QoS-Aware Service Composition in Large Scale
Multi-Domain Networks

Jin Xiao Raouf Boutaba

School of Computer Science School of Computer Science

University of Waterloo University of Waterloo

200 University Ave. W. 200 University Ave. W.

Waterloo, ON, Canada Waterloo, ON, Canada

Jj2xiao @bbcr.uwaterloo.ca rboutaba@bbcr.uwaterloo.ca
Abstract

Next generation networks are envisioned to support dynamic and customizable service
compositions at Internet scale. To facilitate the communication between distributed soft-
ware components, on-demand and QoS-aware network service composition across large
scale networks emerges as a key research challenge. This paper presents a fast QoS-aware
service composition algorithm for selecting a set of interconnected domains with specific
service classes. We further show how such algorithm can be used to support network adap-
tation and service mobility. In simulation studies performed on large scale networks, the
algorithm exhibits very high probability of finding the optimal solution within short exe-
cution time. In addition, we present a distributed service composition framework utilizing
this algorithm.

Keywords

Service composition and provisioning, network adaptation, multi-domain networks, end-
to-end QoS assurance

1. Introduction

Next generation networks will deliver digital information at far greater capability and
with far wider reachability than the Internet today. This advancement is envisioned to
support advanced and customizable services with stringent QoS requirements. Its evolu-
tion coincides with a paradigm shift in distributed applications: dynamic composition of
application/service from independent functional components discovered and composed
on demand. The proliferation of Grid [7] and Web Service [4] technologies exemplifies
this shift. To facilitate the communication between these components, on-demand
QoS-aware network service composition across large scale networks emerges as a key
research challenge.

To illustrate our problem, consider the following scenario: Alice in Canada wants to
make a call to Bob in UK via IP telephony. Because this is a business call, Alice would
like a digital copy of the conversation in Chinese for her associates in Hong Kong. A
possible method of facilitating this interaction is to use the Session Initiation Protocol
(SIP) [10]. Assuming both Alice and Bob have SIP-enabled phones, a SIP proxy that is
capable of forking calls to multi-parties must be discovered, as well as a SIP-enabled

0-7803-9087-3/05/$20.00 ©2005 IEEE

398 Session Nine QoS Composition and Adaptation

recording service, a voice to text convertor, and an English-Chinese translator. Three
processes must have taken place to grant Alice’s wish. First, the components required
to perform Alice’s action must be discovered. Second, these components must be
streamlined together and agree on communication protocols and data formats. Third,
network communication paths must be established and monitored for QoS performance.

The first step involves the discovery of service components suiting Alice’s criteria.
Service discovery protocols such as Service Location Protocol [9], Secure Service
Discovery Service [6], and works on Web Service discovery [1][11] could be used
to realize this process. The second step involves the selection and composition of
service components into a coherent unit. Recent research works on service composition
[81[17][23] and work flow languages, such as Web Service Flow Language (WSFL) [14]
and Business Process Execution Language for Web Service (BPEL4WS) [2], attempt to
address this issue. The third step involves the establishment and monitoring of network
paths interconnecting service components with QoS requirements. Due to the distributed
nature of these components, such a network path often traverses multiple administrative
domains (e.g. Alice is in Canada, Bob is in UK, and the proxy is in US). Given that
each domain has its own QoS provisioning scheme (e.g. DiffServ [3], IntServ [22],
etc.) and typically offers a set of QoS guarantees at varied prices, then contract-based
negotiations can be conducted between neighboring domains to obtain the necessary
QoS assurances in each domain and to permit traffic flow across domain boundaries
[12][16][20]. However, before this process takes place, a proceeding question must be
answered: what QoS assurance should be requested from each domain? This question
also has an important implication in DiffServ networks. If two neighboring DiffServ
domains each has a number of different QoS class descriptions, class remarking must
take place at the border. How should this remarking be determined? To address this
problem, it is perhaps better to answer a more general question: given point A and B in a
multi-domain network with many interconnecting domains, what is the best combination
of domains to choose, and what is the optimal allocation of QoS requirements among
them?

