
1

OSDA: Open Service Discovery Architecture for
Cross-domain Service Discovery

Noura LIMAM∗, Joanna ZIEMBICKI∗, Reaz AHMED∗, Youssef IRAQI∗, Dennis Tianshu LI∗,
Raouf BOUTABA∗, Fernando CUERVO†

∗University of Waterloo. Waterloo, Ontario. Canada.
†Alcatel Interworking, Inc. Ottawa. Canada.

Abstract— Emerging service-oriented architectures are push-
ing towards on-demand and “on the fly” application and business
process composition. In order to support service composition, the
underlying infrastructure must provide a facility for on-demand
discovery of services and service components. Discovery be-
comes challenging when services span different networks and/or
discovery domains. For inter-domain discovery to be achieved
independently of domain-specific service discovery technologies, a
middleware is needed to interface between the different discovery
systems. In this paper, we present a novel Open Service Discovery
Architecture (OSDA) designed to serve as an efficient, scalable,
and programmable middleware for cross-domain discovery. We
demonstrate the implementation of OSDA using a set of mature
technologies.

I. I NTRODUCTION

The emergence of service-oriented architectures for en-
abling the composition of applications, business processes
and services, creates a rich breeding ground for widely-
distributed applications that span heterogeneous networks and
administrative domains.

Composing services on the fly requires an underlying ser-
vice infrastructure that provides devices and service compo-
nents with the ability to discover each other. Service discovery
technologies (e.g. SLP, Jini, UPnP, etc.) are good potential
candidates to serve as a basis for such an infrastructure.
However, the continuing proliferation of these inherently non-
interoperable technologies makes interaction between devices
and service components increasingly difficult, and hence ser-
vice discovery more complex.

The heterogeneity of competing discovery technologies cre-
ates an incentive for providing a middleware that would enable
interactions between service discovery systems. Such a mid-
dleware would allow network components under one domain
to discover components in other domains, while each domain
is controlled by a different service discovery technology.

Our proposal, the Open Service Discovery Architecture
(OSDA) federates service discovery technologies and pro-
vides a model for cross-technology service discovery. OSDA
achieves this goal by establishing an inter-domain model for
distributed information storage and querying, as well as a
unified information representation.

The remainder of the paper is organized as follows. Sec-
tion II summarizes related works and discusses the motivation
behind OSDA. In Section III we describe the high-level archi-
tecture design, while section IV presents a detailed specifica-
tion of the OSDA components. In the following Section V we

present our choice of implementation technologies and report
on the status of our implementation. Section VI concludes the
paper, discussing unsolved issues and future works.

II. RELATED WORKS

Over the past few years, many service discovery approaches
have been proposed by academia (INS [1], INS/Twine [2],
SSDS [3], Splendor [4] etc.) and industrial standardization
bodies (Bluetooth SDP [5], SLP [6], UPnP [7], Jini [8], Salu-
tation [9], UDDI [10]). Although they provide the same basic
functionality of service discovery, they differ significantly in
architecture, message exchange pattern, expected operating
environment (e.g. mobile vs stationary services, real-world
vs. web services, etc.), and service representation/description.
These differences make their interoperation difficult.

Jini

UPnP SLP

Twine

Bluetooth Salutation

�

�

�

� �

�

�

Fig. 1. Existing approaches for interworking service discovery technolo-
gies: (1) Bluetooth-UPnP [11], (2) Bluetooth-Salutation [12], (3) Bluetooth-
Jini [13], (4) Jini-UPnP [14], (5) Jini-SLP [15], (6) Jini-Twine [16],
(7) Salutation-SLP [17]

As shown in Figure 1, a number of works ([11], [12],
[13], [14], [15], [16] and [17]) have been conducted to
enable the interaction between two different service discovery
technologies. Each of these work employs a kind of “bridge”
for protocol and data conversion.

Koponen et. al. [15] have presented an architecture for
Jini and SLP interoperability. At the core of this architecture
are a service broker and an adapter. The adapter has two-
fold functionality: it acts as directory service (i.e. Directory
agent for SLP and Lookup service for Jini) and it registers
services in other domains with the local directory service. An
adapter captures local advertisements and forwards them to

2

the broker. The broker in turn registers these advertisements
with the directory service of each domain using the adapter
in respective domain. A client can discover services in remote
domains, simply by querying its local directory service. This
approach is not suitable for networks with a large number
of domains, due to two reasons. First, all advertisements are
mirrored in the directory service of each domain, which raises
a scalability issue. Second, the broker is a single point of
failure and performance bottleneck.

Another work [14] presents an architecture for interworking
Jini and UPnP, where virtual clients and services are placed
in each domain. For a service that is discovered by a virtual
client in one domain, a corresponding virtual service is created
in the other domain. The virtual service registers itself to Jini
Lookup Service (in Jini domain) or multicasts its existence
(in UPnP domain). A client can discover and access a service
in a remote domain using the virtual service present in its
own domain. This approach is not efficient for connecting a
large number of domains as all the services of all domains are
mirrored in each domain.

