
1

pMeasure: A Tool for Measuring the
Internet

Wenli Liu, Raouf Boutaba, James Won-Ki Hong

Abstract— This paper describes pMeasure, a tool for
measuring large scale networks, particularly the Internet,
from end to end. As the Internet grows in size and
complexity, fine-grained, precise and timely measurements
are needed to ensure its healthiness and ultimately benefit
those mission-critical applications deployed on the Internet.
The existing measurement infrastructures are unable to
satisfy this need due to various reasons. pMeasure, on the
other hand, is built on a Peer-to-Peer network substrate,
namely Pastry, and can accomplish measurement tasks
by utilizing only nodes at the edge of the Internet. The
distinguishing characteristics of pMeasure, such as self-
organizing and scalability, just to name a few, make it a
measurement tool that can satisfy the measurement need
for the Internet community efficiently and economically.

Index Terms— Network Measurements

I. I NTRODUCTION

With decades of evolvement, the Internet has now
become an indispensable constituent of human life and
mission-critical applications are increasingly deployed
on it. The loss resulting from any dysfunction of the In-
ternet, even for a short period of time, would be unafford-
able. Fortunately, researchers have started their efforts
in investigating the characteristics of the Internet and
in devising better network management strategies and
traffic engineering approaches. All these efforts require
timely, precise and fine-grained measures of the Internet
and unfortunately, the existing measurement facilities by
no means can satisfy this need due to the following.
First of all, no single administrative organization owns
the Internet and each manages only a part of it. Be-
cause of commercial factors, these organizations usually
disallow any direct measurement of their infrastructure
and are reluctant to share measurement data with others.
Secondly, since the measurement facilities deployed so
far are usually expensive and require a large amount of
storage due to the high speed of the links monitored,

Wenli Liu is with School of Computer Science, University of
Waterloo, Canada. E-mail: w7liu@bbcr.uwaterloo.ca

Raouf Boutaba is with School of Computer Science, University of
Waterloo, Canada. E-mail: rboutaba@bbcr.uwaterloo.ca

James Won-Ki Hong is with Dept. of Computer Science and
Engineering, POSTECH, Korea. E-mail: jwkhong@postech.ac.kr

the deployed measurement facilities are few in number
and are far from providing fine-grained information. As
a consequence, what the network administrators face
is mostly an unsynchronized, limited, and partial view
of the Internet, which is far from satisfying the need
and imposes difficulties, more or less, to the already
complicated task.

For these reasons, a Peer-to-Peer (P2P) based mea-
surement system is promising. Like the other P2P appli-
cations, this measurement system is able to self-organize
into a scalable P2P application that depends solely on
computing resources at the edge of the network. Sim-
ilarly, researchers can join the system by contributing
their measurement functionalities from the edge and
once in the system, they have the full control over
what to collect, when to collect, how to collect and in
what granularity. Since the measurement functionalities
in the system are synchronized, the collected data are
synchronized as well. Srinivasan and Zegura proposed
such a measurement system [1] in which each node
is responsible for one part of the Internet(Area Of
Responsibility) and measurement tasks are carried out
by nodes that are responsible for the areas involved.
This system is similar to pMeasure in that they are
both P2P applications and measurement tasks are carried
out by cooperative nodes from the edge of the Internet.
However, a number of major issues plague the system
in [1]. First of all, the paper is unclear on how the
peers are identified and located. More importantly, two
query formats are required in [1] while P2P networks
can support only one query format. Secondly, AORs
are divided into smaller AORs when new peers enter
the system and AORs merge to form a larger AOR
after peers depart. This division and merging of AORs
generates a considerable amount of overhead. Thirdly,
[1] estimates the path characteristics between a source
IP address and a destination IP address by measuring
the path between the node whose AOR contains the
source IP address and the node whose AOR contains
the destination IP address. Apparently, the error in the
estimation will be considerable when there are only a
few nodes available in the system. Last but not the



N3N3 N2N2
N1N1

pMeasure Node

Management Component

Identification Accounting Authorization Trust

Peer-to-Peer Component

Node Locationing

State Maintenance

Measurement Component

Active Measurement

Delay

Trace Route

Connectivity

Passive Monitoring

Throughput

Port Activity
…

…

Task Negotiation

Fig. 1. pMeasure Architecture

least, free riding and security are usually major issues
in P2P applications, but they are not considered in [1].
pMeasure, on the other hand, is constructed on top
of a P2P substrate, namely Pastry [2], and is able to
take all the aforementioned issues into consideration,
thus offering a feasible and practical solution to the
measurement need.