In this paper, we first propose a fast QoS-aware multi-domain service composition
algorithm. The QoS-aware aspect of the algorithm is two fold. One, the algorithm has
high probability of finding a minimal cost communication path (at the domain level) that
satisfies the QoS constraints requested by the service components. Two, on detection of
QoS violations in a subset of the chosen domains, the algorithm can quickly recompose
a new communication path that satisfies the original QoS requirements, while reuse
as much of the old path as possible. We further show that our adaptation scheme can
cope with service mobility. For scalability, our algorithm only relies on per-hop domain
knowledge that can be readily extracted from BGP [18] information. A simple service
composition framework utilizing this algorithm is then presented. The three major
functions of the framework are: domain discovery, service composition, and network
adaptation.

QoS-Aware Service Composition in Large Scale Multi-Domain Networks 399

The rest of the paper is organized as follows. Section 2 details the service composition
algorithm and section 3 covers the adaptation scheme. Section 4 presents our service
composition framework, followed by simulation studies in section 5. Section 6 presents
related works and section 7 concludes the paper.

2. Multi-Domain Service Composition

In this section, we first detail the creation of domain graph, which is an abstract
representation of the domain connectivity and their service classes. Each service class
is considered to have a set of QoS assurances and an associated cost. We focus on three
common QoS factors in this paper: delay, availability, and bandwidth. In doing so, we
reduce the problem to k-MCOP (k Multi-Constraint Optimization Problem), which is
known to be NP-Complete [21]. We then describe the rationale and the design of our
algorithm to solve this problem and discuss the runtime complexity.

2.1 Domain Graph Creation

Since an Autonomous System (AS) is the smallest granularity of administrative indepen-
dence, we consider each AS as a domain. In this sense, each domain exchanges traffic
flow with its neighboring domains via border gateways. We further consider each domain
to have a set of service classes, each with a set of QoS assurances and a price. A domain
without service class differentiations is assumed to provide a single set of QoS assurances
and price.

First, we can abstract the domain connectivity information as an undirected graph,
where the nodes of the graph represent the border gateway exchanges between neigh-
boring domains and the edges of the graph represent the connectivity between border
gateways in a domain. Figure 1 illustrates this transformation process. Inter-domain
routing policies can be incorporated during this process. With such abstraction, it
is natural to represent the QoS assurance set and its associated price as a set of
weights on each edge. For example, if domain C offers a QoS class with minimum
bandwidth BW¢, minimum availability Ao, maximum delay D¢, and price C¢, then
the edge connecting its border gateways is assigned the weight set { D¢, Cc, Ac, BW¢}.

A domain may offer a set of QoS service classes offerings based on its policies. To
incorporate these service classes into the domain graph, we perform edge expansion by
introducing a number of “service nodes” corresponding to the number of service classes.
One node of the original edge now connects to a service node via a new edge with a
weight set representing one service class, and the other node of the original edge connects
to the service node via a new edge with nil weight set {0, 0,1, co}. Figure 2 illustrates
the edge expansions involving domains 4, B and C.

We observe that a path from node S to node D on the expanded domain graph not
only represents a possible sequence of interconnecting domains between the two end

400 Session Nine QoS Composition and Adaptation

. Domain Border Node

@ service Class Node
O service End Point

Figure 1: Graph Representation of Do- Figure 2: Domain Graph with Service
main Connectivity Class Expansion

points, but also depicts a selection of respective service classes in these domains. By
traversing through all possible paths between S and D, we can exhaustively search all
possible service compositions between them. Thus, it is possible to formulate our service
composition problem as a graph search problem.

2.2 The Service Composition Algorithm

Our service composition problem can be stated as: given the expanded domain graph
G(V,E), find a path P = (w1, ...,wg,w € E) from node v to node vy such that the
end-to-end delay >",_; , D; is below delay constraint xp, the end-to-end availability
[L,—; j A is above availability constraint 4, the bandwidth BW of all edges in P is
above bandwidth constraint gy, and the cost Zi:l... i Ci is below cost constraint k.
Such a path is termed a feasible path. Then, a minimal feasible path is a feasible path
whose cost is minimal among all feasible paths. Assuming x4 does not equal to 1, and
kp and k¢ not equal to 0, We can rewrite the above constraints as:

Zi:lu.k D; 2i—1.6Ci

T = , T2 = (1)
KD Ko
1—1],— A; K
Ty = H1,1...k 1’7_4i= BW
1—ka BW;

Thus, the service composition problem can be formalized as:

Given an undirected graph G(V,E) and two nodes in V (vs and vq), where each edge
in E has weights {D,C, A, BW}, find a path P={wx,...,.wx, w € E} connecting vs and
va such that 71,72, 73 < 1, 7ay < 1 forall w;, andy",_; . C; is minimal.

