Distributed Pattern Matching for P2P Systems

Reaz Ahmed Raouf Boutaba
School of Computer Science School of Computer Science
University of Waterloo University of Waterloo
Ontario, Canada N2L 3G1 Ontario, Canada N2L 3G1
Email: r5ahmed@uwaterloo.ca Email: rboutaba@bbcr.uwaterloo.ca
Telephone: (519) 888-4567 ext.4716 Telephone: (519) 888-4820

Fax: (519) 885-1208

Abstract— Flexibility and efficiency are the prime requirements R ULOROTIO
for any P2P search mechanism. Existing P2P systems do not F: 0100 1011 0101
seem to provide satisfactory solution for achieving these two
conflicting goals. Unstructured search protocols (as adopted in
Gnutella and FastTrack), provide search flexibility but exhibit Query)
poor performance characteristics. Structured search techniques
(mostly Distributed Hash Table (DHT)-based), on the other hand,
can efficiently route queries to target peers but support exact-
match queries only. In this paper we present a novel P2P
system, called Distributed Pattern Matching System (DPMS), for
enabling flexible and efficient search.

Distributed pattern matching can be used to solve problems
like wildcard searching (for file-sharing P2P systems), partial
service description matching (for service discovery systems) etc.

E: 1110 1000 1010
F: 0100 1011 o101
G 1000 1100 0010
A

DPMS uses a hierarchy of indexing peers for disseminating 7 0. @il 6E C 1011 0010 1010
advertised patterns. Patterns are aggregated and replicated at B 1101 1010 0110 D: 0101 0100 0101
each level along the hierarchy. Replication improves availability :

and resilience to peer failure, and aggregation reduces storage T Link e > confent T > message

overhead. An advertised pattern can be discovered using any
subset of its 1-bits; this allows inexact matching and queries in
conjunctive normal form. Search complexity (i.e., the number of
peers to be probed) in DPMS isO (log N + ¢ log %) where

N is the total number of peers and¢ is proportional to the .
number of matches, required in a search result. The impact of where the 1-bits of a query pattern can be any subset of an

churn problem is less severe in DPMS than DHT-based systems. advertised pattern that it should match against. In this paper
Moreover, DPMS provides guarantee on search completeness for we present a new P2P architecture for solving this Distributed
moderately stable networks. We demonstrate the effectiveness of pattern Matching (DPM) problem and demonstrate the ef-
DPMS using mathematical analysis and simulation results. fectiveness of the proposed architecture using mathematical
analysis and simulation results.

Keyword searching is one of the essential functionalities

The generic pattern matching problem and its variants haoffered by any peer-to-peer file-sharing system. A Central-
extensively been studied in Computer Science literature. In tiugd filesystem, as present in any traditional operating sys-
paper we focus on a variation of the pattern matching problelem, permits more sophisticated search operations involving
that conforms to two constraints. First, we consider Bloonwildcards and partial keywords. Enabling existing P2P file-
filter based pattern matching with don’t care bits, and secostaring systems with wildcard search capability will allow
we assume that the patterns are scattered among the peersusieas to perform more flexible and powerful searches. Be-
P2P overlay network (see Fig. 1). Each pattern summarizes #iges inexact keyword matching, many problems like partial
properties of a shared object (such as a file or a service) a®dvice description matching for service discovery systems,
is a couple of hundred bits long. One possible form of suchdata record pre-scanning for distributed database systems,
pattern is a bloom-filter [5] obtained from the properties of amolecular fingerprint matching in a distributed environment,
object. Another possibility is to use some predefined encodiett., can be mapped to and efficiently solved using Distributed
of object properties, as adopted in figureprint constructidpattern Matching (DPM).
techniques in molecular biology. Over the last few years DHT-based structured P2P systems

A peer can initiate a query by using a pattern. If the queiy19], [16], [15], [23] etc.) have gained importance due to
pattern is exactly the same as the advertised pattern then effeciency of routing queries and search completeness. Most
problem can efficiently be solved using conventional DH®f these techniques take binary keys as input and apply prefix
techniques. But, we are interested in inexact pattern matchinggtching to route a query to a specific nod&iflog N') hops,