The rest of this paper is organized as follows. The
design of pMeasure is presented in the next section and
section III discusses various aspects of its implemen-
tation. A brief introduction on how to use pMeasure,
along with some added values of pMeasure, is given in
section IV. This paper concludes with the envisioned
improvements for pMeasure in the near future.

II. T HE DESIGN OF PMEASURE

Architecturally, the entire pMeasure system consists of
a collection of nodes, each running pMeasure both as a
server and as a client. When running as a server, a pMea-
sure node receives measurement tasks from other nodes
and if resources are available and various conditions are
met, it carries out the tasks cooperatively. On the other
hand, a pMeasure node running as a client can inject
measurement tasks into the system, which automatically
locates necessary and appropriate nodes for the tasks and
monitors the execution of the tasks closely. Since all
the nodes are equal in terms of functionalities they have

and there is no need for centralized server or special
support in the network infrastructure, pMeasure has the
potential to connect millions of nodes and provide a
measurement coverage that can satisfy the need for fine-
grained, precise and timely measures of the Internet. Fig.
1 depicts a pMeasure system with a collection of seven
pMeasure nodes that are scattered at the edge of three
interconnected networks.

As Fig. 1 shows, each pMeasure node has three
functional components. The measurement component is
responsible for providing and requesting measurement
tasks, while the Peer-to-Peer component maintains the
overlay for the whole system. The management com-
ponent, on the other hand, ensures the operation of the
other two components in a secure, reliable and organized
manner.

When a pMeasure node starts, the P2P component
creates one Pastry [2] peer for each Network Interface
Card(NIC) on the host machine. A Pastry peer is able
to create and maintain a40 × 15 state table, with each
cell pointing to another Pastry peer in the system. The
routing of messages in the system is then carried out by
consulting the state tables along the path from source to
destination [2]. In pMeasure, a Pastry peer’s ID, instead
of being randomized, is now constructed based on the
IP address of the NIC in such a way that IDs and IP
addresses can be computed from each other without

2



difficulty. From now on in this paper,ID (ip) is used to
represent the procedure which generates an ID from an
IP addressip, while NET(x) is the procedure to retrieve
the network number from an IDx or an IP addressx, and
HOST(x) is the procedure to retrieve the host number
from an IDx or IP addressx. It is worth noting that IDs
in pMeasure are used to identify the underlying Pastry
peers. The unique identification of a pMeasure node is
done through the node’s public key. A node is supposed
to have its public/private key pair setup properly before
entering the system.

The messages routed in a pMeasure system are now
the extended messages from Pastry, each denoting a
measurement task to be carried out. The measurement
component retrieves information from users, generates
measurement tasks and instructs the P2P component to
route the tasks to their destinations via the underlying
Pastry peers. In case of a passive monitoring task involv-
ing an IP interfacedst, the task will always be sent to a
Pastry peer withID (dst) as its ID. Should no such Pastry
peer exist in the system, the passive monitoring task fails.
In case of an active measurement task, the user specifies
a network number, and the measurement component will
explore the entire host space in an attempt to find a
participating pMeasure node in the specified network.
During its first attempt, the measurement component
generates an IP addressdst by combining the network
number and a random host number. The task is routed to
a Pastry peer withID (dst) as its ID or having a closest
ID to ID (dst). If the receiving peerid is outside the
specified network, i.e.NET(id) 6= NET(dst), or refuses
to participate even if it is in the specified network, the
measurement component computes the range of the host
space1 covered by the IP addressdst and starts its second
attempt with the remaining host space. This process
repeats until a pMeasure node is found or the entire host
space has been explored, and in the later case, the active
measurement task is assumed as failed. Fig. 2 presents
the overall procedure to compute the range[s, e] covered
by an IP addressip given the receiving peerid and the
host space[m,n] while Fig. 3 illustrates the computation
of a particular coverage when the receiving peer resides
in the specified network but refuses to participate in the
measurement task, i.e., the third case in Fig. 2.