A different approach [16] for interworking Jini and Twine
adds a proxy component between both domains. The proxy
acts as a lookup service in the Jini domain and both as a
client and service in the Twine domain. It forwards both
advertisements and queries coming form the Jini domain to the
Twine domain. Hence, Jini services are registered in the Twine
domain, and while queries coming from Jini clients are solved
both in the Jini and Twine domains, queries coming from
Twine clients are resolved only in the Twine domain. Applying
such an approach to different discovery systems, for instance
UPnP instead of Twine, would assume that both domains are
part of the same network, for instance local area network.
Such an assumption is not suitable for service discovery in
wide-area networks.

In contrast to all the existing approaches to bridging
service discovery systems, OSDA can operate on multiple
domains with diverse discovery mechanisms, and can support
a large number of services/users participating over a wide-
area-network. For cross-technology service discovery, OSDA
uses an open and interoperable service description scheme.
OSDA is designed to be platform-independent, extensible and
fault tolerant, and provides straight-forward ways to introduce
access control policies.

III. O PEN SERVICE DISCOVERY ARCHITECTURE

In the remainder of the paper, a “domain” is defined as
a federation of network components (users and services)
controlled by a single service discovery technology. The main
motivation of our work is the need to federate users and
services spanning different domains whether they belong to
the same or different networks. To this end, we build on the
existing domain-specific discovery systems by providing the
following facilities:

• as an alternative to mirroring shared services or broad-
casting queries in all the involved domains and networks
(which do not scale with an increasing number of do-
mains and services), apeer-to-peer indexing overlayis

created as an inter-domain and inter-network space where
shared services are advertised and queries are solved.

• programmablebrokers are deployed in domains to act as
an interface between the intra-domain and inter-domain
discovery systems.

• as an alternative to converting service advertisements
to all involved service description schemes, aunified
service description schemeis used for the advertisement
of services in the inter-domain space.

We design our system as a pluggable solution that does not
require any change in the local discovery systems and that is
extensible to new participating domains.

A. High-level Architecture

In Figure 2 we present a high-level overview of OSDA.
We assume that service discovery components (user agents,
service agents and eventually service registries) are already
in place. Moreover, domains may deployPolicy Serversfor
controlling the propagation of service advertisements and
service queries outside the domain boundaries.

As stated before, we introduce in each domain one or more
than one service brokers and build a peer-to-peer indexing
network in the inter-domain space. The canonical setup would
involve one broker per domain and a one-to-one association
between brokers and peer indexing nodes, however, the archi-
tecture supports multiple brokers per domain and one-to-many,
also many-to-one, association between brokers and peers for
the sake of tolerance to broker and peer failures.

The following components are integral parts of our system:
• Service Broker: responsible for handling and processing

cross-domain advertisements and queries. It acts as an
interface between the local discovery systems and the
inter-domain discovery system. The broker can be divided
into two layers; a technology-dependent lower layer and
a technology-independent upper layer.
The technology-dependent layer (referred to asAdapter)
is the programmable part of OSDA. It abstracts the local
service discovery system by intercepting and processing
requests coming from User Agents and Service Agents
and converting advertisements and queries to a well-
defined service description and query language.
The technology-independent layer handles broker-to-peer
and broker-to-broker communication. It provides the nec-
essary interfaces for the broker to be accessed by the
entities involved in the inter-domain discovery process.
Note: Since there is a fairly clear separation between the
technology-dependent and the technology-independent
layers of the broker, we will occasionally and respectively
refer to them as two separate entities: theAdapterand the
Broker.

• Peer-to-peer Indexing Node: is responsible for distribut-
ing service information in the peer-to-peer overlay and al-
lowing inter-domain discovery. The peer-to-peer network
uses a Distributed Hash Table (DHT)-based architecture
to store service information and solve queries.

Our system supports the two main functions of a service
discovery system:advertisementandquerying. A brief outline

3

P2P Cross-Domain
Service Discovery

Domain C

Domain B

Domain A

P2P Indexing
Node

User Agent

Service
Broker

Peer
Communication

component
interaction

Service Agent

Policy Server

Service

Local Service
Registry

User

Domain-specific
component

Optional
component

Fig. 2. OSDA: High-Level Architecture

of these functions is given below, while a more detailed
description can be found in Section IV.

• Advertisement: The local advertisements that are allowed
by domain policies to be propagated in the inter-domain
system, are forwarded to the broker after being translated
into a common, well-defined service description format.
The broker then sends advertisements to the peer-to-
peer overlay, which distributes the service information
among selected nodes. Only a subset of the service
advertisement is propagated to the peer nodes; typically
a set of descriptive attributes of the service capabilities
along with the URL of the domain’s broker(s) responsible
for processing queries that relate to the advertised service.

