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Abstract
Fault localization is a core element in fault management. Many fault reasoning techniques
use deterministic or probabilistic symptom-fault causality model for fault diagnoses and
localization. Symptom-Fault map is commonly used to describe Symptom-Fault causality
in fault reasoning. However, due to lost and spurious symptoms in fault reasoning systems
that passively collect symptoms, the performance and accuracy of the fault localization
can be significantly degraded. In this paper, we propose an extended Symptom-Fault-
Action model to incorporate actions into fault reasoning process to tackle the above prob-
lem. This technique is called Active Integrated fault Reasoning (AIR), which contains
three modules: fault reasoning, fidelity evaluation and action selection. Corresponding
fault reasoning and action selection algorithms are elaborated. Simulation study shows
both performance and accuracy of fault reasoning can be greatly improved by taking ac-
tions, especially when the rate of spurious and lost symptoms is high.
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1. INTRODUCTION
Fault localization is a basic component in fault management system because it identifies
the fault reason which can best explain the observed network disorders. Most fault rea-
soning algorithms use a bipartite directed acylic graph to describe the Symptom-Fault
correlation, which represents the causal relationship between each fault fi and a set of its
observed symptoms Sfi [4]. Symptom-Fault causality graph provides a vector of correla-
tion likelihood measure p(si|fi), to bind a fault fi to a set of its symptoms Sfi .
Two approaches are commonly used in fault reasoning and localization: passive di-

agnosis ([2], [4], [3], [7] and active probing ([6], [5], [1], [9]). In passive approach, all
symptoms are passively collected and then processed to infer the root faults. In active
approach, faults are detected by conducting a set of probing actions. Passive approach
causes less intrusiveness in management networks. However, it may take long time to
discover the root faults, particularly if symptom loss ratio is high. On the other hand, al-
though active probing approach is more efficient to identify faults quickly, probing might
cause significant overhead particularly in large-scale networks. In this paper, we propose
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Figure 1: Action-Symptom-Fault Model

a novel fault localization technique that integrates the advantage of both passive and ac-
tive monitoring into one framework, called Active Integrated fault Reasoning or AIR. In
our approach, if the passive reasoning is not sufficient to explain the problem, AIR selects
optimal probing actions to discover the most critical symptoms that are important to ex-
plain the problem but they have been lost or corrupted during passive fault reasoning. Our
approach significantly improves the performance of fault localization while minimizing
the intrusiveness of active fault reasoning.
AIR consists of three modules: Fault Reasoning (FR); Fidelity Evaluation (FE); and

Action Selection(AS). Fault reasoning module passively analyzes observed symptoms
and generates a fault hypothesis. The fault hypothesis is then sent to fidelity evaluation
module to verify if the fidelity value of the reasoning result is satisfactory. If the correlated
symptoms necessary to explain the fault hypothesis are observed (i.e. high fidelity), then
fault reasoning process terminates. Otherwise, a list of most likely unobserved symptoms
that can contribute to the fault hypothesis fidelity is sent to the action selection module,
which then performs selected actions to determine which symptoms has occurred but not
observed (i.e. lost) and accordingly adjust hypothesis fidelity value. If the new fidelity
value is satisfactory, then the reasoning process terminates; otherwise, the new symptom
evidence is fed into the fault reasoning module to create a new hypothesis. This process
is recursively invoked until a highly credible hypothesis is found.
The paper is organized as follows. In section 2, we discuss our research motivation

and the problem formalization. In section 3, we describe the components and algorithms
of AIR. In Section 4, we present a simulation study to evaluate AIR performance and
accuracy. In Section 5, related work is discussed. In section 6, we give our conclusion and
future work.

