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Abstract— Flexibility and efficiency are the prime requirements
for any P2P search mechanism. Existing P2P systems do not
seem to provide satisfactory solution for achieving these two
conflicting goals. Unstructured search protocols (as adopted in
Gnutella and FastTrack), provide search flexibility but exhibit
poor performance characteristics. Structured search techniques
(mostly Distributed Hash Table (DHT)-based), on the other hand,
can efficiently route queries to target peers but support exact-
match queries only. In this paper we present a novel P2P
system, called Distributed Pattern Matching System (DPMS), for
enabling flexible and efficient search.

Distributed pattern matching can be used to solve problems
like wildcard searching (for file-sharing P2P systems), partial
service description matching (for service discovery systems) etc.
DPMS uses a hierarchy of indexing peers for disseminating
advertised patterns. Patterns are aggregated and replicated at
each level along the hierarchy. Replication improves availability
and resilience to peer failure, and aggregation reduces storage
overhead. An advertised pattern can be discovered using any
subset of its 1-bits; this allows inexact matching and queries in
conjunctive normal form. Search complexity (i.e., the number of
peers to be probed) in DPMS isO

(
log N + ξ log N

log N

)
, where

N is the total number of peers and ξ is proportional to the
number of matches, required in a search result. The impact of
churn problem is less severe in DPMS than DHT-based systems.
Moreover, DPMS provides guarantee on search completeness for
moderately stable networks. We demonstrate the effectiveness of
DPMS using mathematical analysis and simulation results.

I. I NTRODUCTION

The generic pattern matching problem and its variants have
extensively been studied in Computer Science literature. In this
paper we focus on a variation of the pattern matching problem
that conforms to two constraints. First, we consider Bloom-
filter based pattern matching with don’t care bits, and second
we assume that the patterns are scattered among the peers of a
P2P overlay network (see Fig. 1). Each pattern summarizes the
properties of a shared object (such as a file or a service) and
is a couple of hundred bits long. One possible form of such a
pattern is a bloom-filter [5] obtained from the properties of an
object. Another possibility is to use some predefined encoding
of object properties, as adopted in figureprint construction
techniques in molecular biology.

A peer can initiate a query by using a pattern. If the query
pattern is exactly the same as the advertised pattern then the
problem can efficiently be solved using conventional DHT
techniques. But, we are interested in inexact pattern matching,
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Fig. 1. Distributed Pattern Matching

where the 1-bits of a query pattern can be any subset of an
advertised pattern that it should match against. In this paper
we present a new P2P architecture for solving this Distributed
Pattern Matching (DPM) problem and demonstrate the ef-
fectiveness of the proposed architecture using mathematical
analysis and simulation results.

Keyword searching is one of the essential functionalities
offered by any peer-to-peer file-sharing system. A Central-
ized filesystem, as present in any traditional operating sys-
tem, permits more sophisticated search operations involving
wildcards and partial keywords. Enabling existing P2P file-
sharing systems with wildcard search capability will allow
users to perform more flexible and powerful searches. Be-
sides inexact keyword matching, many problems like partial
service description matching for service discovery systems,
data record pre-scanning for distributed database systems,
molecular fingerprint matching in a distributed environment,
etc., can be mapped to and efficiently solved using Distributed
Pattern Matching (DPM).

Over the last few years DHT-based structured P2P systems
([19], [16], [15], [23] etc.) have gained importance due to
efficiency of routing queries and search completeness. Most
of these techniques take binary keys as input and apply prefix
matching to route a query to a specific node inO(log N) hops,



whereN is the number of peers in the overlay. Despite their
efficiency in query routing, these systems are not suitable for
solving DPM problem. The basic idea behind DHT-techniques
is to partition the key-space into non-overlapping regions and
to assign each region to a peer bearing an ID from that region.
But from pattern matching perspective it is quite difficult to
partition even one dimensional pattern (or key) space into non-
overlapping clusters, while preserving the notion of closeness
in patterns.

Unstructured search techniques, like flooding [2] and ran-
dom walk [14], can be used to solve DPM problem. But the
generated traffic for searching is proportional to the number
of peers in the overlay and there is no guarantee on search
completeness. Hence adopting a unstructured search technique
is not a good choice for solving DMP problem.

In this paper we present a P2P system, DPMS (Distributed
Partial Matching System), for efficiently solving the DPM
problem. DPMS uses replication and aggregation for dis-
tributing patterns advertised by peers across the P2P overlay.
In DPMS, peers collaborate to form a lattice-like indexing
hierarchy. This hierarchy is used to efficiently route queries to
target peer(s).

DPMS has several properties of an unstructured P2P system.
First, it supports flexible queries involving partial and multiple
keywords. Second, placement of documents is not controlled
by the system. Third, it can exploit the heterogeneity in peer
capabilities. Unreliable and less capable peers contribute to
less important parts of the indexing hierarchy, while reliable
(long lived) and powerful (in terms of storage and connection
speed) peers take responsibility of more important parts of the
indexing hierarchy.