This is equivalent to the k Multi-Constraint Optimization Problem (k-MCOP), which
is known to be NP-Complete [21]. A number of notable heuristics have been developed
for this problem [5][13][15], but with our graph constructs, they either do not scale
well with increasing number of nodes, or do not yield near optimal solutions. In this
subsection, we propose a new heuristic algorithm with fast performance and good

QoS-Aware Service Composition in Large Scale Multi-Domain Networks 401

optimality rate.

Most of the existing heuristics for k-MCOP utilizes the Bellman-Ford or Dijkstra’s
algorithm for its simplicity. Our heuristic favors the Dijkstra’s algorithm, as it relies on
per-hop information in its search process. Two major issues are encountered in utilizing
Dijkstra’s algorithm to solve the k-MCOP problem. One, Dijkstra’s algorithm uses
greedy search strategy without backtracking (hence the fast runtime bound). However,
for k-MCOP, it is often the case that the minimal cost path will violate one or more
constraints that forces the algorithm to backtrack. Two, if a mapping function is used
to transform the k weights into a single value, it is difficult to ensure the following
requirements: a) the function produces smaller values for all feasible paths than the
values it produces for infeasible paths. b) a path that minimizes such mapped value is
also a minimal cost path.

Let H(D,C, A) be a mapping function that satisfies requirement a), our algorithm
first runs Dijkstra’s algorithm from v4 to vs by minimizing H(D, C, A). The purpose of
this reverse search step is to determine whether there is a feasible path from every node
v; to vq. We denote this step as MC_Search. Then, we run the Dijkstra’s algorithm from
v, to vg by minimizing the cost. However, we include a node v; on the shortest path if
and only if the entire path from v, to v4 through v; is a feasible path. Such look ahead is
possible as MC_Search provides this feasibility information from v; to v4. This prevents
our algorithm from following a shortest path that would result in constraint violations
at a later point along the path. We denote this cost minimization step as MIN_Search.
MIN _Search also removes requirement b) from H (D, C, A). For the remainder of this
subsection, we first develop the mapping function H(D,C, A), and then present the
MC_Search and MIN_Search functions.

The uniform transformation of constraint conditions (as conducted in Equations 1
yields an interesting property when subject to the following non-linear function:
T-Ti=1...k 40 x

+() 2
KD ko 1—rky

H*(D, C, A) = (Zizl...k D > 4 (Zz‘:l...k Ci)

When) is set to a large constant value, H* (D, C, A) will likely return a value no
greater than 3 when each of the weights are below 1 (i.e. a feasible path). This property
becomes more pronounced when A is taken to co. H*(D,C, A) will return no greater
than 3 when none of the weights violates constraint and return co otherwise. Such non-
linear function is the basis for a number of k-MCOP heuristics [13][15]. It is found that
the maximization function exhibits similar characteristics [13] and we define our mapping
function H(D, C, A) accordingly:

YTi=1..kPi Xi=1.6% 1-Ili=1..k4

H(D, C, A) = max(,
KD ko 1—ky

) 3)

H(D,C, A) will be no greater than 1 when all of the weights are below constraints.
Furthermore, the value will always reflect the largest weight value in the set (i.e. closest
to the constraint). This additional property is very useful in a greedy search strategy as it

402

Session Nine

QoS Composition and Adaptation

MC_Search{G=(V E), ¥4, Kp, Ka, Kc, Kew) MC_Search_Update(v;, v., Kp, Ka, Kc, E(vi ¥, T)

7 Val = o, Vol = 1, ¥q Wip, Yo Wi = 0; 7 letv; he a temporary node;

ZP={}T = {vah 2 Wedilp = Vol + BV Vo) D

SwhileT 7100 3 Vil = Vi Wia ™ E(V o)A

4 v, = min{v.r), where v; are nodes in T, s

5 t_list={neighbars of vo} AP, 5 V('rg ma;(vcw ® h(%-v AW 1Ka) Vel),

6 foreach node v int_list de b4 +WDIRD, A AdVERTRCL

7 If E(vi o) BW 2 Kay then & if v, natin T then

8 MC_ Search_Update(v, v, Kp, ka, Kc, Eviva), T), 7ooaddvito T

9 end if 8 Vih =V Vilip = Ve Wp, ViWa T Vel VNG = Ve g
70 end for 9 else if w.r < vi.rthen
f4 remove v, from T and add v, to P; FO VTS VAT Vi = VWi, Vi W = Ve W, YiNG = Yy e
72 end while 77 end if

