition, it is generally
difficult to obtain accurate values for certain metrics such as delay and
jitter. In the rest of this paper, we will focus on routing algorithms that
compute paths subjected to bandwidth requirement.

2. Online Routing: Offline constraint-based routing requires a demand
matrix as input. A demand matrix describes the expected amount of data to
be transmitted between a source-destination pair in the network at different
times. In contrast, online constraint-based routing does not require a priori
knowledge of the size and arrival time of each individual path setup request.
This paper focuses on online constraint-based routing, as it is the appropri-
ate approach to solving the dynamic path setup problem in MPLS networks.

3. Computational Requirement: Online routing algorithm compute paths
as setup requests arrive at the network. In the case where the ingress
node is operating in demand-driven mode, the path computation time
is added to the overall response time that the user perceives. Therefore
it is necessary for path computations to be as fast and as efficient as possible.

4. Re-routing Performance: Network topology changes are triggered by
events such as link or node failure. When a link fails, all affected paths
have to be re-routed to a different location in order to resume normal op-
erations. Since each path is associated with reserved bandwidth, re-routing
may fail due to insufficient residual resource. A good routing algorithm
should carefully map network paths across the topology so that when a link
fails, the chance of successfully rerouting affected paths is as high as possible.
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5. Link State Distribution: The current standard link state advertisements
(LSA) do not contain dynamic link information such as residual bandwidth
and residual capacity. There have been work to extend the Interior Gateway
Protocols (IGPs) to add dynamic link attributes to LSAs [KYK02,LS01].
We assume that the necessary bandwidth and topology related information
used by the routing algorithm is available when needed.

3 Related Works

The most popular and widely used routing algorithm in MPLS networks is the
shortest-path first algorithm (SPF) based on the number of hops. SPF selects the
path that contains the fewest hops between the source and the destination node.
One obvious problem with SPF is that it tends to route traffic onto the same
set of links until these links’ resource are exhausted. This leads to concentration
of traffic on certain parts of the network. In addition, SPF typically accepts less
path setups into the network than some other more advanced routing algorithms.
A more intelligent routing algorithm the Minimum Interference Routing Al-

gorithm (MIRA) proposed in [KL00]. The objective of MIRA is to accept as
many path setups into the network as possible by using the concept of critical
links. Critical links have the property that when their capacity is reduced by
1 bandwidth-unit, the maximum data flow between a given source-destination
node is also reduced by 1 bandwidth-unit. Therefore the goal of MIRA is accom-
plished by selecting paths that contain as few critical links as possible. However
MIRA suffers from two weaknesses. First, MIRA is computationally expensive,
because it needs to perform a lot of maximum data flow calculations, and each
max flow computation is O(N3) [SWW01], where N is the number of nodes
in the network. Compare to the runtime of SPF, which is O(NM) (M is the
number of links in the network), the runtime for MIRA is several magnitudes
higher. Second, in some situations, MIRA may continuously choose the same set
of links to route traffics on. To illustrate this point, consider the situation where
there exist two distinct routes with identical residual bandwidth connecting the
same source-destination pair (S, D). Initially all links in both route are classified
as critical links. When a request associated with (S, D) arrives, given sufficient,
one of the two routes will be chosen to serve this request. Afterwards, all the
links in the chosen route are no longer critical, but all links in the other route
remain critical links. This means subsequent requests will be routed on the same
route as the first request until resources along this route are exhausted.
Some other related work includes profile-based routing and variations of

OSPF routing heuristics proposed in [FT00] and [SWW01] respectively. These
two routing algorithms require a traffic profile or an estimated demand ma-
trix structure that approximates the bandwidth demands between each pair of
source-destination nodes at different times. They will not be used for perfor-
mance comparison purposes because they are not strictly online routing algo-
rithms. Instead, we will compare SPF, MIRA and DORA in the performance
evaluation section.
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4 Dynamic Online Routing Algorithm