To avoid flooding and to provide an efficient query routing
mechanism, DPMS uses the indexing hierarchy. The philoso-
phy behind this architectural choice is that, by building an in-
dexing hierarchy of heightO(log N

log N ) we can haveO(log N)
peers at the highest level. Peers at any level collectively covers
all the leaf peers (hence all the advertised patterns) residing
at the bottom level of the indexing hierarchy. In other words,
we can check all the patterns at the bottom level by probing
only O(log N) peers at levelO(log N

log N ). This means we can
find κ leaf peers containing match for a given query pattern in
O(log N + εκ log N

log N ) probes. TheO(log N) probes is the
cost of flooding at the topmost level andO(εκ log N

log N ) is the
cost of reaching theκ matching leaf peers along the indexing
hierarchy of heightO(log N

log N ). The termε depends on the
amount of false positives introduced by the lossy aggregation
scheme.

In such a hierarchy the topmost level peers will receive a
very high volume of queries and will become performance bot-
tleneck. Besides, fault-tolerance characteristics of the system
will be poor; failure of any peer along the indexing hierarchy
will result into unreachable leaf peers. To overcome these
problems DPMS uses replication at each level of the indexing
hierarchy.

With such a replication strategy, the network and storage
overhead for index maintenance will be high. To reduce the

impact of replication overheads, we have incorporated adon’t
care-based lossy aggregation scheme at each level of the
indexing hierarchy. The proposed aggregation scheme allows
incorporation of multiple advertised patterns or aggregates
in a single aggregate, while making it possible to perform
matching of a query pattern against the aggregates. The
aggregation scheme increases the chances of false positives
while routing queries. Simulation results indicate that we can
achieve45− 60% reduction in storage and network overhead
while securing query routing efficiency almost identical to the
ideal case, i.e. without aggregation (see. Fig 5).

To our knowledge, Distributed Pattern Matching (DPM)
problem has not been addressed by any research activity in the
peer-to-peer context, so far. The index distribution architecture
of DPMS is unique and has been designed to specifically solve
the DPM problem. The novel aggregation scheme, proposed
in this paper, can effectively reduce storage overhead at the
indexing peers without incurring a significant decrease in
query routing performance. However, the use of bloom filter
for representing indices is not new. Many network applications
use bloom filters. A comprehensive list of such applications
can be found in [6].

The rest of this paper is organized as follows. The ar-
chitecture and operation of DPMS are presented in section
II. Mathematical analysis of search complexity in DPMS
is provided in section III. Section IV presents experimental
results. Section V provides a description and brief comparison
of the existing approaches with DPMS. Finally, concluding
remarks are presented in section VI.

II. T HE NEW SYSTEM

This section presents details on DPMS architecture. In this
section we will use the termspattern and index interchange-
ably, as patterns are used as indices for query routing.

A. Overview

In DPMS a peer can act as a leaf peer or indexing peer
or both. A leaf peer is at the bottom level of the indexing
hierarchy and advertises its indices (created from the objects
it is willing to share) to other peers in the system. An indexing
peer, on the other hand, stores indices from other peers (leaf
peers or indexing peers). A peer can join different levels of
the indexing hierarchy and can simultaneously act in both
roles. Indexing peers get arranged into a lattice-like hierarchy
(see Fig. 2) and disseminate index information using repeated
aggregation and replication.

Index (e.g. keywords or hash keys) replication is used by
many unstructured P2P systems for improving reliability and
availability. But replication incurs extra overhead on storage
and network bandwidth. To improve efficiency, these systems
adopt smart replication strategies [8].

DPMS uses replication trees (see Fig. 2a) for disseminating
patterns from a leaf peer to a large number of indexing peers.
However such a replication strategy will generate a large
volume of traffic, and is not feasible for any practical imple-
mentation. To overcome this shortcoming, DPMS combines



replication with aggregation to minimize the volume of traffic
between peers in adjacent levels in the indexing hierarchy.
As shown in Fig. 2b, advertisements from different peers are
aggregated and propagated to peers in the next level along the
aggregation tree.

The amount of replication and aggregation is controlled by
two system-wide parameters, namely replication factorR and
branching factorB. In order to achieve constant volume of
messages exchanged between adjacent levels, an aggregation
ratio of R : 1 is required.
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Fig. 2. DPMS overview

Patterns advertised by a leaf peer are propagated toRl

indexing peers at levell. On the other hand, an indexing
peer at levell contains patterns fromBl leaf peers. Due to
repeated aggregation, the aggregates become more generic (i.e.
lower information content) as we move up along the indexing
hierarchy.

The indexing hierarchy has three-fold impact on system
performance. Firstly, the indexing hierarchy evenly distributes
index information (and queries) in highest level indexing peers.
This helps in load balancing the system and improves fault
tolerance. Secondly, peers can route queries towards target
leaf peer(s) without having any global knowledge of the
overlay topology. Each peer needs to know the addresses of its
children, replicas and one of its parents. Finally, the indexing
hierarchy helps in minimizing query forwarding traffic. While
forwarding a query from a root peer to multiple leaf peers in
the same aggregation tree, shared path from the root peer to
the common ancestor of the target leaf peers is utilized.