Fig. 1. Distributed Pattern Matching

I. INTRODUCTION

where N is the number of peers in the overlay. Despite theimpact of replication overheads, we have incorporateldrt
efficiency in query routing, these systems are not suitable fcare-based lossy aggregation scheme at each level of the
solving DPM problem. The basic idea behind DHT-techniquesdexing hierarchy. The proposed aggregation scheme allows
is to partition the key-space into non-overlapping regions aimttorporation of multiple advertised patterns or aggregates
to assign each region to a peer bearing an ID from that regi@m.a single aggregate, while making it possible to perform
But from pattern matching perspective it is quite difficult toanatching of a query pattern against the aggregates. The
partition even one dimensional pattern (or key) space into naggregation scheme increases the chances of false positives
overlapping clusters, while preserving the notion of closenessile routing queries. Simulation results indicate that we can
in patterns. achieve45 — 60% reduction in storage and network overhead

Unstructured search techniques, like flooding [2] and rawhile securing query routing efficiency almost identical to the
dom walk [14], can be used to solve DPM problem. But thieleal case, i.e. without aggregation (see. Fig 5).
generated traffic for searching is proportional to the numberTo our knowledge, Distributed Pattern Matching (DPM)
of peers in the overlay and there is no guarantee on seaptbblem has not been addressed by any research activity in the
completeness. Hence adopting a unstructured search technjser-to-peer context, so far. The index distribution architecture
is not a good choice for solving DMP problem. of DPMS is unique and has been designed to specifically solve

In this paper we present a P2P system, DPMS (Distributéte DPM problem. The novel aggregation scheme, proposed
Partial Matching System), for efficiently solving the DPMn this paper, can effectively reduce storage overhead at the
problem. DPMS uses replication and aggregation for digydexing peers without incurring a significant decrease in
tributing patterns advertised by peers across the P2P overlgyery routing performance. However, the use of bloom filter
In DPMS, peers collaborate to form a lattice-like indexindor representing indices is not new. Many network applications
hierarchy. This hierarchy is used to efficiently route queries tse bloom filters. A comprehensive list of such applications
target peer(s). can be found in [6].

DPMS has several properties of an unstructured P2P systenThe rest of this paper is organized as follows. The ar-
First, it supports flexible queries involving partial and multiplghitecture and operation of DPMS are presented in section
keywords. Second, placement of documents is not controllgd Mathematical analysis of search complexity in DPMS
by the system. Third, it can exploit the heterogeneity in pegy provided in section Ill. Section IV presents experimental
capabilities. Unreliable and less capable peers contributerégults. Section V provides a description and brief comparison
less important parts of the indexing hierarchy, while reliablef the existing approaches with DPMS. Finally, concluding
(long lived) and powerful (in terms of storage and connectiaemarks are presented in section VI.
speed) peers take responsibility of more important parts of the
indexing hierarchy. Il. THE NEW SYSTEM

To avoid flooding and to provide an efficient query routing This section presents details on DPMS architecture. In this
mechanism, DPMS uses the indexing hierarchy. The philossection we will use the termgattern and index interchange-
phy behind this architectural choice is that, by building an irably, as patterns are used as indices for query routing.
dexing hierarchy of heigh®(log IOJgVN) we can have (log N) _
peers at the highest level. Peers at any level collectively covéys Overview
all the leaf peers (hence all the advertised patterns) residingn DPMS a peer can act as a leaf peer or indexing peer
at the bottom level of the indexing hierarchy. In other wordsr both. A leaf peer is at the bottom level of the indexing
we can check all the patterns at the bottom level by probimgerarchy and advertises its indices (created from the objects
only O(log N) peers at leveD(log loNN)' This means we can it is willing to share) to other peers in the system. An indexing
find x leaf peers containing match fora given query pattern jseer, on the other hand, stores indices from other peers (leaf
O(log N + exlog logN) probes. TheO(log N) probes is the peers or indexing peers). A peer can join different levels of
cost of flooding at the topmost level aftcx log ﬁ) is the the indexing hierarchy and can simultaneously act in both
cost of reaching the matching leaf peers along the indexingoles. Indexing peers get arranged into a lattice-like hierarchy
hierarchy of heightO(log 1ongN)- The terme depends on the (see Fig. 2) and disseminate index information using repeated
amount of false positives introduced by the lossy aggregatiaggregation and replication.
scheme. Index (e.g. keywords or hash keys) replication is used by