• Querying: Querying in OSDA is a two-step process.
First, the query is translated to a common format, and
forwarded by the broker to the peer-to-peer overlay. The
broker receives back the set of broker URLs that have
been advertised along with the services matching the
query. Second, this same broker contacts one or more
brokers from the received list in order to retrieve the en-
tire information about the requested service, especially its
access point. This second step may require the contacted
broker to execute queries in the local discovery system.
Splitting up the querying process in this way allows the
domains to control which parts of service information
are advertised to the world at large, and which parts are
made available only to selected domains. It also allows
the domains to control the amount of data forwarded to
the peer-to-peer overlay by sending a single inter-domain
advertisement for a set of similar services.

The resulting architecture acts as a unifying “glue” that
connects diverse service discovery systems.

B. Service Description Scheme

Each service discovery system has its own way of describing
a service. For supporting interoperability among a variety
of service discovery systems, some means of vocabulary
translation is needed. Vocabulary translation can be carried out
directly from one technology to the other: a Jini advertisement
(or service description) can be converted to an equivalent SLP
advertisement and advertised in the SLP system. However such
a scheme would requireO(N2) mappings, where N is the
number of supported service discovery technologies. Clearly,
the preferred method would be to design an intermediate, uni-
fied scheme for inter-domain advertisements. In this case, an
advertisement from a particular domain can be translated to the
agreed inter-domain format and can then be advertised in an
other technology after another step of conversion. Because of
its expressive power and acceptance in the Internet community,
XML seems to be most appropriate as a basis for such a
format, while the selection of appropriate elements for the
XML description needs more detailed analysis of the existing
service discovery technologies.

To achieve this kind of interoperability, we propose a service
description schema that can interoperate with most of the
major service discovery systems. In this section we present
the Unified Service Description (USD), a schema from which
service templates can be derived and used as the commonly
agreed service templates.

It is worth noting that unlike the Web Service Description
Language (WSDL) used to describe and publish Web Services
in the UDDI system, the USD scheme can be mapped to any
service description scheme. Given that WSDL is restricted to
the representation of service interfaces and binding informa-
tion, it is definitely not suitable for carrying information about

4

Fig. 3. USD: Unified Service Description

service capabilities as required by other systems like SLP, Jini,
Twine, etc.

As shown in Figure 3, the USD scheme consists of two
major nested parts. The main envelope contains the meta-
information for the advertisement, such as the type, location,
expiry time and access information of the service. Thede-
scription component specifies the properties and capabilities
of the service itself.

Table I summarizes the fields contained in the USD scheme.
For better understanding of the discovery process, let us

focus on two key fields of the Unified Service Description:
serviceIDanddescription.

• serviceID: In OSDA, a service identifier consists typically
of two parts: a globally-unique domain identifier, and
a domain-unique service identifier. Together, these two
parts form a globally-unique identifier for each service,
obviating the need for a central naming authority that
assigns names to each participating service. The for-
mat of the service identifier is left up to the domain
administrator, giving each domain discretion in naming
its services. The domain identifier is more difficult to

define, since it must be globally unique. In the case where
“domain” means simply “the administrative domain”,
we recommend the use of DNS names. In other cases,
uniqueness can be accomplished by using a Universal
Unique Identifier (UUID) [18]. If a non-human-readable
domain identifier is used, such as the UUID, we rec-
ommend the use of thedomainNamefield to include a
human-readable domain name with the USD.

• description: OSDA supports any description schema (or
service template) provided that it is written in XML.
Typically, service templates are generated by service
providers and may be commonly used by a number of
service providers as the “standard” template for inter-
domain advertisements.

We additionally provide XML-based message formats for
global service discovery requests and responses.

IV. M ODULE SPECIFICATION

As described in Section III, OSDA is comprised of several
components. Each of these components consists, in turn, of
a number of smaller modules. The high-level objective of

5

Field Description

usdVersion Specifies the USD version from which the service template was derived

serviceSchema Refers to the XML Schema Definition (XSD) which serves as a template for the service description.

Version: specifies the version of the service template. It allows incremental upgrading of service descriptions with
backward compatibility

Type: a gross category of the service referring to the service template

Location: a URI specifying the location of the service template XSD document

serviceID The service identifier used to globally and uniquely identify a service. It contains the following information:

domainID: unique identifier for the domain (can be non-human readable)

domainName: human-friendly domain name supplied by the system administrator

localID: the name used to uniquely identify a service within a domain

expiryTime The time when an advertisement expires. It consists of two fields:

goodAfter: time by which the advertisement starts to be valid

goodBefore: time by which the advertisement is no longer valid

scope may contain (a reference) the list of domains that are allowed to discover the service. It allows domain-level access
control for broker-to-broker communication

description The capability description of a service. It is a set of attribute-value pairs in a hierarchical relationship. We propose the
use of XML Schema Definition (XSD) for describing the capability template (analogous to the service template in SLP
or UPnP).

accessInfo A URL that can be used to invoke a service. The URL may point to a static document (e.g. WSDL document) that
describes the interfaces to access the service, or embed the request needed for obtaining the service access point. The
URL may also point to an intermediate entity (e.g. proxy) that mediates the invocation syntax and semantics.

payload Used to provide the client with the original description of a discovered service as advertised in its domain. The payload
information consists of two components:

technology refers to the local discovery technology (e.g. Jini, SLP, etc.)

advertisement the description of the service as advertised in its domain

The payload information may allow a client aware of a specific technology to perform technology-specific operations
on the discovered service.