B. Index/pattern construction from keywords

In DHT-based systems an index is obtained by applying
some system-wide known hash function to the keyword(s)
related to a document. In DHT-techniques an index is used
in two ways. First, to identify a document, and second, to
identify the peer responsible for that document (or a pointer
to that document). A query consists of an index, created by
hashing the search keyword. This warrants the search index
to be identical to the advertised index. However, a peer can
readily identify the responsible peer for a query, and route the
query to that peer efficiently.

In unstructured systems, on the other hand, documents are
identified using associated keywords. A query consists of one
or more search keywords. Query routing is done based on
flooding or random walk. A peer receiving a query can return
a document partially matching the search keyword(s), in case
an exact match was not found.

DPMS uses Bloom filters [5] as indices, to achieve the
advantages of both unstructured and structured P2P systems,
i.e. efficient routing and inexact matching.

Bloom filters are used to test set membership. Because of
their space-efficiency, Bloom filters are used in many net-
work applications for exchanging content summary between
networked nodes [6]. However, this space-efficiency comes at
the expense of a small possibility of false positives in the
membership check operation.

The algorithm for Bloom filter construction is simple. A
Bloom filter is represented as a m-bits array. k different hash
functions are also required to be defined. Each of these hash
functions should return values within the range of[0..m). In
an empty Bloom filter all the m-bits are set to 0. To insert an
element (a string or keyword), it is hashed with the k hash
functions and corresponding k array positions are set to 1. To
test set membership for an element, it is hashed with the k
hash functions to get k array positions. If all of these k-bits
are set (i.e. 1), then with high probability the element is a
member of the set represented by the Bloom filter, otherwise
it is not.

Each document in a traditional file-sharing P2P system is
associated with a set of keywords. In DPMS, all the keywords
associated with a document are encoded in a single Bloom-
filter. To facilitate inexact matching, each keyword is first
fragmented into n-grams (usually trigrams). These n-grams are
then inserted into the Bloom filter representing the document.

Query keywords are also fragmented into n-grams (see Fig.
3) and encoded into a Bloom filter. The 1-bits on a query
should be subset of any pattern that it should match against.
This kind of encoding allows us to retrieve documents, ad-
vertised with keywords”invisible man” and”visible woman”
respectively, using a query containing partial keywords like
”visi man” .
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Fig. 3. Bloom filter example of two advertisements and an inexact multi-
keyword query. 1-bits in boldface corresponds to the matching trigrams.



For a P2P service discovery system the index can be
obtained in a similar fashion using attribute-value pairs instead
of keywords. Molecular fingerprint can be used as index for
some envisioned distributed system storing molecular structure
information.

C. Aggregates

DPMS relies on replication for disseminating pattern in-
formation along replication trees. Replication is necessary
for load-balancing and for improving fault-tolerance. The
replication strategy adopted in DPMS would significantly
increase network and storage overhead. DPMS uses repeated
aggregation at each level along the hierarchy to mitigate this
problem.

We suggest a don’t care based aggregation scheme, i.e. don’t
cares (presented by X) are used to represent both 1 and 0 in
the same bit position. Don’t cares are used at the positions
where the constituent patterns disagree.

This type of aggregates retains parts from the constituent
patterns or aggregates. A 1-bit (or 0-bit) in such an aggregate
indicate that all the patterns contributing to this aggregate
had 1 (or 0) at corresponding position. However incorporating
this extra information (i.e. X’s) incur some space overhead,
which can be minimized by compressing the aggregates using
huffman encoding or run length encoding during transmission
through the network.

An indexing peer acts as a multiplexer in the indexing
hierarchy. It gathersin-lists (lists of patterns or aggregates
from the B child peers), aggregates them to another list
(referred to asout-list) of aggregates, and sends this list to
each of its parents.

Construction of this out-list is not trivial. We want the
aggregates in the out-list to have a minimum number ofX-
bits. This ensures minimum information loss. The problem
of obtaining an out-list containing minimal number ofX-bits
is NP-complete. Instead we use a heuristic approach to mea-
sure the degree of similarity between two patterns/aggregates.
Experimental results show that a near optimal out-list can
be produced by combining patterns/aggregates with highest
degree of similarity.

As a measure of the degree of similarity between two
patterns/aggeregates, we have used the percentage of positions
at which they agree. To compute out-list from theB in-lists,
obtained fromB children, we have used an iterative algorithm.
At each iteration step, the pair of patterns with highest degree
of similarity were combined and the resultant aggregate was
inserted into the (intermediate) out-list for consideration in the
next iteration step.

D. Index Distribution

An indexing peer, participating in the DPMS architecture,
belongs to two sets, a vertical set (i.e., level) and a horizontal
set (i.e., group). According to the degree of aggregation,
each indexing peer belongs to a level (vertical set). Peers
participating at higher index levels cover (i.e., contain index
information from a) higher number of leaf peers along the

aggregation tree. But, due to increased level of aggregation
the contained information gets vaguer at higher levels.

Indexing peers at levell arrange intoRl groups (horizontal
sets), numbered from0 to (Rl − 1) (see Fig. 4). In the ideal
case, all the indexing peers in a single group (at any level)
should collectively cover all the leaf peers in the system.