As mentioned before, the management component
requires each pMeasure node to acquire a public/private
key pair prior to entering the system. As the public keys
issued by trusted authorities usually remain unchanged
and seldom repeat themselves, they are used to identify

1Given a network number, the host space is a set of integers that
can be legitimately used as host numbers.

IF NET (id) < NET(ip)
[s, e] = [m, MIN {n, 2×HOST(ip)−m}];

ELSE IF NET (id) > NET(ip)
[s, e] = [MAX {m, 2×HOST(ip)− n}, n];

ELSE IF HOST(id) < HOST(ip)
[s, e] = [HOST(id),

MIN {n, 2×HOST(ip)−HOST(id)}];
ELSE IF HOST(id) > HOST(ip)

[s, e] = [MAX {m, 2×HOST(ip)−HOST(id)},
HOST(id)];

Fig. 2. Coverage Computation

m nHost(ip)Host(id) 2 x Host(ip) - Host(id)

Host(ip) - Host(id) Host(ip) - Host(id)

Fig. 3. The Computation of a Particular Coverage

pMeasure nodes uniquely2. Meanwhile, the management
component requires all messages to be encrypted using
the private keys before sent and be decrypted using the
corresponding public keys after their arrival at the des-
tination. This is done to provide security in a pMeasure
system. Also, the management component requires that
at the end of each measurement task, the task initiator
send encrypted credentials to each participating node,
specifying the task accomplished, the time, the initiator’s
public key, and the participating node’s public key, etc.
The management of all the credentials received is defined
as accounting in pMeasure. With accounting, a pMeasure
node will have a clear knowledge of whom it served and
which tasks it participated in. Also, accounting provides
an efficient method to prevent free riding in pMeasure.
Upon the arrival of a measurement task, a node can
decide to participate if the initiator’s contribution is high
or reject otherwise. A pMeasure system computes a
node’s contribution based on the number of different
nodes it served and all these information can be re-
trieved from accounting. In addition, the management
component enables a pMeasure node to compute the
trustworthiness of a pMeasure node by validating the
measurement results acquired by the node. In a pas-
sive monitoring task, the initiator can instruct a third
node to send testing packets to the participating node.
The participating node is deemed as trustable if the
testing packets are reported and deemed as un-trustable
otherwise. In an active measurement, the initiator can

2IP address is not used here since it changes from time to time for
some edge users, e.g. ADSL users.

3



always find more than one node from an IP network to
conduct the same task. While minimum and maximum
results are discarded, the average of the remaining can be
considered the ultimate result. Finally, the management
component allows a pMeasure node to disable/enable
any of its measurement functionalities and for each
enabled function, a black list of pMeasure nodes can
be specified so that a pMeasure node can always refuse
tasks from those on its black list. The pMeasure nodes
that have low contributions according to accounting are
one of the sources for the black list. Other sources
include users judgements and those nodes labelled as
un-trustable.

III. I MPLEMENTATION

This section first describes the capabilities of the
current version of pMeasure and then explores three
issues in detail, namely the traffic overhead, storage
requirement, and computing resource consumption.

The passive monitoring component enables a pMea-
sure node to generate network traffic statistics on the
host machine for the purpose of network monitoring
and at the same time, to report the generated statistics
to other pMeasure nodes upon request. A pMeasure
node maintains statistics for every15 minutes. The
current 15 minutes statistics are updated in real-time
and historical15 minutes statistics are kept on secondary
storage and can be retrieved when needed. The current
version of pMeasure runs on Windows XP and WinPcap
[3] is used to capture Ethernet frames, which are then
decapsulated to retrieve IP packet header information.
In case of a frame that contains the first fragment of an
IP packet and the protocol used is TCP/UDP, TCP/UDP
header information is retrieved as well. Based on the
header information, data such as the number of packets
sent/received, the number of bytes sent/received, and the
Min/Max packet size sent/received are maintained for
each active port and for each active NIC in every15
minutes statistics. The active measurement component
is able to measure not only the path characteristics
between the task initiator and a participating node,
but the path characteristics between two participating
nodes as well. Table I depicts the capabilities of the
active measurement component for the current version of
pMeasure. In each active measurement task, nodeA and
nodeB are synchronized to an Internet Time Server and
probe packets are sent to each other at a fixed frequency
within the measurement period. The measurement result
is transmitted back to the task initiator immediately after
the task is completed. In the current version of pMeausre,
the possible combinations of〈NodeA, NodeB〉 are〈The

TABLE I

ACTIVE MEASUREMENT TASKS

Measurement
Tasks Description

One-way Delay Measures One-way Delay [4], Round-Trip
Delay [5], Connectivity [6], and Trace
Route [7] from pMeasure nodeA to
pMeasure nodeB and from pMeasure node
B to pMeasure nodeA simultaneously.