TABLE I

UNIFIED SERVICE DESCRIPTION

the design of OSDA modules is maximizing the following
properties:
• Modularity: clean separation of responsibilities between

components, allowing a reduced maintenance effort,
• Scalability: support an increasing number of service

advertisement and discovery requests across multiple
domains,

• Reusability: clean identification of functionalities for each
component in order to reduce code duplication and to
create reusable components.

In the following section, we will examine the module-
level design of OSDA (see Figure 4), by explaining the
functionalities and interfaces of the individual modules.

A. Adapter modules

The Adapter is composed of the following four modules:
the Registration Advertisement Handler, the Discovery
Request Handler, the Directory Handlerand theConverter.

1) Registration Advertisement Handler
The Registration Advertisement Handler is responsible
for processing advertisement requests coming from local
Service Agents. Upon interception of an advertisement,
the Registration Advertisement Handler contacts the
policy server (if present) so that related domain poli-
cies are applied. If the advertisement is allowed to be

propagated in the inter-domain discovery system then
the Advertisement Registration Handler first converts it
to the USD format and then submits it to the Broker’s
Advertisement Propagator.
This process is illustrated in Figure 5. Note that in this
example, the policing step is omitted.

2) Discovery Request Handler
This module is responsible for intercepting and handling
service discovery requests. It steers queries either to
the local or global discovery systems according to the
the domain policies. If a service discovery request is
allowed to be propagated to the inter-domain discovery
system, it is first converted to the USD-based query
format, and then submitted to the Broker’s Global
Discovery Handler (see Figure 6). Similarly, upon
reception of a response to a query, the response is
first converted to the local description format and then
forwarded to the User Agent that generated the query
(see Figure 7).

3) Directory Handler
The Directory Handler is responsible for handling
Broker’s service discovery requests in the second
step of the querying process (see Section III). It
takes care of converting queries into the local query

6

Advertisement

Registration
Advert. Handler

Directory
Handler

Discovery Request Handler

Converter

Query

Peer

Broker

Adapter

DA

UA SA
Policy Server

Bootstrap
ModuleIndex

Records

Advertisement
Propagator

2

Broker Request
Handler

4

Peering
Module

Index Mapping
Module

5

Peering
Module

6

Domain

Boundaries
1

Local Discovery
Handler

2

Local Discovery
Handler

2
Global Discovery

Handler
1Global Discovery

Handler

3
4

4

6

Query Interface

Advertisement Interface

Generic Response Interface

Generic Request Interface

Indexing Interface

Peering Interface

Peer Request
Handler

6

Conversion Interface0

1

2

3

4

5

6

0

2

QueryResponse
Response

Optional Component

Fig. 4. OSDA: Architecture Specification

format and generating discovery requests in the
local discovery system (see Figure 7). The Directory
Handler implements a User Agent interface; generated
queries are either sent to the service repository or
multicasted/brodcasted over the network depending on
the discovery mechanism deployed in the domain.

4) Converter
The Converter module is used to convert queries and
service descriptions into a USD-based format, or from
the USD-format to the local format. A mapping between
local service templates and USD templates as well as
a mapping between the local query format and the
Unified Query format are both required in the conversion
process.

B. Broker modules

The Broker is responsible for handling cross-domain
advertisement and service discovery requests. It provides
well-defined interfaces that are invoked to post requests
and responses. The broker is composed of the following
three modules:Advertisement Propagator, Global Discovery
Handler andLocal Discovery Handler.

1) Advertisement Propagator
The Advertisement Propagator is responsible for
propagating advertisements to a peer-to-peer indexing
node (see Figure 5).

2) Global Discovery Handler
This module is responsible for processing inter-domain
service discovery requests. As stated in Section III,

inter-domain service discovery is achieved in two steps.
In the first step (see Figure 6), the Global Discovery
Handler is responsible of the propagation of service
discovery requests to the peer-to-peer network. In the
next step (see Figure 7), after receiving a list partial
service descriptions with associated brokers, the Global
Discovery Handler sends the same request to one or
more than one broker is the list. A selection mechanism
over the received list may be implemented. Responses
from the contacted brokers will contain the USD of
services that match the discovery request.
It is worth noting that the number of contacted brokers
influences both the inter-domain query overhead and
the completeness of the query result.

3) Local Discovery Handler
The Local Discovery Handler is responsible for locally
processing the requests sent by remote Global Discovery
Handlers. It sends queries embedded in the received
requests to the Directory Handler in order to resolve
them into the USDs of matching services. USDs are sent
back to the Global Discovery Handler that generated the
request.