Figure 3: MC_Search function Figure 4: MC _Search_Update function

MIN_SearchiG=("E), ¥, ko, Ka, Kc, Kew) MIN_Search_Update(v;, v, kp, K, ki, E{vive), T)
v =i vof=0,vohp =0,voha=1; 7 letw be a temporary node;
2P={}T=1{} 2 whp =vehp & E(vi ve).D;

3 while T#{} de 3 weha = veha T Blvive) A
4 v = min(v B, where v are nodes in T; 4 vl = vefe + Epvive).Ci
5 t_list = {neighbors of vo \ P & i (vihp +viwp) = Kp OF (viha ™ viwa) < ks then
& forcach noce v int_list de '; en;xEti?m‘
7 if Efvi,vo) BW > Kews then 8 ifvinatin T then
a8 MIN_ Search Update(v o, ko, ka, kg, E(vivg), T); 9 addwinT
; it T
s end if 10 il =ve, i =W o = Yo, vha = vy

70 end fer 17 else if wf < v, then

74 remove v, from T and add v, to P; 12wl = v, vik = vihp = Vi, ohe = viha)

72 end while 13 end if

Figure 5: MIN _Search function Figure 6: MIN_Search_Update function

attempts to select paths with good overall QoS values.

The MC_Search function is presented in Figure 3 and 4. It tries to minimize the highest
weight from each node v; to vg. Each node keeps track of the following information:
the maximum weight r of the minimal path from v; to vg, the delay weight wp, the
availability weight w4 and the cost we of the path. The w weights are also used to
compute complete path information in the MIN _Search function.

The MIN_Search function (Figure 5) is identical to the MC_Search function. Each
node v; keeps track of the cost v;.f of a minimal feasible path from v, to v;, the
predecessor v;.l of v; on the said path, the delay v;.hp of the path, and the availability
v;.h4 of the path. The function tries to find the minimal feasible path from v, to vg.
The MIN_Search_Update function (Figure 6) ensures only foreseeable feasible paths are
explored.

Now, we present the service composition algorithm (Figure 7) that utilizes the
MC_Search and MIN_Search functions. The algorithm terminates early if MC_Search
does not return a feasible path. Otherwise, the algorithm will optimize on such a feasi-
ble path p using MIN_Search, which yields a feasible path p* with cost at least as low as p.

Our service composition algorithm has a runtime of O(m), where m is the total
number of edges on the expanded domain graph. This is proportional to the total number
of service classes in the domains interconnecting vs and vg4. In densely connected domain

QoS-Aware Service Composition in Large Scale Multi-Domain Networks 403

Service_Composition(G=% E} v., ¥4, Kp, Ka, Ko, Kew)
7 MEC_Search(G=["E}, ¥4, kp, ks, K, Koud,
2 ifv.r = 1 then
3 return nil; #nofeasiale path
4 end if
5 MIN_Search(G=[v E}, v, ko, ks, Kc, Ko,
& return the path by fallowing v,

Figure 7: The Service Composition Algorithm

graphs, the runtime is upper-bounded by O(n?), where n is the number of nodes on the
expanded domain graph. The effectiveness and efficiency of our service composition
algorithm is demonstrated in Section 5.

3. Network Adaptation and Mobility Support

Network performance may vary significantly over time. Even with the best service
assurance scheme, one or more domains carrying the service traffic may fail to deliver
their promised QoS performance during the course of a service session. When such
an event arises, the network should perform self-adaptation by seeking an alternative
communication path that satisfies the original QoS requirements, while causing as little
service disturbance as possible. Based on our service composition algorithm, we present
a simple network adaptation algorithm. The objective is to find a minimal cost alternative
path p,e. that utilizes as much of the old path p,;4 as possible.

SC_Adaptation(G=("E}, Dau, ¥z, ¥4, K, Ka, Ko, Kew)
7 setcost of each edge in peg to O,
2 for each domain travesed by p,y do
3 set cost of other edges in the domain to the switching cost,
4 end for
5 Service_Composition(G={\/ E], Vs, ¥y, Kp, Ka, Ko, Kew),

Figure 8: The Network Adaptation Algorithm

The algorithm first updates the edge weights on the expanded domain graph to reflect
the new domain service conditions. Then, for each domain traversed by p,;4, set the cost
of the edge in p,iq (i.e. the chosen service class in the domain) to 0, and set the cost of
the other edges (i.e. the other service classes in the domain) to the cost of switching to
that class. Run the service composition algorithm to obtain a new path.