Round-Trip
Delay
Connectivity
Trace Route

TABLE II

SECONDARY STORAGE REQUIREMENTS

Number of
Active Ports

Storage Re-
quired

Number of
Active Ports

Storage Re-
quired

1000 72MB 5000 360MB
2000 144MB 6000 432MB
3000 216MB 7000 504MB
4000 288MB 8000 576MB

task initiator, A participating node〉 and〈A participating
node, Another participating node〉.

Compared with manually negotiated measurement fa-
cilities, Pastry peers under the management of the P2P
component have to ping the600 peers that appear in
its routing table every15 minutes in order to detect
failed or departed peers. This systematic pinging of
others forms the majority of the traffic overhead in a
pMeasure system. However, the overhead is tolerable
according to the following calculation. A ping message
in a pMeasure system has a length of32 bytes, and
with the overhead added at the transport layer, the IP
layer and the link layer, a frame of size74 bytes is
transmitted for each ping message. Given a pMeasure
system with1 million nodes, each having one Pastry
peer, the bandwidth consumed by a single pMeasure
node is about400bps and the total bandwidth consumed
by the entire system is about400Mbps.

In addition to the traffic overhead injected to the
network, a pMeasure node consumes secondary storages
for its historical 15 minutes statistics. A15 minutes
statistics consist of a list of elements, each of which
records the activities on a distinct port and has a length
of 25 bytes. The length of a15 minutes statistics is thus
dependent on the number of distinct ports used in the15
minutes period. Table II outlines the secondary storage
requirements for a pMeasure node to run continuously
for 30 days as the number of the active ports increases
from 1000 to 7000 in each statistical interval. According
to Table II, the storage required for every1000 distinct
ports is only72MB for a period of30 days.

The performance of a pMeasure node is further eval-
uated in terms of the CPU time consumed and the main
memory allocated. In the experiment, a number of tasks

4



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Number of Tasks

C
P

U
 T

im
es

 (
m

s)
CPU Time Consumption

Fig. 4. CPU Time Consumption

0 10 20 30 40 50 60 70 80 90 100
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

6

Number of Tasks

M
ai

n
 M

em
o

ry
 (

B
yt

es
)

Main Memory Allocation

Fig. 5. Main Memory Allocation

are sent to a pMeasure node and YourKit Java Profiler [8]
is used to capture the total CPU time and the total main
memory needed by the pMeasure node to accomplish
these tasks. All the tasks are designed in such a way that
the pMeasure node, which is running on a Dell Inspiron
notebook running Windows XP with a2.8GHz CPU and
512MB RAM, measures the round trip delay every five
minutes between itself and another pMeasure node and
for a duration of 10 minutes. As Fig. 4 depicts, the CPU
time consumption increases linearly as the number of
tasks increases, at a speed of about4000ms for every 10
tasks. The main memory allocation, which is illustrated
in Fig. 5, increases linearly as well, but at a speed of
about 60KB for every10 tasks.

IV. U SING PMEASURE

To convey a concrete feeling of how pMeasure can be
used, this section presents two brief examples on how
to measure port activities on an interface and on how
to measure round trip time between two networks. In
addition, two scenarios where pMeasure can be useful
are presented as well.

To monitor port activities on an interface, the IP ad-
dress of the interface, the start time and the end time have
to be specified. In case that the activity on a particular
port is required, the port number has to be given as well.
A passive monitoring task is constructed from the inputs
and immediately sent to the pMeasure node running
on the host which contains the specified interface. The
status of the submitted and received passive monitoring
tasks can be checked as well. The screen snapshot in
Fig. 6 depicts the status of an in-processing passive
monitoring task, which shows the activities on interface
129.97.34.180 and port21.