In such a hierarchy the topmost level peers will receive rmany unstructured P2P systems for improving reliability and
very high volume of queries and will become performance batvailability. But replication incurs extra overhead on storage
tleneck. Besides, fault-tolerance characteristics of the systamd network bandwidth. To improve efficiency, these systems
will be poor; failure of any peer along the indexing hierarchgdopt smart replication strategies [8].
will result into unreachable leaf peers. To overcome theseDPMS uses replication trees (see Fig. 2a) for disseminating
problems DPMS uses replication at each level of the indexipgtterns from a leaf peer to a large number of indexing peers.
hierarchy. However such a replication strategy will generate a large

With such a replication strategy, the network and storagelume of traffic, and is not feasible for any practical imple-
overhead for index maintenance will be high. To reduce tmeentation. To overcome this shortcoming, DPMS combines

replication with aggregation to minimize the volume of traffic In unstructured systems, on the other hand, documents are

between peers in adjacent levels in the indexing hierarcijentified using associated keywords. A query consists of one

As shown in Fig. 2b, advertisements from different peers @ more search keywords. Query routing is done based on

aggregated and propagated to peers in the next level alondfihsling or random walk. A peer receiving a query can return

aggregation tree. a document partially matching the search keyword(s), in case
The amount of replication and aggregation is controlled by exact match was not found.

two system-wide parameters, namely replication fadtand ppMs uses Bloom filters [5] as indices, to achieve the

branching factor3. In order to achieve constant volume Oidvantages of both unstructured and structured P2P systems,
messages exchanged between adjacent levels, an aggregaiogfficient routing and inexact matching.

ratio of R : 1 is required.

Level 3

Bloom filters are used to test set membership. Because of
their space-efficiency, Bloom filters are used in many net-
Branching factor = 3 work applications for exchanging content summary between
/\ subtree @ Advertising peer ® Indexing peer Replication factor = 2 networked nodes [6]. However, this space-efficiency comes at
the expense of a small possibility of false positives in the
‘ R R s /9 ?\ i LS membership check operation.
The algorithm for Bloom filter construction is simple. A
FA X& A/” A XKA_A} A /‘\ M Ll Bloom filter is represented as a m-bits array. k different hash
’—A A—A A} functions are also required to be defined. Each of these hash
;\ S g ¢ 9 Levell functions should return values within the range[@fm). In
\ an empty Bloom filter all the m-bits are set to 0. To insert an
‘ LA K'Y Jal é00 600 000 Leafs glement (a string or keyword), it is hashed with the k hash
a) Replication Tree: Propagation of b) Aggregation Tree: Hierarchical functions and Corresponding k array pOSitiOﬂS are setto 1. To
patterns generated from a peer et o e /" test set membership for an element, it is hashed with the k
Fig. 2. DPMS overview hash fun_ctions to get k_arra_y positions: _If all of these k—_bits
are set (i.e. 1), then with high probability the element is a
member of the set represented by the Bloom filter, otherwise
Patterns advertised by a leaf peer are propagate®'to it is not.
indexing peers at I_evel. On the other hand, an indexing Each document in a traditional file-sharing P2P system is
peer at levell contains patterns fron' leaf peers. Due 10 yoqciated with a set of keywords. In DPMS, all the keywords
repeated aggregation, the aggregates become more generic{Le, iated with a document are encoded in a single Bloom-
Iqwer information content) as we move up along the indeXir'\ﬂﬁter. To facilitate inexact matching, each keyword is first
hierarchy. ~ _ fragmented into n-grams (usually trigrams). These n-grams are
The indexing hierarchy has three-fold impact on systefja, inserted into the Bloom filter representing the document.
performance. Firstly, the indexing hierarchy evenly distributes K q Iso f ted into n- Fi
index information (and queries) in highest level indexing peer, _Query eywords are aiso fragmented Into n-grams (see Fig.
This helps in load balancing the system and improves fa ar;g Snco%ed |ntfo a Bloom f||t§r. Theh 1'E;ts on ha query
tolerance. Secondly, peers can route queries towards ta hisu Kin de Osfuers;:)ginany"patternt at 't§ ou d matc agalr:js_t.
leaf peer(s) without having any global knowledge of the . g allows us to” retnejv_e_ ocuments,,, a
overlay topology. Each peer needs to know the addresses oiyﬁg'sed. with keywordélnvmble man and V'?'ble woman-
children, replicas and one of its parents. Finally, the indexir{@?pecnvely’ using a query containing partial keywords like

hierarchy helps in minimizing query forwarding traffic. While ISt man-.
forwarding a query from a root peer to multiple leaf peers in
the same aggregation tree, shared path from the root peer to Advertisement -1 _
the common ancestor of the target leaf peers is utilized. Keywords: _invisible man
Trigrams: inv, nvi, vis, isi, sib, ibl, ble, man
B. Index/pattern Construction from keyWOde Bloom filter: 00100110100011101001001001100111
In DHT-based systems an index is obtained by applying Advertisement-2
some system-wide known hash function to the keyword(s) Keywords: _visible woman