2. MOTIVATION AND PROBLEM FORMALIZATION
In general, active fault management does not scale well when number of managed nodes
or faults grow significantly in the network. In fact, some faults such as intermittent reach-
ability problem may not even be identified if only active fault management is used. How-
ever, this can be easily reported using passive fault management systems because agents
are configured to report abnormal system conditions or symptoms such as high average
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Notation Definition

Sfi a set of all symptoms caused by the fault fi
Fsi a set of all faults that might cause symptom si
SO a set of all observed symptoms so far
SOi a set of observed symptoms caused by fault fi
SUi a set of not-yet-observed (lost) symptoms caused by the fault fi
hi a set of faults that constitute a possible hypothesis that can explain SO
Φ a set of all different fault hypotheses, hi, that can explain SO
SN a set of correlated but not-yet-observed symptoms associated with any fault in a hypothesis
SV a subset of SN , which includes symptoms that their existence is confirmed
SU a subset of SN , which includes symptoms that their non-existence is confirmed

Figure 2: Active Integrated Fault Reasoning Notation

packet drop ratio. On the other hand, symptoms can be lost due to noisy or unreliable
communications channels, or they might be corrupted due to spurious (untrue) symptoms
generated as a result of malfunctioning agents or devices. This significantly reduces the
accuracy and the performance of passive fault localization. Only the integration of active
and passive reasoning can provide efficient fault localization solutions.
To incorporate actions into traditional Symptom-Fault model, we propose an extended

Symptom-Fault-Action model as shown in Fig. 1. In our model, actions are properly se-
lected probes or test transactions that are used to detect or verify the existence of observ-
able symptoms. Actions can simply include commonly used network utilities, like ping
and traceroute; or some proprietary fault management system, like SMRM [1]. We as-
sume that symptoms are verifiable, which means that, if the symptom ever occurred, we
could verify the symptom existence by executing some probing actions or checking the
system status such as system logs.
In this paper, we use F = {f1, f2, . . . , fn} to denote the fault set, and S =

{s1, s2, . . . , sm} to denote the symptom set that can be caused by one or multiple faults
in F . Causality matrix PF×S = {p(si|fj)} is used to define causal certainty between
fault fi(fi ∈ F ) and symptom si(si ∈ S). If p(si|fj) = 0 or 1 for all (i, j), we call
such causality model a deterministic model; otherwise, we call it a probabilistic model.
We also use A = {a1, . . . , ak} to denote the list of actions that can be used to ver-
ify symptom existence. We describe the relation between actions and symptoms using
Action Codebook represented as a bipartite graph as shown in Fig. 1. For example, the
symptom s1 can be verified using action a1 or a2. The Action Codebook can be defined
by network managers based on symptom type, the network topology, and the available
fault diagnostic tools. The extended Symptom-Fault-Action graph is viewed as a 5-tuple
(S,F,A,E1,E2), where fault set F , symptom set S, and action set A are three inde-
pendent vertex sets. Every edge in E1 connects a vertex in S and another vertex in F to
indicate causality relationship between symptoms and faults. Every edge inE2 connects a
vertex in A and another vertex in S to indicate the Action Codebook. For convenience, in
Fig. 2, we introduce the notations used in our discussion throughout this paper. The basic
Symptom-Fault-Action model can be described as the following:

• For every action, associate an action vertex ai, ai ∈ A;
• For every symptom, associate a symptom vertex si, si ∈ S;
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Figure 3: Active Action Integrated Fault Reasoning

• For every fault, associate a fault vertex fi, fi ∈ F ;
• For every fault fi, associate an edge to each si caused by this fault with a weight equal
to p(si|fi);

• For every action ai, associate an edge of weight equal to the action cost to each symp-
tom verifiable by this action.

The performance and accuracy are the two most important factors for evaluating fault
localization techniques. Performance is measured by fault detection time T , which is the
time between receiving the fault symptoms and identifying the root faults. The fault diag-
nostic accuracy depends on two factors: (1) the detection ratio (α), which is the ratio of
the number of true detected root faults (Fd is the total detected fault set) to the number of
actual occurred faults Fh, formally α = |Fd∩Fh|

|Fh| ; and (2) false positive ratio (β), which
is the ratio of the number of false reported faults to the total number of detected faults;
formally β = |Fd−Fd∩Fh|

|Fd| [4]. Therefore, the goal of any fault management system is to
increase α and reduce β in order to achieve high accurate fault reasoning results.
The task of the fault reasoning is to search for root faults in F based on the observed

symptoms SO. Our objective is to improve fault reasoning by minimizing the detection
time, T and the false positive ratio, β, and maximizing the detection ratio, α.
In order to develop this system, we have to address the following three problems: (1)