To measure the round trip time between a source
network and a destination network, the start time, the
end time, the network numbers and the measurement
frequency have to be specified. An active measurement
task is constructed subsequently. The pMeasure system
then locates one pMeasure node that is running in the
source network3 and another in the destination network.
The active measurement task is then sent to the found
nodes for processing. In case that no pMeasure node is
running in at least one of the specified networks, the task
is labelled as failed. Similarly, the status of the submitted
and received active measurement tasks can be checked.
Fig. 7 depicts the status of an active measurement task
that measures the round trip time from a pMeasure node
in UWNET(129.97.0.0/16) to another pMeasure node in
DOC-1-7-1-1-KTGC-1(69.193.90.0/23) every5 minutes.

Being a P2P measurement application and conducting
measurement from end-to-end, pMeasure offers capabil-
ities and potentials that existing measurement facilities
cannot compete with in certain situations. In Fig. 8, a
pMeasure system is established to support SLAs between
an ISP and its subscribers in which the ISP sets up some
pMeasure nodes inside its network while each of its
subscribers can set up one pMeasure node at the edge.
With the pMeasure system, the ISP can collect mea-
surement data to generate performance reports required
by the SLAs, to evaluate its network performances, etc.
And more importantly, the same system can be used
by the subscribers to validate what they actually get

3In the current version of pMeasure, the source network is the
network in which the task initiator resides, and the found node in
the source network is the task initiator.

5



Fig. 6. Measurement of Interface Port Activities

Fig. 7. Measurement of Path Characteristics

An ISP NetworkAn ISP Network

Fig. 8. A pMeasure System That Supports SLAs within an ISP
Network

is what they paid for. As the competition increases
in the Internet service market and subscribers become
more selective, this cooperative measurement of network
performance can indisputably attract more subscribers on
board. Fig. 9 depicts a pMeasure system with each node
deployed in the subnetworks of a large campus network.
Compared to the monitoring functionalities provided by
the commonly used SNMP protocol, each pMeasure
node can potentially act as the console, sending tasks
to other pMeasure nodes so that the activities of each

A Campus NetworkA Campus Network

Fig. 9. pMeasure Systems That Monitors a Campus Network

subnetwork, as well as the path characteristics between
each subnetworks, can be monitored regularly. With this
pMeasure system, a more comprehensive view of the
campus network can be created and faults can be tracked
down more efficiently.

V. CONCLUSIONS

pMeasure is a measurement tool that is built on
top of Pastry, a Peer-to-Peer network substrate. This
paper describes its design and evaluates it in terms
of the injected traffic overhead, the required secondary

6



storage, the consumed CPU cycles and the allocated
main memory. A overview of how the current version of
pMeasure can be used, along with the added values, is
given subsequently. The current version of pMeasure can
accomplish active measurements such as delay, connec-
tivity, and trace route. Some primitive passive monitoring
tasks can be conducted too. In future versions, tools such
as RRDTool [9] will be employed to generate graphical
representations of the measurement results and head
information for other protocols such as ICMP will be
captured as well. In addition, future versions will support
other popular platforms such as Linux and Solaris.

REFERENCES

[1] S. Srinivasan and E. Zegura, “Network measurement as a coop-
erative enterprise,” inLecture Notes In Computer Science, Peter
Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron, Eds.
March 2002, pp. 166 – 177, Springer-Verlag London, UK.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems,”
in IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), November 2001.

[3] Loris Degioanni, Development of an Architecture for Packet
Capture and Network Traffic Analysis, Ph.D. thesis, Politecnico
Di Torino, Turin, Italy, March 2000.

[4] G. Almes, S. Kalidindi, and M. Zekauskas, “A one-way delay
metric for ippm,” RFC 2679, September 1999.

[5] G. Almes, S. Kalidindi, and M. Zekauskas, “A round-trip delay
metric for ippm,” RFC 2681, September 1999.

[6] J. Mahdavi and V. Paxson, “Ippm metrics for measuring connec-
tivity,” RFC 2678, September 1999.

[7] V. Jacobson, “Traceroute software,” Available from
ftp://ftp.ee.lbl.gov/pub/traceroute.tar.Z, December 1988.

[8] YourKit LLC, “Yourkit java profiler, version 2.5,” Available from
http://www.yourkit.com/home/index.jsp, May 2004.

[9] Tobi Oetiker, “Rrdtool: Round robin database tool,” Available
from http://people.ee.ethz.ch/ oetiker/webtools/rrdtool/, 1999.

7