We consider the problem of setting up bandwidth guaranteed paths in a MPLS
network. Each path setup request arrives one-by-one and we do not know the
arrival time or size of future requests. The size of a request refers to the band-
width requirement of the path to be setup. Each request demands a path with
reserved bandwidth to be setup between an ingress (source) node and an egress
(destination) node.
DORA is separated into two stages. Stage one is executed whenever a

topology change has occurred, and stage two is executed whenever a path setup
request arrives to the network. In the first stage, the key operation is to assign
path potential value (PPV ) to each link with respect to each source-destination
pair. PPV reflects how likely a particular link will be part of some potential
paths between some source-destination pairs in the network. A large PPV
link value implies that this link will likely be part of many potential paths
and thus routing over this link should be avoided whenever possible. A small
PPV link value means that there are less potential paths using this link and
therefore it is more desirable to use this link than others with larger PPV
value. Each source-destination (S, D) is associated with an array, PPV(S,D), of
size equal to the number of network links and each array element is initialized
to zero. The way that PPV(S,D) array elements are calculated is based on which
links are included in the disjointed set of paths for each source-destination
pairs and it is described in detail in the pseudo-code listing for DORA. The
main idea is to go through each source-destination pair (S, D), reduce one
from PPV(S,D)(L) if the link L appears in the disjointed path set for (S, D),
and add one to PPV(S,D)(L) each time L appears in any of the disjointed
path sets associated to any other source-destination pairs. In the second
stage, the PPV for each link is combined with the reciprocal of the current
residual bandwidth of this link to form the link weight. The content of the
link weight is controlled by a user parameter BWP (bandwidth proportion),
which takes on values between 0.0 and 1.0. For example, if BWP equals 0.7,
this implies that 70% of the link weight is contributed by the link’s resid-
ual bandwidth and 30% of the link weight is contributed by the associated PPV .

Stage 1:

1. For each ingress-egress pair (S, D), determine the set of all disjointed paths
DP(S,D). One possible way is to use Dijsktra’s algorithm to find a shortest
path (in terms of number hops) for (S, D), add this path to DP(S,D), and
then remove all links that are part of the resulting path, and repeat these
steps until D is no longer reachable from S.

2. For ingress-egress pair (S1, D1), construct the PPV (S1, D1) array, and
initialize all entries to zero. The size of the array is equal to the number of
network links.
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3. For each ingress-egress pair (S1, D1):

a) Go through each link in the network and if a link L is part of any paths
in DP(S1,D1), subtract 1 from PPV(S1,D1)(L).

b) For all the ingress-egress pair other than (S1, D1), inspect each link
L and determine the number of times, X, that L appears in DP(S,D)
where (S, D) not equal to (S1, D1). Increment PPV(S,D)(L) by X.

4. Repeat step 3 - 4 for all the other ingress-egress pairs.

5. For each ingress-egress pair (S, D), normalize all entries in PPV(S,D), with
the smallest PPV element over all ingress-egress pairs equal to 0 and
the largest PPV element over all ingress-egress pairs equal to 100. Let
NPPV(S,D)(L) to be equal to the normalized value of PPV(S,D)(L).

Stage 2:

1. Suppose a request arrives for path setup between (S1, D1) with Y amount of
bandwidth. Remove links with residual bandwidth less than the requested
bandwidth Y .

2. For each network link L, determine its residual bandwidth RB(L), take
the reciprocal of RB(L) and normalize RB(L) − 1 to the range 0 to
100, with the smallest RB(L) − 1 equal to 0 and the largest RB(L) − 1
equal to 100. Let NRB(L) to be equal to the normalized value of RB(L)−1.