Given the Fault-Symptom correlation matrix and the set of observed symptoms (SO),
construct a set of the most possible hypotheses, Φ = {h1, h2, . . . , hp}, hi ⊆ F , that can
explain the current observed symptoms; (2) Given a set of possible hypotheses, find the
most credible hypothesis h, that can give the best explanation for the current observed
symptoms; (3) If the selected hypothesis does not satisfy fidelity requirement, then given
the unobserved symptoms SN and select the minimum-cost actions to search for an ac-
ceptable hypothesis. In the following, we will discuss the solution for each problem.
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3. ACTIVE INTEGRATED FAULT REASONING
The Active Integrated Fault Reasoning (AIR) process (Fig. 3) includes three functional
modules: Fault Reasoning (FR), Fidelity Evaluation (FE), and Action Selection (AS).
The Fault Reasoning module takes passively observed symptoms SO as input and re-
turns fault hypothesis set Φ as output. The fault hypothesis set Φ might include a set of
hypotheses (h1, h2, . . . , hn) where each one contains a set of faults that explains all ob-
served symptoms so far. Then, Φ is sent to the Fidelity Evaluation module to check if any
hypothesis hi (hi ∈ Φ) is satisfactory. If most correlated symptoms necessary to explain
the fault hypothesis hi are observed (i.e. high fidelity), then the Fault Reasoning process
terminates. Otherwise, a list of unobserved symptoms, SN , that contribute to explain the
fault hypothesis hi of the highest fidelity, is sent to the Action Selection module to de-
termine which symptoms have occurred. As a result, the fidelity value of hypothesis hi
is adjusted accordingly. The conducted actions return the test result with a set of existing
symptoms SV and non-existing symptoms SU . The corresponding fidelity value might be
increased or decreased based on the action return results. If the newly calculated fidelity is
satisfied, then the reasoning process terminates; otherwise, SO, SU are sent as new input
to the Fault Reasoning module to create a new hypothesis. This process is repeated until
a hypothesis with high fidelity is found. Fidelity calculation is explained later in this sec-
tion. In the following, we describe the three modules in detail, then discuss the complete
Active Integrated Fault Reasoning algorithm.
3.1 Heuristic Algorithm for Fault Reasoning
In the Fault Reasoning module, we use a contribution function, C(fi), as a criteria to
find faults that have the maximal contribution of the observed symptoms. In the proba-
bilistic model, symptom si can be caused by a set of faults fi, (fi ∈ Fsi) with different
possibilities p(si|fi) ∈ (0, 1]. We assume that the Symptom-Fault correlation model is
sufficient enough to neglect other undocumented faults (i.e., prior fault probability is very
low). Thus, we can also assume that symptom si will not occur if none of the faults in
Fsi happened. In other words, if si occurred, at least one fi (fi ∈ Fsi ) must have oc-
curred. However conditional probability p(si|fi) itself may not truly reflect the chance of
fault fi occurrence by observing symptom si. For example, in Fig. 1, by observing s1,
there are three possible scenarios: f1 happened, f2 happened or both happened. Based on
the heuristic assumption that the possibility of multiple faults happened simultaneously is
low, one of the faults (f1 or f2) should explain the occurrence of s1. In order to measure
the contribution of each fault fi to the creation of si, we normalize the conditional prob-
ability p(si|fi) to the normalized conditional probability p̂(si|fi) to reflect the relative
contribution of each fault fi to the observation of si.

p̂(si|fi) = p(si|fi)P
fi∈Fsi p(si|fi)

(1)

With p̂(si|fi), we can compute normalized posterior probability p̂(fi|si) as follows.

p̂(fi|si) = p̂(si|fi)p(fi)P
fi∈Fsi p̂(si|fi)p(fi)

(2)
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p̂(fi|si) shows the relative probability of fi happening by observing si. For example, in
Fig. 1, assuming all faults have the same prior probability, then p̂(f1|s1) = 0.9/(0.9 +
0.3) = 0.75 and p̂(f2|s1) = 0.3/(0.9+0.3) = 0.25. The following contribution function
C(fi) evaluates all contribution factors p̂(fi|si), si ∈ SOi with the observation SOi , and
decides which fi is the best candidate with maximum contribution value C(fi) to the
currently not yet explained symptoms.