A peer at levell and groupg (0 ≤ g < Rl) is responsible
for transmitting its aggregate information toR parents at level
(l + 1). Each parent belongs to a different group, in range
[g ×R, (g + 1)×R), respectively.
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Fig. 4. Index distribution architecture . All the peers interacting with peer
E are labelled. Group number is printed at the bottom right corner of each
box.

Peers at levell and group g organize into subgroups
(referred to as siblings) of sizeB to forward their aggregated
information to the same set of parents. Thus each group in
range [g × R, (g + 1) × R) at level (l + 1) will contain a
peer replicating the same index information. This provides
redundant paths for query forwarding and increases tolerance
to peer failure.

E. Topology maintenance

In the DPMS index distribution hierarchy peers interact with
each other in different roles, e.g. parent, child, neighbor etc.
An indexing peer, sayE belonging to levell and groupg,
maintains four separate lists for this purpose (see Fig. 4).

1) Replica-list contains the list of peers in the adjacent
groups that have common children as that ofE. This list
contains(R − 1) peers, one from each group in range
[bg/Rc ×R, (bg/Rc+ 1)×R), excludingg.

2) Parent-list This is the replica list obtained from one of
E’s parents.E uses this list to forward its aggregate
information (out-list) to all of its parents along a repli-
cation tree.

3) Child-list contains the list of all children and the replica
list for each of them. A peer normally communicates
with the child peers only. But in case of a failure of
a child it can communicate with a replica of the failed
child. This list containsB entries corresponding to the
B children ofE at level (l − 1) and groupg/R.



4) Neighbor-list contains a fixed number of non-sibling
peers that are in the same group (g) as peerE. This
list is mostly used for maintaining connectivity in a
group, during join operation, and for flooding queries
horizontally within a group (mostly at the topmost
group).

Out of these four lists a peer needs to keep track of three:
child-list, parent-list and neighbor-list. The replica-list of a
peer is the parent-list of any of its children. Peers use the
Newscast protocol [21] for maintaining and updating these
lists, i.e., to detect peer failures and arrival of new peers. Flow
of news packets is restricted to2× R groups of peers. More
specifically, the news-list of a peer at levell and groupg will
contain information about some peers from groups[bg/Rc ×
R, (bg/Rc+1)×R) at levell and groups[g×R, (g+1)×R)
at level (l + 1). That is, each peer sends news packets to
its parents, neighbors and replicas, and receives news packets
from its children, neighbors and replicas.

Unlike indexing peers a leaf peer maintains only the
neighbor-list and forwards this list to its parents. A leaf peer
obtains its parent-list from one of its parents. It should be
noted that leafs peers do not have any replica-list or child-list.

F. Query Routing

A query can be initiated by any peer in the system. The
query life-cycle can be divided into three phases: ascending
phase, blind search phase and descending phase.

During theascending phase, an initiating (or intermediate)
peer, checks its local information for the existence of a match.
If a match is found, then the query is forwarded to the
matching child, otherwise it is forwarded to any of its parents.
This precess recurs until the query hits a peer with a match,
or reaches a highest level peer.

The Blind search phaseis executed by a highest level peer,
say Z, upon receiving a query (from a child) that does not
match any aggregate in its aggregate-lists.Z floods the query
to all other peers in its group. If no peer in a group at the
highest level contains a match, then the query was for a non-
existent pattern, and so the search fails.

A query enters into thedescending phasewhen it hits a peer
containing a matching aggregate. The query is then forwarded
to the child peer advertising the matching aggregate. This
process recurs until the query reaches a leaf peer. Two types of
exceptions may occur. Firstly, a false match may occur and the
search branch terminates. Secondly, a peer may have multiple
children matching the query and multiple search branches can
be initiated. Priority and the order in which search branches
are initiated is guided by predefined policy and application-
specific requirements.

G. Node Join

A peer can join the system as a leaf peer or an indexing
peer or both. To join as a leaf, a peer sayC, has to find a level
1 indexing peer, sayP , with an empty slot in its child-list.C
joins the indexing hierarchy as a child ofP . C obtains the

replica-list fromP and set these values andP as its parent-
list. ThenC can start advertising its patterns to all the peers in
its parent-list. IfC fails to find a level 1 peer with an empty
slot, then it can either join in both level 1 and level 0 or select
a level 1 peer with lowest number of children.

To join the indexing hierarchy as an indexing peer, a peer
(sayE) has to go through the following steps:

• Choose level and group: PeerE has to choose a level,
say l in the hierarchy. Selection of level can be based
on the nodes capacity, uptime distribution etc. Peers with
higher capacity (storage and bandwidth) and longer life-
time are expected to join higher levels in the indexing
hierarchy. Then peerE can choose a groupg in random
such thatg is in [0, Rl).