3. For the ingress-egress pair (S1, D1), construct a link weight table
LWT(S1,D1), and using the following equation to obtain LWT(S1,D1)(L):

LWT(S1,D1)(L) = NPPV(S,D)(L)× (1− BWP ) +NRB(L)× BWP (1)

4. Run Dijsktra’s algorithm to compute a link weight-optimized path between
(S1, D1).

5 Performance Evaluation

In this section, we will first describe the set of experiments used to evaluate the
performance of DORA, and then we will comment on the results of the experi-
ments. All experiment scenarios are simulated using ns-2 [BEF+00]. We compare
the performance of DORA with different BWP parameter values (0.1, 0.5, and
0.9) against that of SPF and MIRA. Two main performance metrics of inter-
est are the path setup rejection ratio and the percentage of paths successfully
rerouted upon topology change. The network topology used in the experiments
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Fig. 1. Network topology used in the experiments. The thicker lines represent links
with 48MBytes of reservable bandwidth while the thinner lines represent links with
12MBytes of reservable bandwidth.

represents a small ISP’s backbone network and is shown in Figure 1. The fig-
ure also shows the location of 4 different source-destination pairs, identified by
(S0, D0), (S1, D1), (S2, D2) and (S3, D3).

Three different experiment scenarios are considered. The first two experi-
ments focus on the path rejection ratio, which indicates the percentage of path
setups that are rejected due to insufficient resources. The last experiment studies
the routing algorithm behaviors upon link failures. The size of each path setup
request or the bandwidth requirement of the path is uniformly distributed among
10KB, 20KB, 30KB and 40KB. In experiment 1, a total of 2000 static path setup
requests are sent to the network. Static paths resemble long-lived MPLS tun-
nels and once they are established, they will stay in the network forever. In
experiment 2, we first load up the network with 200 static paths, and then we
send 1800 dynamic path setup requests to the network. Dynamic paths represent
short-lived MPLS tunnels. The arrival time of dynamic path setup requests at
the network is based on a Poisson distribution with mean λ=40 requests per
time-unit and each dynamic path has a holding time based on an Exponential
distribution with mean µ=10 time-unit. The setup of experiment 3 is the same
as that of experiment 1 with an additional setting - a randomly chosen link is
taken down just before network resources are saturated. The number of paths
requiring reroute and the percentage of successful reroutes are recorded after a
link is taken down.
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Fig. 2. Static Path Setup (Experiment 1): Percentage of Rejected Requests between
Request #850 and #2000.

Figure 2 shows the partial result for experiment 1, which involves only static
path setup requests. According to the figure, DORA 0.9 (DORA with BWP =
0.9) rejects the fewest number of requests, followed by DORA 0.5, DORA 0.1,
MIRA and finally SPF. The result before setup request #850 is similar - that
is the relative positions of the curves are the same during the course of the
simulation. Since static paths remain in the network forever, after all network
resources are exhausted, any incoming path request will be rejected. This can be
observed by the fact that all curves in the figure approaches 100% as the number
of request arrival increases.

Fig. 3. Static-Dynamic Path Setup (Experiment 2): Percentage of Rejected Requests.

The result for experiment 2, which involves both static and dynamic path
setup requests, is shown in Figure 3. In the figure, all curves grow irregularly



Dynamic Online Routing Algorithm 943

until around request #1800, at which all curves enter steady state and stay rel-
atively flat. Similar to the previous experiment, DORA 0.9 rejects the least per-
centage of requests, followed by DORA 0.5, DORA 0.1, MIRA and lastly SPF.
During steady state, DORA 0.9 rejects about 26% less requests than MIRA,
and DORA 0.1 shows 12% improvement on number of rejected requests over
MIRA. The improvement over SPF is even more significant as DORA 0.9 and
DORA 0.1 rejects around 37% and 27% less requests than SPF, respectively.
Experiment 3 is equivalent to experiment 1 except that at different points in

time, a randomly chosen link is taken down and the number of paths requiring
reroute and the percentage of successful reroutes are recorded. In experiment
1, the condition where all incoming requests are rejected due to insufficient
resources occurs when just above 30% of the total network capacity has been
occupied. We defined point A, B, and C to be the case where 20%, 25%, 30% of
the total network capacity has been saturated. There are a total of 26 network
links which yields a total of 390 experiment trials (e.g. 26× 3× 5). At each link
failure point (A, B, and C), we compute the average number of paths requiring
reroute, the standard deviations on the number of paths requiring reroute, and
the percentage of successful reroutes. The results are shown in Figure 4, Figure
5, and Figure 6.
Figure 4 shows the average number of paths requiring reroute increases, as

the network resource is closer to exhaustion. The least number of paths are
required to be rerouted upon a link failure by using DORA 0.5, followed by
DORA 0.1, DORA 0.9, MIRA and finally SPF. The standard deviation value
for the number of paths requiring reroute is a direct indication of the algorithm’s
ability to spread path setups evenly across the network.