Figure 8 details the algorithm SC_Adaptation. As the cost of the old paths are set to
0, the new alternative path favors path reuse when possible. The new path cost is the
additional cost that must be absorbed by the violating domains in order to maintain the
service. To cope with mobility, the new location of a service/user is updated on the graph

404 Session Nine QoS Composition and Adaptation

and then SC_Adaptation is run.

4. A Framework for Multi-Domain Service Composition

In this section, we present a simple service composition framework that utilizes our
algorithm (Figure 9). In our framework, each domain provides three basic services:
neighborhood service, provisioning service, and monitor service. The framework
assumes BGP is used for inter-domain routing. The neighborhood service periodically
pulls the BGP speakers to extract two pieces of information: the neighboring domains
it can send traffic to and the list of IP addresses that can be reached via each of these
domains. The neighborhood service further augments this information with domain
administrative policies and service class descriptions. The provisioning service provides
the capability for intra-domain provisioning via the local provisioning mechanism and
conduct inter-domain negotiation with the neighboring domains. With this construction,
domains can have different local provisioning mechanisms. In practice, we expect most
of these domains to employ DiffServ. Then the bandwidth broker based architecture can
be used to facilitate both the intra-domain provisioning and cross-domain negotiation
[19] with QoS demands given by the provisioning service. Such domain provisioning
independence also grants each domain with autonomy in conducting its own resource
management, QoS-based admission control, and pricing strategies. The monitoring
service is tasked with the monitoring of QoS performance at the domain level. It achieves
this goal via an array of QoS monitors installed near network border gateways and at the
service components. We only expect the monitoring to be “coarsely grained”, in that only
QoS performance across an entire domain (or from the service component to the edge of
its home domain) is monitored and only for each service class (rather than per flow).

The service composition framework has three functions: domain discovery, ser-
vice composition, and network adaptation. The domain discovery function provides
information on domain connectivity and service class descriptions by contacting the
neighborhood services on per domain basis. It realizes step 5 of the MC_Search and
MIN _Search functions. The service composition function first runs our service compo-
sition algorithm to obtain a feasible path consists of the list of connected domains and
their chosen service classes. Then it contacts the provisioning function of each chosen
domain to perform the actual provisioning activities concurrently. Finally, it initiates
an instance of the network adaptation function for the path. The network adaptation
function monitors an end-to-end communication path for QoS violations. It fulfills this
role by subscribing to a set of monitoring services along the path and supply them with
the QoS thresholds for each domain. If the QoS performance of a particular domain is
within € percent of the domain thresholds, the network adaptation function is notified and
the adaptation algorithm is run to obtain a new communication path. The provisioning
activity is not carried out until the QoS constraint has been violated, at which point the
violating domain is asked to accept the additional cost of the path switch. If permitted,
the provisioning activities are performed by the service provisioning function. In case

QoS-Aware Service Composition in Large Scale Multi-Domain Networks 405

@ 4—»‘ Service Composition Framework |
Semice Agent
‘ Darmain Discnvery” Carmposition Fum:mn” Adaptation ‘

~7

Neighberhood| Monitar

Service

BGP Speaker
Border Gateways

Domain Policies

e()]a

QoS Monitor

Figure 9: Framework for Multi-Domain Service Composition

of service mobility, the network adaptation function is activated when it is notified of a
component’s change of location.

When a request for a network communication path is made to the service compo-
sition framework, a service agent embedding the three functions is instantiated for the
requestor. There is no central unit of processing or information storage in the framework,
and no single entity holds global knowledge of the domain connectivity or network
states. Furthermore, each domain retains its own administrative independence and is not
required to share any sub-domain infrastructural or operational information at the domain
level.

5. Simulation Studies

In this section, we compare the performance of our service composition algorithm (de-
noted as SC) with two other algorithms with similar runtime. The first algorithm (denoted
as Korkmaz) is a well known k-MCOP heuristic developed by Korkmaz and Krunz [13].
The second algorithm (denoted as SC-SON) is used in the service composition scheme
proposed by Gu et. al. [8]. Both algorithms have good runtime performance and high
success rate of finding a feasible service composition. We compare these algorithms in
terms of success rate and runtime speed, the path cost of the solutions, and the optimality
of the solutions.