• Construct child-list : Joining PeerE has to contact a seed
peer to get information about other peers in the system.
PeerE can crawl the index hierarchy to reach a peer,
sayA, such that peerA is in level (l − 1) and in group
bg/Rc, and the parent-list of peerA contains less than
R entries. PeerE can join as a parent of peerA. Peer
E has to join the group in which peerA has no parents.
PeerE has to obtain and update the replica-list of other
parents of peerA. PeerE can obtain the child-list from
a parent of peerA. PeerA can have an empty parent-list
during the initialization phase of the system or after a
failure of all of its parents. If peerA returns an empty
parent-list, then peerE should look for other (uptoB)
peers, in the same group as that of peerA, with empty
parent-list. If such peers exist then peerE should make
them its children.

• Construct parent-list: To construct the parent-list peer
E has to find a peer, sayT , such that peerT is in level
(l + 1) and in group(g × R), andT has an empty slot
in its child-list. If such a peer (T ) exists then peerE
constructs its parent list using peerT and all the replicas
of peerT . Otherwise, peerE will start with an empty
parent-list, and will wait for more peers to join at level
(l + 1).

H. Node Leave or Failure

In DPMS, peer departure and failure are handled in the
same manner, i.e., a peer can leave the system without any
notice. The absence of an indexing peer, sayE, will affect
the peers in its parent-list, child-list and replica-list. Parents
and children ofE can still communicate through any of the
replicas of peerE. So query routing is not hampered until all
of the replicas of a peer fail.

Failure or departure of a leaf peer has greater impact on the
system. All the index information along the replication tree,
rooted at the failed leaf peer, has to be updated. During this
period (from the point of failure to the update of all indexing
peers in the replication tree) a query directed towards the failed
leaf peer will be evaluated as a false positive. This will increase
search overhead to some extent.

To efficiently deal with frequent join and leave of a leaf
peer, indexing peers should advertise their index information at



constant intervals. Any advertisement from a child peer should
be delayed until the end of the interval. The interval length can
be used to tradeoff index update delay with network overhead
due to frequent advertisements.

III. A NALYSIS

In this section we will provide an analytical bound on the
levels of indexing hierarchy that will allow query routing in
O(log N) hops, whereN is the total number of peers in the
system. For this analysis we will useB to denote branching
factor,R for replication factor andnl as the number of peers
at level l. Leaf peers reside at level 0 and the height (or
maximum level) of the indexing hierarchy ish. Assuming
these definitions we can calculate the total number of peers at
level l as:

nl = n0

(
R

B

)l

= n0α
l (1)

and the total number of peers in the system as:

N =
l=h∑

l=0

n0α
l = n0

αh+1 − 1
α− 1

(2)

Hence the total number leaf peers in the system,

n0 = N
α− 1

αh+1 − 1
(3)

Now, the number of groups at levell is Rl. So, the average
number of peers in a group at levell, sayml, is:

ml =
nl

Rl
(4)

Combining equations (1), (2), (4) and usingα = R
B we

obtain:

ml =
N(α− 1)

Bl(αh+1 − 1)
(5)

In practice, in an overlay network, the number of peers in
a group will be close toml. And for efficient query routing
we expect the number of peers in a group at levelh to be
f × log N , wheref is a positive real number, in range(0.5 ≤
f ≤ 2). So, replacingmh = f × log N in equation (5) we
obtain:

Bh(αh+1 − 1) =
N(α− 1)
f log N

(6)

For practical values ofα andh we can approximate(αh+1−
1) with (θ×αh) for some constantθ. Replacing this value in
equation (6) gives:

h ≈ 1
log R

× log
N × (α− 1)

θf log N
= O

(
log

N

log N

)
(7)

Thus we claim that if we can build and maintain an
index hierarchy of hightO

(
log N

log N

)
then we will be

able to solve the Distributed Pattern Matching problem in
O

(
log N + ξ log N

log N

)
time, where,ξ = εκ, κ is the number

of results required by a query, andε is the amount of false
positives introduced by the lossy aggregation scheme. For a
system without any aggregation the value ofε would be equal

to one. Experimental results presented in section IV-B places a
bound of1.3 onε. The results also demonstrate that this bound
is not dependent on the number of peers in the network.

IV. EXPERIMENTAL EVALUATION

To measure the performance of the proposed system and to
verify the concepts presented in this paper, we have developed
a prototype of the system and have simulated the prototype
with various parameter settings. This preliminary version of
the implementation simulates a static P2P network confirming
to the DPMS architecture. Though, the current implementation
is not capable of simulating node-joins and dynamic topology
maintenance, it has the ability to simulate peer failures. This
allows us to evaluate the impact of replication on routing
performance and hit rate of a query, in the presence of peer
failures. The current implementation can easily be plugged
into the PeerSim [3] framework. We intend to use PeerSim
simulator for performing experiments with dynamic overlays.
Each data point presented in this section has been calculated
as an average of the statistical values obtained from 10
independent simulation runs and 3000 random queries per
simulation run.

In these experiments, patterns advertised by the leaf peers
are uniformly distributed over the pattern space. But, this is
not the case for applications, like partial keyword matching
or service discovery. In these applications the patterns are
bloom-filters, constructed from a finite set of elements, e.g.,
n-grams for partial keyword matching, or attribute-value pairs
for service discovery systems. As a result, the patterns are
more likely to be concentrated at various regions in the pattern
space, instead of being distributed uniformly over the pattern
space. This property would allow better level of aggregation
of the advertised patterns than the pure random case presented
in this section.