C. Peer node modules

The network of OSDA peer nodes forms a distributed hash
table. The nodes are responsible for storing index records
corresponding to previous inter-domain advertisements, and
for solving cross-domain queries. A peer node is composed
of a Broker Request Handler, an Index Mapping Module, a
Peering Module, a Peer Request Handlerand a Bootstrap

7

Service Registration
Advertisement

Handler

Index
Mapping
Module

Local Service
Registry

Broker
Request
Handler

Converter Advertisement
Propagator

Local service registration

.convert (localServiceDescription,code1)

relay

USD Conversion

.request (advertisement)

Put in the unified message
format, add Broker URI

Peering
Module

Peering
Module

Peer
Request
Handler

Extract indexing data

.index (data)

key hash

.request (key, advertisement)

…

Routing

.request (key, advertisement)

Generate
index record

Registration

Index Record
Database

.advertise (USD)

Peer 1 Peer 2

Fig. 5. Sequence Diagram: Service Advertisement

User Discovery
Request
Handler

Index
Mapping
Module

Local Service
Registry

Broker
Request
Handler

Converter Global
Discovery
Handler

Local service discovery

.convert (serviceRequest,code2)
relay

USD-Query Conversion

.request (query)

Put in the unified message
format

Peering
Module

Peering
Module

Peer
Request
Handler

Extract indexing data

.index (data)

key hash

.request (key, query)

…

.request (key, query)
Convert to
expected query
format

Index Record
Database

.query (USD-Query,contactInformation)

Routing

.respond (response)

Wrap
Indexrecords

Query

Peer 1 Peer 2

Fig. 6. Sequence Diagram: Service Discovery, Step1

Module.

1) Broker Request Handler
The Broker Request Handler is the access point to
the peer-to-peer network. It intercepts and processes

inter-domain advertisement and query requests sent
by Brokers and then directs them in the peer-to-peer
network.

2) Index Mapping Module

8

User Discovery
Request
Handler

Converter

.convert (USD,code4)

localServiceDescription

.request (query)

…

.query (USD-Query)

.convert (USD-Query,code3)

localQuery Conversion

.convert (LocalSrvDescription,code1)

USD

Local Query

Conversion

.respond (USD)

.respond (response)

Extract USD-Query

extract
(USD, contactInformation)

.respond (USD,contactInformation)

Local Response

Conversion

Global
Discovery
Handler

Broker 1
Local

Discovery
Handler

Directory
Handler

Converter Local Service
Registry

Broker 2

Put in the unified
message format

Extract Broker URI

Fig. 7. Sequence Diagram: Service Discovery, Step2

The Index Mapping Module associates index keys to
the data that is stored in the peer-to-peer network using
a hash function.

3) Peering Module
Each peer in the peer-to-peer overlay is responsible for
a set of keys. Upon receiving a key-request pair, the
Peering Module routes the request to the appropriate
peer. If the given key is one of this peer’s own keys,
the key-request pair is passed to the local Peer Request
Handler.

4) Peer Request Handler
A peer-to-peer node maintains a database which asso-
ciates each hash key with one or more than one index
records.
Upon receiving a request-key pair, the Peer Request
Handler either executes the requested query or stores
the requested advertisement in the index record database
within the set of index records associated with the
given key.

The advertisements stored in the peer-to-peer network
are soft-state: each stored index record contains the
information about its lifetime. While the advertisement
renewal process is handled by the Discovery Request
Handler in the domain level, cleaning the peer database
from expired index records must be handled by the Peer
Request Handler if not supported by the used database
management system.

5) Bootstrap Module
The Bootstrap Module is responsible for joining the
peer-to-peer network. The join process is specific to the
DHT architecture used in the peer-to-peer network.

It is worth noting that the inter-component communication
is asynchronous and the modules are stateless, i.e. they do
not keep track of current requests. This enhances the system’s
tolerance to “short” failures or disconnections. For example,
if multiple brokers are known by an adapter, they can be
used interchangeably if one of them fails. Moreover, since
information about the source of the query is embedded in each
request, a broker can be restarted or replaced between sending
the query and receiving the responses. If a broker goes down
while waiting for query responses to arrive, those responses
can be sent to an alternate broker (if known), or to the
originating broker, if it becomes accessible in the meanwhile.

All OSDA components, and most of the modules are
designed to be loosely-bound. Contingent on access-control
policies, an adapter can communicate with any broker in its
domain (allowing several adapters per broker, or vice-versa),
while a broker can communicate with any peer indexing node.
Such flexibility and degree of fault tolerance is mandatory,
since OSDA is designed to be a core supporting function for
an Internet-scale network of resources and services.