Fig. 4. Average Number of Paths Requiring Reroute at Different Failure Points.

Figure 5 shows that DORA 0.5 has the lowest standard deviation value,
meaning that it is the most capable of spreading path setups across the network.
In addition, both DORA 0.1 and DORA 0.9 have lower standard deviation value
than either MIRA and SPF at all link failure points.
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Fig. 5. Standard Deviation of Number of Paths Requiring Reroute at Different Failure
Points.

Figure 6 shows the percentage of successful reroutes upon link failure. Accord-
ing to the figure, the curve for all algorithms declines, as the amount of network
resource is closer to saturation. DORA 0.5 again performs the best among all al-
gorithms with the highest successful reroutes percentage, followed by DORA 0.9,
DORA 0.1, MIRA and lastly SPF. DORA 0.5 is able to obtain about 2%, 7.9%,
and 6.5% more successful reroutes than MIRA at link failure points A, B, and
C respectively. The improvement over SPF is more significant, as DORA 0.5 is
able to obtain 18.28%, 25.53%, and 37.4% more successful reroutes at link fail-
ure points A, B, and C respectively. The results for experiment 4 suggest that
a good mix of path potential value and residual bandwidth utilization yield the
best performance in situations where link failure is commonplace.

Fig. 6. Percentage of Successful Reroutes at Different Failure Points.
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Next we will examine and compare the computation complexity of the routing
algorithms used in the experiment. Consider a network consisting of N nodes
and M links. Let D be the largest degree of any node and P be the number
of source-destination pairs. Table 1 shows the computation complexity between
the shortest-path algorithm (SPF), the minimum interference routing algorithm
(MIRA), and our algorithm (DORA). SPF is least expensive in terms of run-
time complexity, but it offers a much worse performance than other algorithms
as shown in the previous experiments. The second stage of DORA is equally in-
expensive as SPF and is executed during each request arrival. The first stage of
DORA is performed only upon network topology change. In the absolute worst
case scenario where D = O(M) and P = O(N2), the runtime for stage one of
DORA is several magnitudes higher than that of SPF, but still lower than that
of MIRA.

Table 1. A comparison of computation complexity between different routing algo-
rithms.

Algorithm Computation Complexity
SPF O(MN)
MIRA O(N5) + O(M2)
DORA Stage 1 O(N3M2)
DORA Stage 2 O(MN)

6 Conclusion

In this paper, we have introduced Dynamic Online Routing Algorithm (DORA)
for computing bandwidth guaranteed paths in MPLS networks. It combines the
path potential value and current residual bandwidth to construct the link weight
table with respect to each source-destination pair. A weight-optimized path
based on the associated link weight table is then computed and returned by
DORA. In the performance evaluation section, we have shown that DORA re-
jects fewer path setup requests than both SPF and MIRA. Furthermore, DORA
attains a higher successful reroutes percentage upon link failures than both SPF
and MIRA. In addition, the runtime complexity of DORA is less than that of
MIRA, and it has an equivalent computation complexity to SPF when topology
change is infrequent. When topology change does occur, it will trigger the exe-
cution of stage 1 in DORA. The cost of stage 1 operation could be reduced by
using a better scheme for computing the set of disjointed paths with respect to
each source-destination pair. Additionally, instead of recalculating the set of dis-
jointed paths every time a topology change occurs, recompute only the affected
disjointed paths.
One possible extension to DORA is to use past knowledge to estimate the

future demand size for each source-destination pair. For instance, instead of in-
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crementing and decrementing the PPV of a link by one, we may modify the
PPV by a value higher than one to reflect a larger expected demand size for a
given source-destination pair. Such knowledge could be inferred from constant
network monitoring and measurements, or derived from the service level agree-
ment between the customer and the service provider.
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