Trigrams: vis, isi, sib, ibl, ble, wom, oma, man

related to a document. In DHT-techniques an index is used Bloom filter 1010001000101110101 1000001100101

in two ways. First, to identify a document, and second, to

identify the peer responsible for that document (or a pointer Query —
to that document). A query consists of an index, created by Query: st man

N A X Trigrams: vis, isi, man
hashing the search keyword. This warrants the search index Bloom filter: 00000010000010000001000001000100
to be identical to the advertised index. However, a peer can

readily identify the responsible peer for a query, and route t
guery to that peer efficiently.

. 3. Bloom filter example of two advertisements and an inexact multi-
ord query. 1-bits in boldface corresponds to the matching trigrams.

For a P2P service discovery system the index can bggregation tree. But, due to increased level of aggregation
obtained in a similar fashion using attribute-value pairs instetfie contained information gets vaguer at higher levels.
of keywords. Molecular fingerprint can be used as index for Indexing peers at levdlarrange intoR! groups (horizontal
some envisioned distributed system storing molecular structisets), numbered fror to (R’ — 1) (see Fig. 4). In the ideal
information. case, all the indexing peers in a single group (at any level)
should collectively cover all the leaf peers in the system.

C. Aggregates A peer at levell and groupg (0 < g < R!) is responsible
DPMS relies on replication for disseminating pattern infor transmitting its aggregate information i parents at level
formation along replication trees. Replication is necessafy+ 1). Each parent belongs to a different group, in range
for load-balancing and for improving fault-tolerance. Thé x R, (g + 1) x R), respectively.

replication strategy adopted in DPMS would significantly

increase network and storage overhead. DPMS uses repeated ~ Brenchirgfector.B=3 Replication factor, R = 2
aggregation at each level along the hierarchy to mitigate this . Level 2- Index
problem.
We suggest a don't care based aggregation scheme, i.e. don't SLT“QO } -0 1 % Oz /;D -O 3
cares (presented by X) are used to represent both 1 and 0 in — / W
the same bit position. Don't cares are used at the positions Level 1~ Index
where the constituent patterns disagree. E é{?é ~O®@| @ E{?ﬁ O -0
This type of aggregates retains parts from the constituent 9 !

patterns or aggregates. A 1-bit (or 0-bit) in such an aggregate I W / Level O - leafs

indicate that all the patterns contributing to this aggregate K %

had 1 (or 0) at corresponding position. However incorporating &

this extra information (i.e. X's) incur some space overhead, For peer E

which can be minimized by compressing the gggregates_ u§ing Child-list :{ABC) Parent-list :{5.T}

huffman encoding or run length encoding during transmission Replica-list :{L} Neighbor-list : (H.J}

through the network. Fig. 4. Index distribution architecture . All the peers interacting with peer

An indexing peer acts as a multiplexer in the indexing are labelled. Group number is printed at the bottom right corner of each
hierarchy. It gathersn-lists (lists of patterns or aggregate°*-
from the B child peers), aggregates them to another list
(referred to asout-list) of aggregates, and sends this list to Peers at levell and groupg organize into subgroups
each of its parents. (referred to as siblings) of sizB to forward their aggregated
Construction of this out-list is not trivial. We want theinformation to the same set of parents. Thus each group in
aggregates in the out-list to have a minimum numbefXef rangelg x R,(g + 1) x R) at level (I + 1) will contain a
bits. This ensures minimum information loss. The probleeer replicating the same index information. This provides
of obtaining an out-list containing minimal number &fbits redundant paths for query forwarding and increases tolerance
is NP-complete. Instead we use a heuristic approach to méapeer failure.
sure tiie degree of similarity between two pa"[terns/agg.regatgjs.Topology maintenance
Experimental results show that a near optimal out-list can

be produced by combinina patterns/agareaates with highe in the DPMS index distribution hierarchy peers interact with
degfee :f similgrity Ining patiernsiaggregates wi g e%ch other in different roles, e.g. parent, child, neighbor etc.