V. I MPLEMENTATION AND TESTBED

A. Implementation Technologies

As the name of our architecture would imply, its main
goal is to be as open and universal as possible. We used this
motivation as a guide in our choice of tools and technologies

9

that would implement our system. We focused on well-known,
tested, freely available and open-source components such as
JXTA [19], Chord [20], JBoss [21], INS/Twine [22], Jetty
[23] and web-based technologies such as SOAP. Because
of the need for platform independence, we used Java as
the programming language, HTTP as the transport protocol
for broker-to-broker and broker-to-peer communications and
XML as the format for all communications. In addition to
greatly simplifying the implementation process (in comparison
to re-inventing the communication/data format wheel), using
primarily web-based technologies allowed us to create a flex-
ible and modular system. If needed, many of the components,
such as the index-record database, or the peer-to-peer routing
mechanism can be relatively easily replaced with other tech-
nologies. Moreover, because of the loose coupling between
components, the individual parts of the system can be flexibly
deployed on separate systems or even all on the same machine,
allowing OSDA to scale gracefully in face of increasing load.

• Broker: The broker functions as a standalone Enterprise
Java server. The broker modules are implemented as
stateless-session Enterprise Java Beans (EJBs) running in
the JBoss application server, and deployed as Web Ser-
vices. This way, the broker components may be invoked
either using RMI/IIOP or SOAP/HTTP. Currently, Local
and Global Discovery Handlers are accessed by peers
and other brokers, cross domain boundaries, through
SOAP/HTTP which offers many attractive advantages
like the support of security mechanisms and the ability
to work through firewalls.
One of the most interesting advantages of this implemen-
tation is that it does not require a local service discovery
system to be deployed in a domain. Because the Global
Discovery Handler is implemented as a Web Service, a
web client can be easily created and then used to discover
services in other domains.

• Peer Nodes:

1) Broker Request Handler: The Broker Request
Handler is implemented as a SOAP service and runs
on top of the lightweight Jetty HTTP server. We use
INS/Twine libraries to extract from advertisements
and queries the data that will be used to generate
indexing keys. The service capabilities part of adver-
tisements is split into strands, using the INS/Twine
model, and all strands are hashed into keys by the
Index Mapping Module (see Figure 8). Advertise-
ments are routed to and then stored/replicated in
each peer corresponding to one of the resulting hash
key. On the other hand, queries are forwarded to the
peer that is associated to the key resulting of the
longest strand.

2) Index Mapping Module: The Index Mapping Mod-
ule uses an MD5 [24] hash to turn strands into hash
keys later used for routing.

3) Peering Module: The Peering Module is imple-
mented as a JXTA peer to take advantage of the
bootstrapping, authentication, and secure communi-
cation facilities of the JXTA environment. Peering

<ServiceDescription type= printer:lpr >
<document-format-supported>

vnd.hp-PCL
</document-format-supported>

<printer-resolution-supported>
600> 600> dpi>

</printer-resolution-supported>
<copies-supported>

30
</copies-supported>

</ServiceDescription>

root

type
printer:lpr

document-format-supported

vnd.hp-PCL

K1 K3

Strands hashed into keys (Ki)

type
printer:lpr

document-format-supported

K2

type
printer:lpr

document-format-supported

vnd.hp-PCL

printer-resolution-supported

copies-supported
printer:lpr

600> 600> dpi> 30

Type

type
printer:lpr

printer-resolution-supported

600> 600> dpi>

type
printer:lpr

copies-supported

30

type
printer:lpr

printer-resolution-supported

type
printer:lpr

copies-supported

K4 K6K5

K7

Conversion in tree-like description

Fig. 8. Advertisement stranding

Modules are organized in a Chord ring, where Chord
is used to route requests between peers.
We chose Chord as a base for peer-to-peer network
because of its fault-tolerance and self-stabilizing
properties as well as its effective method of evenly
distributing information and query process load.
This design is necessary in dealing with the large
volume of advertisement messages and query oper-
ations expected in an Internet-scale network. Below,
we provide a short analysis of the query costs in the
OSDA implementation.
Unlike broadcast-based approaches, the Chord DHT
guarantees an upperbound ofO(log N) hops be-
tween peers for each routed request, whereN is
the number of peers in the overlay. After being
advertised locally, each advertisement generatesk
strands, and hencek keys to be distributed among
the peer-to-peer nodes, resulting inO(k log N) mes-
sages. The advertisement overhead therefore com-
bines the cost local advertisement with the peer-to-
peer advertisement overhead. Additionally, since the
peer-to-peer layer uses a soft-state approach, each
advertisement must be periodically re-advertised to
remain valid, which makes the total overhead de-
pendent on the frequency of advertisement renewal.
Because a query generates a single strand, the
peer-to-peer query overhead is lower atO(log N)
messages.

4) Peer Request Handler:The function of the Peer
Request Handler is to store and retrieve XML-based
index records to and from a database. For this
purpose, we used the eXist [25] open-source native-
XML database. Like JXTA, and our SOAP inter-
faces, eXist relies on the lightweight Jetty HTTP
server [23], and includes many useful features such
as a web interface and XPath/XQuery [26] process-

10

ing. While the canonical INS/Twine search would
return all service descriptions corresponding to the
given key, the Peer Request Handler goes a step
further by converting the original query (possibly
containing complex predicates – currently, XSet
[27] range predicates are supported) into an XQuery.
The XQuery is then performed against the index
records corresponding to the given key, returning
only the relevant set of matching documents.