For simulation setup, we constructed a domain graph based roughly on the Ca-
ble&Wireless network topology in the US and UK (Figure 10). On this graph, the
edges with boxes are domains offering three service classes, while the other edges are

406 Session Nine QoS Composition and Adaptation

Wakmaz
Seatle —s¢
%'6‘_ 2 ! SC-SON
i
i ! [
i
:

)
London

Figure 10: Domain Graph: Simulation
Topology Figure 11: Optimality Comparison

domains with single service class. Furthermore, each edge is assigned a weight set:
delay, cost, availability and available bandwidth. The value of available bandwidth is set
to 2Mb/s and the availability is a random value chosen between 0.990 and 0.998. The
delay (in ms) and cost values are also randomly determined from a range. The range is
dependent on the edge length, where longer edges have higher delay and cost ranges. The
three cross continental US links (in bold) are assigned relatively low delay ranges and
high cost ranges. In addition, for edges with multiple service classes, each class offers
progressively better QoS values at higher cost.

The simulations are performed with Redhat Linux 9 on a Pentium 4 1.4GHz PC
with 512MB memory. Given the constraint set {xq = 110ms, k. = 150, K, = 0.9,
kpw = 2Mb/s} and a random weight initialization on the graph, each algorithm is
required to find the minimal cost feasible path between the node in Seattle and the
node in London. As base case, depth-first search is performed to find the minimal cost
feasible path on the graph. Performance data are collected from 100 such runs. For all
of the runs, all three algorithms are able to return a feasible solution. The runtime of the
three algorithms are identically clocked at under 100ms, with the SC-SON algorithm
performing slightly better due to simpler implementation. In contrast, the depth first
search algorithm takes from 6 to 9 minutes to complete.

Figure 12 illustrates the path cost of the solutions under different delay constraints.
‘We observe in 12a, the cost of our solution is much lower than the cost of the Korkmaz
or SC-SON solutions. In fact, the optimal cost (solution of DFS) is not visible in 12a
because our solution finds this optimal cost most of the time. In Figure 12b, the delay
constraint is set to the delay of the optimal cost path. Our algorithm is able to return the
same optimal solution as in 12a. Finally, in Figure 12c, the delay constraint is set close
to the minimal path delay on the graph (from Seattle to London), our algorithm is still
able to return path with lower cost than the other two algorithms. However, the gap is not
as significant as in 12a and 12b, because with the reduction in number of feasible paths,
the margin for improvement is much smaller. Figure 12d presents the path delay of the

QoS-Aware Service Composition in Large Scale Multi-Domain Networks 407

10 K 110 !
!
100 1 N 100 J\ﬁ\ M*F lﬁ \ ﬂ V|
soly, o e D ST s P 4l HM\‘ mﬁ Hu[
LT A i bl
® N " Ll | T i
o |,h1 b R r'.‘]{‘ 3 ol \IH\ u‘
sl
I
n w w ‘ ‘ ‘
—5rs |0 Bl w8
— Korkmaz un #
-y
— - sCs0N o
110
100 h\/ A”Tll ”h‘
i | l‘k
S

cost

20 40 B0 80 100 1) 0 40 60 ao 100
run # run #

Figure 12: Performance Comparison

solutions from 12c. We observe that our algorithm is able to obtain near optimal cost by
finding paths whose delays are close to the delay constraint. In fact, the delay constraint
line (illustrated by dotted line) is hardly visible as our solution has path delay values
equal or close to the delay constraint values.

The optimality of the solutions from Figure 12a is plotted in Figure 11. Over the 100
runs, our algorithm is able to find the minimal cost feasible path 97% of the time, and
is always able to find a near optimal solution. In comparison, the Korkmaz and SC-SON
algorithms can find solutions whose path cost is 80% (on average) off the optimal path
cost. In the graph, the error percentage e is computed based on the marginal cost difference
between the optimal solution Cl,;,; and the solution obtained from the algorithms Clg0:

€ = (Caigo — Copt)/Copt “4)

Furthermore, for the Korkmaz and SC-SON algorithms, € varies significantly between
runs, ranging from 0.38 to 1.2.