C(fi) =

P
si∈SOi

p̂(fi|si)P
si∈Sfi

p̂(fi|si) (3)

Therefore, fault reasoning becomes a process of searching for the fault (fi) with max-
imum C(fi). This process continues until all observed symptoms are explained. The con-
tribution function C(fi) can be used for both deterministic and probabilistic model.
In the deterministic model, the more the number of symptoms observed, the stronger

the indication that the corresponding fault has occurred. Meanwhile, we should not ig-
nore the influence of prior fault probability p(fi), which represents long-term statistical
observation. Since p(si|fj) = 0 or 1 in the deterministic model, the normalized condi-
tional probability reflects the influence of prior probability of fault fi. Thus, the same
contribution function can seamlessly combine the effect of p(fi) and the ratio of

|SOi |
|Sfi |

together.
In the fault reasoning algorithm, first it finds the fault candidate set FC including all

faults that can explain at least one symptom si (si ∈ SO), then it calls the functionHU()
to generate and update the hypothesis set Φ until all observed symptoms SO can be ex-
plained. According to the contribution C(fi) of each fault fi (fi ∈ FC), algorithm 1
searches for the best explanation of SK , which is currently observed but not yet explained
symptom by the hypothesis hi (lines 2-12). Here SK = SO − ∪fi∈hiSOi and initially
SK = SO. If multiple faults have same contribution, multiple hypotheses will be gen-
erated (lines 13-17). The searching process (HU) will recursively run until all observed
symptoms explained (lines 18-24). Notice that only those hypotheses with minimum num-
ber of faults that cover all observed symptoms are included into Φ (lines 23-24).
The above Fault Reasoning algorithm can be applied to both deterministic and proba-

bilistic models with same contribution functionC(fi) but different conditional probability
p(si|fi).

3.2 Fidelity Evaluation of Fault Hypotheses
The fault hypotheses created by the Fault Reasoning algorithm may not accurately deter-
mine the root faults because of lost or spurious symptoms. The task of the Fidelity Eval-
uation is to measure the credibility of hypothesis created in the reasoning phase given the
corresponding observed symptoms. How to objectively evaluate the reasoning result is
crucial in fault localization systems.
We use the fidelity function FD(h) to measure the credibility of hypothesis h given

the symptom observation SO. We assume that the occurrence of each fault is independent.
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Algorithm 1 Hypothesis Updating Algorithm HU(h, SK , FP )
Input: hypothesis h, observed but uncovered symptom set SK , fault candidate set FP
Output: fault hypothesis set Φ
1: cmax = 0
2: for all fi ∈ FP do
3: if C(fi) > cmax then
4: cmax ← C(fi)
5: FS ← ∅
6: FS ← FS ∪ {fi}
7: else
8: if C(fi) = cmax then
9: FS ← FS ∪ {fi}
10: end if
11: end if
12: end for
13: for all fi ∈ FS do
14: hi ← h ∪ {fi}
15: SKi ← SK − SOi
16: FPi ← FP − {fi}
17: end for
18: for all SKi

= ∅ do
19: if SKi

= ∅ then
20: Φ← Φ ∪ {hi}
21: end if
22: end for
23: if Φ 6= ∅ then
24: return< Φ >
25: else
26: /* No hi can explain all SO*/
27: for all hi do
28: HU(hi, SKi

, FPi)
29: end for
30: end if

• For deterministic model:

FD(h) =

P
fi∈h |SOi |/|Sfi |

|h| (4)

• For probabilistic model:

FD(h) =

Q
si∈

S
fi∈h Sfi

(1−Qfi∈h(1− p(si|fi)))Q
si∈SO (1−

Q
fi∈h(1− p(si|fi)))

(5)

Obviously in the deterministic model, if the hypothesis h is correct, FD(h) must be
equal to 1 because the corresponding symptoms can be either observed or verified. In the
probabilistic model, if related symptoms are observed or verified, FD(h) of a credible
hypothesis can still be less than 1 because some symptoms may not happen even when
the hypotheses are correct. In either case, our fidelity algorithm takes in consideration
a target Fidelity Threshold, FDTHRESHOLD, that the user can configure to accept hy-
pothesis. System administrators can define the threshold based on long-term observation
and previous experience. If the threshold is set too high, even correct hypothesis will be
ignored; but if the threshold is too low, then less credible hypothesis might be selected.
Fidelity evaluation function is used to evaluate each hypothesis and decides if the

result is satisfactory by comparing to the pre-defined threshold value. If an acceptable
hypothesis that matches the fidelity threshold exists, the fault localization process can
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terminate. Otherwise, the best available hypothesis and a non-empty set of symptoms
(SN ) would be verified in order to reach a satisfactory hypothesis in the next iteration.

3.3 Action Selection Heuristic Algorithm
The main reason to verify the existence of symptoms rather than faults is that symptoms
are noticable/visible consequences of faults and thus they are easier to track and verify.
The task of Action Selection is to find the least-cost actions to verify SN (unobserved
symptoms) of the hypothesis that has highest fidelity. As the size of SN grows very large,
the process of selecting the minimal cost action that verifies SN becomes non-trivial.
The Action-Symptoms correlation graph can be represented as a 3-tuple (A,S,E) graph
such that A and S are two independent vertex sets representing Actions and Symptoms
respectively, and every edge e in E connects a vertex aj ∈ A with a vertex si ∈ S with
a corresponding weight (wij) to denote that aj can verify si with cost wij = w(si, aj) >
0. If there is no association between si and aj , then wij = 0. Because a set of actions
might be required to verify one symptom, we use a virtual action vertex, vj , to represent
this case. The virtual action vertex vj is used to associate a set of conjunctive actions
to the corresponding symptom(s). However, if multiple actions are directly connected
to a symptom, then this means any of these actions can be used disjunctively to verify
this symptom (Fig. 4). To convert this to a bipartite graph, (1) we set the weight of vj ,
w(si, vj), to the total cost of the conjunctive action set, (2) then eliminate the associated
conjunctive set to the vj , (3) associate vj with all symptoms that can be verified by any
action in the conjunctive action set.
The Symptom-Action graph in Fig. 4 presents the verification relationship between

symptoms {s1, s2, s3} and actions {a1, a2, a3}. Symptom s1 can be verified by taking a
combination of action a1 and a2, which causes a new virtual action vertex v1 to be created
with weight 2. Action v1 can verify all symptoms (s1, s2) that are verifiable by either a1 or
a2. After converting action combination to a virtual action, Symptom-Action correlation
can be represented in a bipartite graph.
The goal of the Action Selection algorithm is to select the actions that cover all symp-

toms SN with a minimal action cost. With the representation of Symptom-Action bipartite
graph, we can model this problem as a weighted set-covering problem. Thus, the Action
Selection algorithm searches for Ai such that Ai includes the set of actions that cover
all the symptoms in the Symptoms-Action correlation graph with total minimum cost.
We can formally define Ai as the covering set that satisfies the following conditions: (1)
∀si ∈ S, ∃aj ∈ Ai s.t. wij > 0, and (2)