In section IV-A, we identify the system parameters and
performance metrics, and investigate the impact of various
system parameters on these performance metrics. Then we
focus on the scaling behavior of the system with network size,
in section IV-B. This allows us to place some bound on the
value of ε (see section III) for specific parameter settings.
Finally, in section IV-C, we present the experimental results
to illustrate the impact of various levels of replication on the
system’s tolerance to peer failure.

A. Parameter tuning

DPMS uses aggregation for reducing index storage size at
the peers contributing to the higher levels of the indexing
hierarchy. The level of aggregation introduces a trade-off
between query routing efficiency and index storage size at
peers. A higher level of aggregation results into a lower level
of storage overhead, a higher level of information loss in the
aggregates, and a decrease in the query routing efficiency, and
vice versa. In this section we intend to find a balance between
these two conflicting interests.

Table I summaries the system parameters and their values
or ranges used for parameter tuning.



The first four parameters in table I define a particular point
in the sample space, containing all possible instances of DPMS
hierarchies. These experiments are dedicated for analyzing
the impact of different system parameters on query routing
performance and storage overhead. Hence, we have chosen
R=1. This allows us to separate the performance characteristics
of the system from the fault-tolerance behavior.

The last three parameters, on the other hand, influences
query routing efficiency. The aggregation process strives to
achieve an aggregation ratio equal toA without introducing
more than(W −O) don’t cares in any aggregate. The impact
of parameterW (pattern width) on query routing performance
and level of aggregation is intuitive though not trivial. Experi-
mental results demonstrate that, for a fixed value ofO, increase
in W increases query routing accuracy while decreasing index
storage requirement at peers.

Param. Value(s) Description
B 4 Branching factor
R 1 Replication factor
H 4 Maximum level
N 4092 no. of peers in the system
P 10 number of patterns advertised by a leaf

peer.
A 0.6 target aggregation ratio1

O 10, 20. . . 60 Minimum number of non-X bits in an
aggregate

W 80, 100. . . 200 Pattern or aggregate width

TABLE I

SYSTEM PARAMETERS AND THEIR VALUES USED FOR THE PARAMETER

TUNING EXPERIMENTS

The performance metrics analyzed in this section are:

• first-hit probes: The number of peers that are being
probed before the first match is found.

• Avg. probes/hit: The average number of probes required
for each hit, in cases where multiple matches are present.
We have traced up to 20 matches.

• Indexing overhead (IO): This metric gives a measure
of the extra storage space requirement introduced by the
indexing hierarchy. Indexing overhead is measured as the
ratio of the total number of aggregates in the system to
the total number of patterns advertised by the leaf peers.

IO =
no. of aggregates (at the inexing peers)

no. of patterns (at the leaf peers)
(8)

• Effectiveness of aggregation (EA): This metric provides
with a measure of the amount of reduction in the total
number of aggregates achieved with the aggregation
mechanism. The following equation is used to measure
this quantity:

EA = 1− no. of aggregates with aggregation
no. of aggregates without aggregation

(9)

1A is computed as the ratio of the number of aggregates in the out-list to
the number of patterns/aggregates in the in-lists, received fromB children.

Fig. 5(a) and 5(b) show the impact ofO andW on query
routing accuracy. While Fig. 5(c) and 5(d) show the impact
of O andW on storage overhead. By analyzing the curves in
these figures, we can infer the followings:

• Query routing accuracy increases with increase in mini-
mum number of non-X bits (O) in the aggregates. This
effect is intuitive. With higher number of original bits
we have more information and lower probability of false
positives.

• Indexing overhead increases with increase in the number
of non-X bits (O). An increase in non-X bits means lower
number of don’t care bits are allowed in the aggregates,
which implies less space for aggregation. This results in a
higher number of aggregates in the system. This justifies
the previous observation as well.

• For O = W case there is no aggregation in the system
and the number of false positives is zero, which gives
the best possible values for query routing metrics. For
this case, the indexing overhead is 4, while effectiveness
of aggregation is 0.

• With O = 60 and W = 80, at most 20 don’t care bits
are allowed in the aggregates. With this restriction no
aggregation takes place. This justifies the sharp rise in
indexing overhead forO = 60 curve at pointW = 80
(see Fig. 5(c)).

• Not all bits of a pattern are required for query routing
with high accuracy. Query routing accuracy is almost the
same forO = 50 andO = W cases, whereas, indexing
overhead forO = 50 case is only65% of O = W case.

• For O = 10 andO = 20 curves query routing accuracy
increases with increase inW . This is because we are
using both positional value and content of each bit while
matching a query to an aggregate. WhenW increases,
possible positions of non-X bits increases, which reduces
the probability of false positives. Hence, the decrease in
the number of hops.

• For a fixed value ofO, indexing overhead decreases
with increase in pattern-width (W ). Given two random
patterns, the probability that they will match on a given
number of bits increases withW . This results into higher
probability of aggregation and lower indexing overhead.