To evaluate the performance of the network adaptation scheme, the path returned
by our composition algorithm is subjected to domain defection. Each edge along the
path has a 10% independent probability of defection. On average, a path consists
of 15 edges and each defective edge is assigned available bandwidth of OMb/s. The
network adaptation scheme is then performed in each run. The results show when the

408 Session Nine QoS Composition and Adaptation

number of defective domains is reasonable (i.e. up to 4 domains), our adaptation scheme
can reuse most of the old edges in the new path (69% or more). Even when subject
to high defection rate (6 to 7 domains), the scheme can still reuse 60% of the original path.

With comparable runtime performance to the Korkmaz and SC-SON algorithms,
our algorithm can find a service composition that satisfies the QoS constraints while
achieving cost minimization most of the time. As our algorithm uses a greedy cost
minimization strategy, the path cost generated by our solution is much lower than the
path cost generated by the other two algorithms. In addition, the network adaptation
scheme achieves relatively high path reuse rate, while still generating alternative feasible
paths with low path cost.

6. Related Works

Raman et. al. [17] presented a general framework for service composition across multiple
providers. They stress on the importance of inter-domain cooperations among service
providers and the need for performance aware service composition. In their reference
architecture, they envision the service composition to encompass both the application and
the connectivity planes wherein “end-to-end network with desirable properties” should
be constructed at the connectivity plane. The primary focus of our work is to enable
the creation of such communication paths, that can also self-adapt to varying network
conditions. Zeng et. al. [23] proposed a QoS-aware service composition scheme for web
services. They are concerned with finding the optimal service execution plan among the
set of candidate service components, while taking into account the QoS characteristics
of these components. The QoS attributes investigated in this work are software quality
oriented (e.g. execution duration, reputation, success rate, etc.). Similar in our work, they
pose the composition problem as a graph search problem, except their graph represents
the execution states of the service components. An integer programming technique
is proposed to solve this problem. The scheme does not scale well beyond 60 states.
Although titled “QoS-aware”, no QoS adaptation scheme is proposed at the software
level. Similarly, Gu et. al. [8] proposed a QoS-assured service composition mechanism
for Service Overlay Networks (SON). They attempt to find a feasible service component
flow via a linear multi-constraint mapping function. However, the search heuristic only
attempts to find a feasible path, rather than an optimal one. We compare the performance
of our search heuristic with theirs in Section 5. They also proposed a simple localized
recovery scheme to cope with QoS violations.

The k-MCOP problem is well studied in the literature, particularly in the context of
QoS routing. Chen and Nahrstedt [5] proposed an approximation algorithm for finding a
feasible path. Their algorithm involves mapping k£ — 1 real weights to k — 1 integers in the
range of 0 to z. A dynamic programming scheme is then used to obtain a feasible path.
The runtime complexity of their algorithm is O(22n?), where in practice = must be set to
a very large integer. The TAMCRA [15] algorithm attempts to find a feasible path without

QoS-Aware Service Composition in Large Scale Multi-Domain Networks 409

optimization. The work proposes to use non-linear k constraint mapping functions. The
design of our mapping function follows a similar idea. Korkmaz and Krunz [13] first
proposed a heuristic using two pass Dijkstra’s algorithm with look ahead. However, their
look ahead heuristic is overly simplistic and their minimization step does not yield near
optimal solutions. The performance of their heuristic is compared with others in Section 5.

7. Conclusion

In this paper, we investigated the composition of QoS-aware network communication
path across large scale multi-domain networks. In order to support dynamic service
composition, it is imperative to establish end-to-end QoS assured communication paths
between distributed service components, and to self-adapt to varying network conditions.
Given that each domain has its own QoS provisioning mechanisms and offers a set
of service classes, we formalize the problem as finding a selection of service classes
in interconnected domains between two service components, such that the end-to-end
QoS constraints are satisfied and the cost of the composition is minimal. Via domain
graph expansion technique, we reduce the problem to k-MCOP problem and developed
a fast search heuristic. Simulation studies show that our service composition algorithm
has very high probability of finding the optimal solution and generates solutions with
path cost much lower than those generated by the well known search heuristics today.
Furthermore, our algorithm only relies on per hop domain information obtainable from
BGP information. We further proposed a simple service composition framework that
utilizes this algorithm.

Our work lends itself to extensions in both the theoretical and the application
domains. On the theoretical side, further analysis and comparison should be conducted to
formally prove the optimality and effectiveness of our service composition scheme. On
the application side, a prototype implementation of the service composition framework
should be undertaken to evaluate the runtime performance and network cost of our
algorithm.