P
ai∈Ai,sj∈SN wij is the minimum.
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Algorithm 2 Active Integrated Fault Reasoning SO
Input: SO
Output: fault hypothesis h
1: SN ← SO
2: while SN 6= ∅ do
3: Φ = FR(SO)
4: < h, SN >= FE(Φ)
5: if SN = ∅ then
6: return< h >
7: else
8: if IPP experied then
9: /*used to schedule active fault localization periodically*/
10: < SV , SU >= AS(SN )
11: end if
12: end if
13: SO ← SO ∪ SV
14: < h,SN >= FE({h})
15: if SN = ∅ k SV = ∅ then
16: return< h >
17: end if
18: end while

The weighted set-covering is an NP-complete problem. Thus, we developed a heuristic
greedy set-covering approximation algorithm to solve this problem. The main idea of the
Algorithm is simply first selecting the action (ai or vi) that has the maximum relative cov-
ering ratio,Ri =

|Sai |P
sj∈Sai

wij
, where this action is added to the final set Af and removed

from the candidate set Ac that includes all actions. Here, Sai is the set of symptoms that
action ai can verify, Sai ⊆ SN . Then, we remove all symptoms that are covered by this
selected action from the unobserved symptom set SN . This search continues to find the
next action ai (ai ∈ Ac), that has the maximum ratio Ri until all symptoms are covered
(i.e., SN is empty). Thus, intuitively, this algorithm appreciates actions that have more
symptom correlation or aggregation. If multiple actions have the same relative covering
weight, the action with more covered symptoms (i.e., larger |Sai | size) will be selected. If
multiple actions have the same ratio, Ri, and same |Sai |, then each action is considered
independently to compute the final selected sets for each action and the set that has the
minimum cost is selected. Finally, it is important to notice that each single action in the
Af set is necessary for the fault determination process because each one covers unique
symptoms.

3.4 Algorithm for Active Integrated Fault Reasoning
The major contribution of this work is to incorporate active actions into fault reasoning.
Passive fault reasoning could work well if enough symptoms can be observed correctly.
However in most cases, we need deal with interference from symptom loss and spurious
symptoms, which could mislead fault localization analysis. As a result of fault reasoning,
the generated hypothesis suggests a set of selected symptoms SN that are unobserved
but expected to happen based on the highest fidelity hypothesis. If fidelity evaluation of
such hypothesis is not acceptable, optimal actions are selected to verify SN . Action re-
sults will either increase fidelity evaluation of previous hypothesis or bring new evidence
to generate new hypothesis. By taking actions selectively, the system can evaluate fault
hypotheses progressively and reach to root faults.
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Figure 5: The Impact of Symptom Loss Ratio (a) Detection Time T (b) Detection
rate α (c) False positive rate β

Algorithm 2 illustrates the complete process of the AIR technique. Initially, the system
takes observed symptom SO as input. Fault Reasoning is used to search the best hypothe-
sis Φ (Line 3). Fidelity is the key to associate passive reasoning to active probing. Fidelity
Evaluation is used to measure the correctness of corresponding hypothesis h (h ∈ Φ), and
produce expected missing symptoms SN (Line 3). If the result h is satisfied, the process
terminates with current hypothesis as output (Line 5 - 6). Otherwise, AIR waits until Ini-
tial Passive Period (IPP ) expired (Line 8) to initiate actions to collect more evidence
of verified symptoms SV and not-occurred symptoms SU (Line 10). New evidence will
be added to re-evaluate previous hypothesis (Line 13). If fidelity evaluation is still not
satisfied, the new evidence with previous observation is used to search another hypothe-
sis (Line 3) until the fidelity evaluation is satisfied. At any point, the program terminates
and returns the current selected hypothesis, if either the fidelity evaluation does not find
symptoms to verify (SN is ∅), or none of the verified symptom had occurred (SV is ∅). In
either case, this is an indication that the current selected hypothesis is creditable.