B. Scaling Behavior

In this section we analyze the scaling behavior of DPMS
with growth in network size. Based on the observations
presented in section IV-A we have chosenW = 180 and
O = 50 for the experiment presented in this section. The
number of peers (N ) in the system has been varied from
around 8000 to 16000 while keeping the number of peers per
group at the highest level of indexing hierarchy in the range
of log N and 2 log N . We have usedR = 1 and B = 4 to
remain compatible with experiments present in the previous
section. The value ofH was set to5 to accommodate all the
peers in the indexing hierarchy, without violating the above
mentioned constraints.
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Fig. 6 presents the impact of network size on query routing
performance. This figure presents the curves for the first hit
probe and the average probes per hit metrics according to
definitions presented in section IV-A. The metric2nd hit
probes represents the average number of additional probes
required for the second hit. The first hit probe includes the
cost of flooding (O(log N)) the peers in a group at the hight
level of the indexing hierarchy. This justifies the gap between
the first hit probes and the second hit probes.

The upper bound curve is a plot of the following equation:

probes = no. of root peers + ε log
N

log N
(10)

The value ofε was found to be1.3. This implies that the value
of ε is not dependent on the number of peers in the system.

It has also been revealed from the experiment that the
indexing overhead (IO) and effectiveness of aggregation (EA)
does not depend on the number of peers in the system. These
metrics are dependent on the maximum number of levels (H),
and the replication factor (R). An increase inH (and/orR)

increasesIO (and decreasesEA), as the number of aggregates
increases while the number of leaf patterns remains the same.
For this experiment neither the value ofH nor the value of
R has been varied, which kept the ratio of the number of
advertised patterns to the number of aggregates in the system
the same. We obtained an averageIO of 3.09 and EA of
0.48 for each of the sample points. The value ofEA indicates
that the aggregation process allows us to reduce the number
of aggregates in the system by48% from no aggregation case.

C. Fault tolerance

This section presents the impact of replication on routing
performance in the presence of peer failure. For the experi-
ments of this section we have varied the replication factorR
from 1 to 6 while keeping all other parameter at a constant
value. We have usedH = 4, B = 4, O = 50 andW = 180.
For these settings the number of peers in the system varied
from about4, 000 (for R = 1 case) to40, 500 (for R = 6 case).
For each value ofR we have deactivated (i.e. removed) upto
50% of the peers from the system in a step of5%, and have
executed 3000 queries on the rest of the peers for each case
(simulation run). Each point in the curves in Fig. 7 represents
the average of 10 such simulation runs.

Like the previous experiments, we have used the first hit
probes (Fig. 7(c)) and the average number of probes per
hit (Fig. 7(d)) as the metrics for measuring query routing
performance. For the previous experiments there were no
failure of peers, and so all the matches to a query could be
discovered. But, for the experiments in this section this is
not true anymore. Due to the failure of peers we may have
leaf peers that are unreachable from some peers at the highest
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level of the indexing hierarchy. To measure this phenomena we
have used the hit rate (Fig. 7(a)), i.e., the average percentage
of matches that are discovered by a query. The impact of
replication on the overall storage overhead in the system is
presented in Fig. 8.

By analyzing the curves in Fig. 7 and Fig. 8 we can infer
the followings:

• Without any replication (R = 1 case) the hit rate reduces
drastically with increase in the percentage of failed peers
(see Fig. 7(a)). Failure of an indexing peer, in this case,
makes all of the leaf peers in its subtree unreachable.
Routing efficiency is also low in this case, as many probes
are wasted (i.e., evaluated as false positive at a parent of
a failed indexing peer) in trying to route queries toward
unreachable peers.

• Routing efficiency and hit rate increases with increase in
R. This increase in hit-rate and routing efficiency (i.e., a
decrease in the number of probes) diminishes with higher
values ofR (e.g.R = 5 or R = 6).

• The downside of replication is the exponential increase
in the indexing overhead (see Fig. 8(a)). However effec-
tiveness of aggregation increases with increases inR (see
Fig. 8(b)). Based on the equations in section III and the
definition of EA (see equation (9)it can be shown that
the valueEA tends to1−Ah−1 (actual aggregation ratio)
asR tends to infinity. This justifies the gradual decrease
in EA in Fig 8(b).

In the light of the experiments presented in this section
we can conclude that, replication is necessary for improving
reliability of the proposed system. A replication factor in the
range of2 or 3 can satisfy the need of most applications,
assuming the peer failure rate is less than30%.
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V. RELATED WORKS

Existing solutions for pattern matching [4], [10] in central-
ized environment, hold linear relationship with the number of
advertised patterns (ortextaccording to pattern-matching liter-
ature) to be matched. This implies flooding, for an equivalent
solution to the DPM problem.