References

[1] Universal description, discovery and integration technical white paper. UDDI.org, September
2000.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business process
execution language for web service vl.1. IBM Technical White Paper, May 2003.
http://www.ibm.com/developerworks/library/ws-bpel/.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for
differentiated services. RFC2475, December 1998.

[4] D. Booth, H. Hass, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard. Web services architecture. W3C Working Group Note 11, February 2004.
http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/.

410

[51

[6]

(7]
(8]

(91
[10]
[11]

[12]

[13]
[14]
[15]

[16]

(171

(18]

[19]

[20]
[21]

[22]
(23]

Session Nine QoS Composition and Adaptation

S. Chen and K. Nahrstedt. On finding multi-constrained paths. In Proceedings of IEEE In-
ternational Conference on Communications (ICC98), volume 2, pages 8§74-879. IEEE, June
1998.

S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz. An architecture for
a secure service discovery service. In Proceedings of Fifth Annual International Conference
on Mobile Computing and Networks (MobiCom ’99). IEEE, August 1999.

I. Foster (Editor). The open grid service architecture, v1.0. Grid Forum OGSA Working
Group Draft, July 2004. http://forge.gridforum.org/projects/ogsa-wg.

X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward. QoS-assured service composition in managed
service overlay networks. In Proceedings of the 23rd International Conference on Distributed
Computing Systems. ACM, May 2003.

E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol v2. RFC2608,
June 1999.

M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session initiation protocol.
RFC2543, March 1999.

W. Hoschek. The web service discovery architecture. In Proceedings of ACM/IEEE Confer-
ence on Supercomputing 2002, 2002.

A. Keller, G. Kar, H. Ludwig, A. Dan, and J. L. Hellerstein. Managing dynamic services: A
contract based approach to a conceptual architecture. In Proceedings of IEEE/IFIP Network
Operations and Management Symposium 2002 (NOMS2002). IEEE/IFIP, April 2002.

T. Korkmaz and M. Krunz. Multi-constrained optimal path selection. In Proceedings of IEEE
INFOCOM 2001, volume 2, pages 834—843. IEEE, April 2001.

F. Leymann. Web service flow language (WSFL 1.0). IBM Software Group, May 2001.
http://www-3.ibm.com/software/ solutions/webservices/pdf/WSFL.pdf.

H. De Neve and P. Van Mieghem. A multiple quality of service routing algorithm for PNNI.
In Proceedings of the ATM Workshop, pages 324-328. IEEE, May 1998.

G. Piccinelli, C. Preist, and C. Bartolini. E-service composition: Supporting dynamic defini-
tion of process-oriented negotiation parameters. In Proceedings of 12th International Work-
shop on Database and Expert Systems Applications. IEEE, September 2001.

B. Raman, S. Agarwal, Y. Chen, M. Caesar, W. Cui, P. Johansson, K. Lai, T. Lavian, S. Machi-
raju, Z. Morley-Mao, G. Porter, T. Roscoe, M. Seshadri, J. S. Shih, K. Sklower, L. Subrama-
nian, T. Suzuki, S. Zhuang, A. D. Joseph, R. H. Katz, and 1. Stoica. The SAHARA model
for service composition across multiple providers. In Proceedings of the First International
Conference on Pervasive Computing. ACM, August 2002.

Y. Rekhter and P. Gross. Application of the border gateway protocol in the internet. RFC1772,
March 1995.

W. Rhee, J. Lee, M. Yang, I. Lee, J. Yu, and S. Kim. Dynamic provisioning mechanism
for heterogeneous QoS guarantee in differentiated service networks. In Proceedings of IEEE
International Conference on Communications 2003 (ICC03), volume 3, pages 1912-1916.
IEEE, May 2003.

M. Salle and C. Bartolini. Management by contract. In Proceedings of IEEE/IFIP Network
Operations and Management Symposium 2004 (NOMS2004). IEEE/IFIP, April 2004.

Z. Wang and J. Crowcroft. QoS routing for supporting resource reservation. /EEE Journal
on Selected Areas in Communication, 1996.

J. Wroclawski. The use of RSVP with IETF integratd services. RFC2210, September 1997.
L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-aware
middleware for web service composition. [EEE Transactions on Software Engineering,
30(5):311-327, May 2004.