4. SIMULATION STUDY
In this section, we describe our simulation study to evaluate Action Integrated fault Rea-
soning (AIR) technique. We conducted a series of experiments to measure how AIR im-
proves the performance and the accuracy of the fault localization compared with Pas-
sive Fault Reasoning (PFR). The evaluation study considers fault detection time T as
a performance parameter and the detection rate α and false positive rate β as accuracy
parameters.
In our simulation study, the number of monitored network objectsD ranged from 60 to

600. We assume every network object can generate different faults and each fault could be
associated with 2 to 5 symptoms uniformly distributed. The number of simulated symp-
toms vary from 120 to 3000 uniformly distributed. We use fault cardinality (FC), symp-
tom cardinality (SC) and action cardinality (AC) to describe the Symptom-Fault-Action
matrix such that FC defines the maximal number of symptoms that can be associated
with one specific fault; SC defines the maximal number of faults one symptom might
correlate to; AC defines the maximal number of symptoms that one action can verify.
The independent prior fault probabilities p(fi) and conditional probabilities p(si|fj) are
uniformly distributed in ranges [0.001, 0.01] and (0, 1] respectively. Our simulation model
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Figure 6: The Impact of Network Size (a) Without Symptom loss and spurious
symptoms (b) With symptom loss (c) With Spurious symptoms

also considers the following parameters: Initial Passive Period (IPP ); Symptom Active
Collecting Rate (SACR); Symptom Passive Collecting Rate (SPCR); Symptom Loss
Ratio (SLR); Spurious Symptom Ratio (SSR); Fidelity Threshold FDTHRESHOLD.
The major contribution of this work is to offer an efficient fault reasoning technique

that provides accurate results even in worst cases like when symptom passive collect-
ing rate (SPCR) is low, and/or symptom loss ratio (SLR) and spurious symptom ratio
(SSR) are high. We show how these factors affect the performance (T ) and accuracy (α
and β) of our approach and passive fault reasoning approach.

4.1 The Impact of Symptom Loss Ratio
Symptom loss hides fault indications, which negatively affects both accuracy and per-
formance of fault localization process. In order to study the improvement on both the
performance and the accuracy of AIR approach, we fix the value of spurious symptom
ratio (SSR = 0), the initial passive period (IPP = 10sec), symptom active collecting
rate (SACR = 100 symptoms/sec) and symptom passive collecting rate (SPCR = 20
symptoms/sec). In this simulation, we use SLR value that varies from 10% to 30%. With
the increase of symptom loss ratio, passive fault reasoning system becomes infeasible.
Therefore, in this experiment, we had to reduce the fidelity threshold to relatively lower
value based on the symptom loss ratio so the passive reasoning process can converge in
reasonable time. From Fig. 5(a), in contrast to passive approach, AIR system can always
reach relatively high fidelity threshold with average performance improvement of 20% to
40%. Hence, when SLR increases, the advantage of active fault reasoning in the perfor-
mance aspect is more evident. In addition to performance improvement, AIR approach
shows high accuracy. With the same settings, Fig. 5(b) and (c) show that active approach
gains 20-50% improvement of detection rate and 20-60% improvement of false detection
rate, even with much different fidelity criteria over the passive reasoning approach.

4.2 The Impact of Network Size
In this section, we examine the scalability of AIR when network size and number of
symptoms significantly increase. To show this, we measure AIR detection time under dif-
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ferent scenarios: (1) without symptom loss and spurious symptom (Fig. 6(a)); (2) with
symptom loss only (Fig. 6(b)), and (3) with spurious symptoms only (Fig. 6(c)). In all
three cases, when the network size increases 10 times (from 100% to 1000%), the de-
tection time has slowly increased by 1.7 times (170%) and 3.7 times (370%) and 5.8
times (580%) in Fig. 6(a), (b) and (c) respectively. This shows that even in the worst case
scenario (Fig. 6(c)), the growth in network size causes a slow linear increases on AIR
performance.