B. Testbed and Implementation

Currently, our testbed consists of two Linux PCs, each
running a peer node, an SLP daemon and a broker. We have
implemented an SLP adapter which acts as a virtual SLP
Directory Agent for intercepting advertisements and queries
coming respectively from users and services. The intercepted
messages are then forwarded to both the real Directory Agent
and the broker. The SLP adapter also runs a process which
intercepts queries coming from the broker at the second step of
inter-domain queries. Responses to queries coming both from
the local Directory Agent and from the broker are grouped
and then forwarded to users. We have also implemented a
web portal for issuing advertisements and queries directly to
the broker. We use the portal for simulating a third domain.

We have validated the advertisement and inter-domain query
processes. Our prototype implementation so far has success-
fully combined a diverse set of technologies to implement end-
to-end inter-domain service discovery.

Because cross-domain service discovery is such a complex
topic, we were clearly not able to address all the related issues
in the current implementation. For example, in the current
implementation of OSDA a broker is statically configured
to contact a specific peer in the peer-to-peer network. We
intend to work on implementing a mechanism that allows
brokers to dynamically find a peer node in the peer-to-peer
network. Moreover, we intend to include more sophisticated
hash function in the peer-to-peer network that would enable
complex and simple advertisements/queries to be handled
equally. Currently, complex advertisements and queries are
simplified, for existing hash functions do not provide any
mapping between the hash of a range-value and the hash of
values contained in the range. For example, our DHT does
not support matching a query containingattribute > x to a
previous advertisement containingattribute = x + 1. This
functionality is instead provided at the database level, by
converting the previously-ignored range query predicates into
an XQuery, and using it to narrow down search results.

VI. CONCLUSIONS

In this paper, we have presented a new cross-domain service
discovery architecture: OSDA. It allows the service providers
and consumers seamless access to service and resource dis-
covery across domains using local discovery mechanisms. A
previous work [28] that consisted in an in-depth study of the
existing service discovery technologies and the requirements
for a large-scale, inter-domain service discovery system, has
served as guideline to the design of OSDA.

The proposed architecture is designed to be scalable, exten-
sible, efficient and robust. Its interoperation with local discov-
ery mechanisms is enabled through programmable components
(message interceptors and translators) and standalone brokers.
Because of the loosely coupled nature of OSDA components,
the system is able to evolve over time and gracefully recover
from faults. The use of DHT-based peer-to-peer overlay for
cross-domain discovery guarantees a bounded query response
time and can manage large volumes of service advertisement
and discovery operations. In our initial system prototyping, we
have succeeded in incorporating a set of mature technologies
in an end-to-end OSDA implementation. Although the full
implementation is not yet complete, the results are promising.
Using well-defined standard interfaces (i.e. EJBs, Web Service
and JXTA), communication protocols (i.e. SOAP and JXTA
end-point communication pipes), and unified data representa-
tion (i.e. XML for messages and service descriptions), we can
successfully bridge the differences among heterogeneous local
discovery systems to provide cross-domain service discovery.

In addition to working on completing the OSDA system
implementation, we are currently exploring the use of ontolo-
gies in defining and integrating service description vocabular-
ies. Using semantic web tools such as Resource Description
Framework (RDF) [29] and Web Ontology Language for
Services (OWL-S) [30] can help improve search correctness
(by ensuring that the search terms are relevant to the domain
of discourse through the use of URIs instead of keywords) and
search completeness (by exploiting the use of synonyms and
ontological relationships between search terms).

REFERENCES

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The
Design and Implementation of an Intentional Naming System,” in
Symposium on Operating Systems Principles, 1999, pp. 186–201.
[Online]. Available: citeseer.nj.nec.com/adjie-winoto99design.html

[2] M. Balazinska, H. Balakrishnan, and D. Karger, “INS/Twine: A scalable
peer-to-peer architecture for intentional resource discovery,” inProceed-
ings of the First International Conference on Pervasive Computing.
Springer-Verlag, 2002, pp. 195–210.

[3] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and
R. H. Katz, “An architecture for a secure service discovery service,”
in Mobile Computing and Networking, 1999, pp. 24–35. [Online].
Available: citeseer.ist.psu.edu/czerwinski99architecture.html

[4] F. Zhu, M. Mutka, , and L. Ni, “Splendor: A secure, private, and
location-aware service discovery protocol supporting mobile services,”
in Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications (PerCom03), March 2003, pp. 235–
242. [Online]. Available: http://www.cse.msu.edu/ zhufeng/splendor.pdf

[5] Bluetooth SIG, “Specification of the Bluetooth System, Vol. 1, Core,
Rev. 1.1,” Bluetooth SIG, Tech. Rep., 2001.