From architectural point of view, Secure Service Discovery
Service (SSDS) [11] is the closest match to DPMS. Like
DPMS, SSDS uses Bloom filter and aggregation. However,
index distribution in SSDS is through a tree-like hierarchy
of indexing nodes, in contrast to the lattice-like hierarchy
used by DPMS. SSDS does not use any replication in the
indexing hierarchy. Higher level nodes in SSDS index tree
handle higher volume of query/advertisment traffic and the
system is more sensitive to the failure of these nodes. Another
major drawback of SSDS, compared to DMPS, lies in its
aggregation mechanism. SSDS uses bitwise logical-OR for
index aggregation. The aggregation scheme adopted in DPMS
(explained in section II-C) retains unchanged bits from con-
stituent patterns and provides more useful information during



query routing.
Unstructured systems ([2],[1]) identify objects by keywords.

Advertisements and queries are in terms of the keywords
associated with the shared objects. Structured systems, on the
other hand, identify objects by keys, generated by applying
one-way hash function on keywords associated with an object.
Key-based query routing is much efficient than keyword-
based unstructured query routing. But, the downside of key-
based query routing is the lack of support for partial-matching
semantics. Unstructured systems, utilizing blind search meth-
ods (like flooding[2] and random-walks [14]), can easily
be modified to facilitate partial-matching of queries, and in
general to solve DPM problem. But, due to the lack of proper
routing information, the generated query routing traffic would
be very high. Besides, there would be no guarantee on search
completeness.

Many research activities are aimed at improving the routing
performance of unstructured P2P systems. Different routing
hints are used in different approaches. In [7] routing is biased
by peer capacity; queries are routed to peers of higher capacity
with higher probability. In [22] and [20] peers learn from the
results of previous routing decisions and bias future query
routing based on this knowledge. In [9] peers are organized
based on common interest, and restricted flooding is performed
in different interest groups. Many research papers ([7], [22],
[12], etc.) propose storing index information from peers within
a radius of 2 or 3 hops on the overlay network. All of these
techniques reduce volume of query traffic to some extent, but
do not provide guarantee on search completeness.

Bloom filter is used by many unstructured P2P systems for
improving query routing performance. In [12], each peer stores
Bloom filters from peers one or two hops away. Experimental
results presented in [12] show that logical OR-based aggrega-
tion of Bloom filters is not suitable for aggregating information
from peers more than one hop away. In [17] each peer store a
list of Bloom filters per neighbor. Theith Bloom filter in the
list for neighbor, sayM , summarizes the documents that are
i− 1 hops away viaM . A query is forwarded to the neighbor
with a matching Bloom filter at the smallest hop-distance. This
approach aims to find the closest replica of a document with
a high probability.

Schmidt et. al. [18] have presented an approach, named
Squid, for supporting partial keyword matching in DHT-
based structured P2P networks. They have adopted space-
filling-curves to map similar keywords to numerically close
keys. Squid supports partial prefix matching (e.g. queries like
compu* or net*) and multi keyword queries. But, Squid does
not have provision for supporting true inexact matching for
queries like*net*.

In general DHT-techniques ([19], [16], [15] etc.) are not
suitable for solving partial keyword matching problem (and
DPM problem) for two reasons. Firstly, DHT-techniques re-
quire to partition the key-space into non-overlapping regions
and to assign each region to a peer bearing an ID from that
region. But from pattern matching perspective it is quite dif-
ficult to partition even one dimensional pattern (or key) space

into non-overlapping clusters, while preserving the notion of
closeness in patterns. Secondly, DHT-techniques cannot handle
common keywords problem[13] well. Popular n-grams like
”tion” or ”ing” can incur heavy load on the peers responsible
for these n-grams, resulting into unequal distribution of load
among the participating peers.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have defined the Distributed Pattern Match-
ing (DPM) problem and have presented a scalable solution,
DPMS, to this problem. DPMS can be used to solve problems
like wildcard searching (for file-sharing P2P systems), partial
service description matching (for service discovery systems)
etc. The number of probes for finding each match (or hit)
in DPMS is in (O(log N

logN )), where N is the number of
peers in the system. For moderately stable networks DPMS
provides guarantee on search completeness. DPMS can exploit
the heterogeneity of peers and can handle churn problem by
maintaining replicas for indexing peers. In DPMS, peers do
not need to have any global view of the system and require
to communicate with only a constant number of peers (B
children,R parents and optionally some neighbors).

The main drawback of the proposed system is the storage
overhead introduced by hierarchical indexing and replication.
Experimental results presented in this paper demonstrates the
worst possible values for the indexing overhead (i.e., for
random case). For most application, there exists some bias
(similarity) in the advertised patterns, which can enable much
higher level of aggregation and hence much lower levels of
indexing overhead. Another problem in DPMS stems from
the leave/join of leaf peers. Leave/join of indexing peers has
only a local effect. But, leave/join of a leaf peer can result
into cascaded update along its replication tree. This problem
can be mitigated by using periodic and differential updates
of index information between the indexing peers. This update
latency will not hamper the normal operation of the system
other than degrading the query routing performance.

The experimental results presented in this paper demonstrate
the strengths of DPMS. It has been shown that only a little
fraction of the peers are probed for finding each match. The
effectiveness of replication has also been presented. We are ex-
tending this research to demonstrate the applicability of DPMS
in different application domains, and to show the impact of a
bias in the advertised patterns on indexing overhead.
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