4.3 The Impact of Symptom Loss on AIR Intrusiveness
AIR intrusiveness is measured by the number of total actions performed to localize faults.
As shown in Section 3, the intrusiveness of AIR was algorithmically minimized by (1)
considering the fault hypothesis of high credibility, and (2) selecting the minimum-cost
actions based on the greedy algorithm described in Section 3.3. We also conducted ex-
periments to assess the intrusiveness (i.e., action cost) when the loss ratio increases. Loss
ratio and network size are the most significant factors that might affect the intrusiveness
of AIR. Fig. 7 shows that, with different scale of network sizes and prior fault probability
as high as 10%, the number of actions required for fault localization increases slow lin-
early (from 1 - 22) even when the loss ratio significantly increases (from 2%-35%). For
example, in large-scale network of size 600 objects and fault rate is 60 faults per iteration,
the number of action performed did not exceed 0.37 action/fault ratio. In addition, AIR
was deliberately designed to give the user the control to adjust the intrusiveness of active
probing via configuring the following fault reasoning parameters: fidelity threshold, IPP
and action coverage.

5. RELATEDWORK
Many proposed solution were presented to address fault localization problem in commu-
nication networks. A number of these techniques use different causality model to infer the
observation of network disorder to the root faults. In our survey, we classify the related
work into two general categories:
Passive Approach. Passive fault management techniques typically depended on mon-

itoring agents to detect and report network abnormality using alarms or symptom events.
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These events are then analyzed and correlated in order to reach the root faults. Vari-
ous event correlation models were proposed including rule-based analyzing system [11],
model-based system [13], case-based diagnosing system and model traversing techniques.
Different techniques are also introduced to improve the performance, accuracy and re-
silience of fault localization. In [7], a model-based event correlation engine is designed
for multi-layer fault diagnosis. In [2], coding approach is applied to deterministic model
to reduce the reasoning time and improve system resilience. A novel incremental event-
driven fault reasoning technique is presented in [3] and [4] to improve the robustness of
fault localization system by analyzing lost, positive and spurious symptoms.
The techniques above were developed based on passively received symptoms. If the

evidence (symptoms) are collected correctly, the fault reasoning results can be accurate.
However, in real systems, symptom loss or spurious symptoms (observation noise) are un-
avoidable. Even with a good strategy [4] to deal with observation noise, those techniques
have limited resilience to noise because of their underlying passive approach, which might
also increase the fault detection time.
Active Probing Approach. Recently, some researchers incorporate active probings

into fault localization. In [6], an active probing fault localization system is introduced,
in which pre-planned active probes are associated with system status by a dependency
matrix. An on-line action selection algorithm is studied in [5] to optimize action selection.
In [9], a fault detection and resolution system is proposed for large distributed transaction
processing system.
Active probing approach is more efficient in locating faults in timely fashion and more

resilient to observation noise. However, this approach has the following limitation:
• Lack of integrating passive and active techniques in one framework that can take ad-
vantage of both approaches.

• Lack of a scalable technique that can deal with multiple simultaneous faults.
• Limitation of some approaches to track or isolate intermittent network faults and per-
formance related faults because they solely depend on the active probing model.

• The number of required probes might be increased exponentially to the number of
possible faults ([5]).
Both passive and active probing approaches have their own good features and limita-

tions. Thus, integrating passive and active fault reasoning is the ideal approach. Our ap-
proach combines the good features of both passive and active approaches and overcome
their limitations by optimizing the fault reasoning result and action selection process.

6. CONCLUSION AND FUTUREWORK
Fault localization technique plays a critical role in managing and maintaining large scale
communication networks. How to improve efficiency and accuracy of fault localization
technique and relieve heavy burden of system administrators continues to be a very in-
teresting research topic. In this paper, a novel technique called ACTION INTEGRATED
FAULT REASONING or AIR is presented. This technique is the first to seamlessly inte-
grate passive and active fault reasoning in order to reduce fault detection time as well as
improve the accuracy of fault diagnosis. AIR approach is designed to minimize the intru-
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siveness of active probing via enhancing the fault hypothesis and optimizing the action
selection process. Our simulation results show that AIR is robust and scalable even in
extreme scenarios such as large network size and high spurious and symptom loss rate.
In our future work, we will study the use of positive symptoms in AIR, and optimize

the fault reasoning algorithm to reduce the hypotheses searching time. In addition, we
will investigate the automatic creation of the Action-Symptom correlation matrix from
the network topology and high-level service specifications.
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