[6] E. Guttman, C. Perkins, J. Veizades, and M. Day, “RFC 2608: Service
location protocol, version 2,” 1999, status: PROPOSED STANDARD.
[Online]. Available: http://www.ietf.org/rfc/

[7] UPnP Forum, “UPnP device architecture 1.0,” May
2003. [Online]. Available: http://www.upnp.org/resources/documents/
CleanUPnPDA101-20031202s.pdf

[8] Sun Microsystems, “Jini Technology Architectural Overview,”
Sun Microsystem, Inc, Tech. Rep., 1999. [Online]. Available:
http://wwws.sun.com/software/jini/whitepapers/architecture.pdf

[9] Salutation Consortium, “Salutation architecture specification (part-1),”
June 1999. [Online]. Available: ftp://ftp.salutation.org/salute/

[10] UDDI Consortium, “UDDI Technical White Paper,” 2002. [Online].
Available: http://www.uddi.org/pubs/

[11] B. r. c. Palowireless, “Extended service discovery pro-
file for universal plug & play.” [Online]. Available:
http://www.palowireless.com/infotooth/tutorial/

11

[12] B. Miller, “Bluetooth whitepaper, mapping salutation archi-
tecture apis to bluetooth service discovery layer,” 1999,
document number 1.C.118/1.0, version 1.0. [Online]. Available:
http://www.salutation.org/whitepaper/BtoothMapping.PDF

[13] S. Kasper and L. Bhrer, “Jini discovers Bluetooth,” 2002, semester
Thesis SA-2002.30, Institut fr Technische Informatik und Kom-
munikationsnetze. [Online]. Available: http://www.tik.ee.ethz.ch/ beu-
tel/projects/sada/

[14] J. Allard, V. Chinta, S. Gundala, and G. R. III, “Jini meets upnp:
An architecture for jini/upnp interoperability,” department of Computer
Science, University of New Orleans.

[15] T. Koponen and T. Virtanen, “A service discovery: A
service broker approach,” inProceedings of the 37th Hawaii
International Conference on System Sciences, 2004. [Online]. Avail-
able: http://csdl.computer.org/comp/proceedings/hicss/2004/2056/09/
205690284b.pdf

[16] Steven R. Livingstone, “Service Discovery In Pervasive Systems,”
2003, the School of Information Technology and Electrical
Engineering, University of Queensland, Autralia. [Online]. Available:
http://innovexpo.itee.uq.edu.au/2003/exhibits/s370816/

[17] P. S. Pierre and T. Mori, “Salutation and SLP,” the Salutation Consor-
tium. [Online]. Available: http://www.salutation.org/techtalk/slp.htm

[18] P. J. Leach and R. Salz, “UUIDs and GUIDs,”
Feb. 1998, status: INTERNET-DRAFT. [Online]. Available:
hegel.ittc.ukans.edu/topics/internet/ internet-drafts/draft-l/ draft-leach-
uuids-guids-01.txt

[19] Project JXTA, “JXTA J2SE 2.2.1,” 2004. [Online]. Available:
http://platform.jxta.org/java/release/2004Q1Churrasco/releasenote.html

[20] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,”IEEE/ACM Transactions on Network-
ing (TON), vol. 11, no. 1, pp. 17–32, February 2003.

[21] JBoss Inc., “Professional Open Source from JBoss Inc.” 2004. [Online].
Available: http://www.jboss.com/

[22] MIT, “INS/Twine v2,” 2002. [Online]. Available:
http://nms.lcs.mit.edu/software/instwine/ins-2-0.tgz

[23] “Jetty java http servlet server.” [Online]. Available:
http://jetty.mortbay.org/jetty/

[24] R.Rivest, “RFC 1321: The MD5 Message-Digest Algorithm,” 1992.
[25] “eXist: Open source native xml database.” [Online]. Available:

http://exist.sourceforge.net/
[26] W. W. W. C. W3C, “Xquery,” 2004. [Online]. Available:

http://www.w3.org/XML/Query
[27] B. Zhao, “The Xset XML search engine and XBench XML query

benchmark,” University of California, Berkeley, Tech. Rep. UCB/CSD-
00-1112, 2000. [Online]. Available: citeseer.ist.psu.edu/zhao00xset.html

[28] R. Ahmed, R. Boutaba, F. Cuervo, Y. Iraqi, D. Li, N. Limam, J. Xiao,
and J. Ziembicki, “Service Discovery Protocols: A Comparative Study,”
to appear in Proceedings of IM 2005 (Application Session), Nice
(France), May 15-18, 2005.

[29] G. Klyne and J. J. Carrol, “Resource description framework (RDF):
Concepts and abstract syntax,” Feb. 2004. [Online]. Available:
http://www.w3.org/TR/rdf-concepts/

[30] D. M. et al, “OWL-S: Semantic markup for web services.” [Online].
Available: http://www.daml.org/services/owl-s/1.1/overview/