As a measure of the degree of similarity between t\/\/%‘n indexing peer, say belonging to levell and groupy,

patterns/aggeregates, we have used the percentage of positrir(])%lg tains four separate lists for this purpose (see Fig. 4).

at which they agree. To compute out-list from tBein-lists, 1) Replica-list contains the list of peers in the adjacent
obtained fromB children, we have used an iterative algorithm. ~ 9roups that have common children as that:ofThis list

At each iteration step, the pair of patterns with highest degree ~ CONtains(R — 1) peers, one from each group in range
of similarity were combined and the resultant aggregate was_ [L9/%] * R, (lg/R] +1) x R), excludingg.

inserted into the (intermediate) out-list for consideration in the) Pr’;\rent-list This is the r(_eplii:a list obtaineoi from one of
next iteration step. E’s parents.E uses this list to forward its aggregate

information (out-list) to all of its parents along a repli-
D. Index Distribution cation tree.
3) Child-list contains the list of all children and the replica
list for each of them. A peer normally communicates
with the child peers only. But in case of a failure of
a child it can communicate with a replica of the failed
child. This list containsB entries corresponding to the
B children of E at level (I — 1) and groupg/R.

An indexing peer, participating in the DPMS architecture,
belongs to two sets, a vertical set (i.e., level) and a horizontal
set (i.e., group). According to the degree of aggregation,
each indexing peer belongs to a level (vertical set). Peers
participating at higher index levels cover (i.e., contain index
information from a) higher number of leaf peers along the

4) Neighbor-list contains a fixed number of non-siblingreplica-list from P and set these values aitlas its parent-
peers that are in the same group @s peerE. This list. ThenC can start advertising its patterns to all the peers in
list is mostly used for maintaining connectivity in aits parent-list. IfC fails to find a level 1 peer with an empty
group, during join operation, and for flooding querieslot, then it can either join in both level 1 and level O or select
horizontally within a group (mostly at the topmosia level 1 peer with lowest number of children.
group). To join the indexing hierarchy as an indexing peer, a peer

out of these four lists a peer needs to keep track of thrd&ay £) has to go through the following steps:
child-list, parent-list and neighbor-list. The replica-list of a « Choose level and groupPeerE has to choose a level,
peer is the parent-list of any of its children. Peers use the say! in the hierarchy. Selection of level can be based
Newscast protocol [21] for maintaining and updating these on the nodes capacity, uptime distribution etc. Peers with
lists, i.e., to detect peer failures and arrival of new peers. Flow higher capacity (storage and bandwidth) and longer life-

of news packets is restricted fox R groups of peers. More
specifically, the news-list of a peer at levednd groupg will
contain information about some peers from grolips R x

time are expected to join higher levels in the indexing
hierarchy. Then peeE can choose a group in random
such thatg is in [0, R!).

R,(lg/R]+1) x R) at levell and groupgg x R, (9+1) X R) o Construct child-list: Joining Peet” has to contact a seed
at level (I + 1). That is, each peer sends news packets to peer to get information about other peers in the system.
its parents, neighbors and replicas, and receives news packets Peer E can crawl the index hierarchy to reach a peer,
from its children, neighbors and replicas. say A, such that peed is in level (I — 1) and in group
Unlike indexing peers a leaf peer maintains only the [g/R], and the parent-list of peed contains less than
neighbor-list and forwards this list to its parents. A leaf peer R entries. Peely can join as a parent of peef. Peer
obtains its parent-list from one of its parents. It should be E has to join the group in which peet has no parents.
noted that leafs peers do not have any replica-list or child-list. PeerE has to obtain and update the replica-list of other
parents of peer. PeerE can obtain the child-list from
a parent of peerl. PeerA can have an empty parent-list
during the initialization phase of the system or after a
failure of all of its parents. If peed returns an empty
parent-list, then peeE should look for other (upta3)
peers, in the same group as that of pderwith empty
parent-list. If such peers exist then pdérshould make
them its children.
Construct parent-list: To construct the parent-list peer
E has to find a peer, sd¥, such that peef’ is in level
(I+1) and in group(g x R), andT has an empty slot
in its child-list. If such a peerX) exists then peelr
constructs its parent list using peBrand all the replicas
of peerT'. Otherwise, pee® will start with an empty

F. Query Routing

A query can be initiated by any peer in the system. The
query life-cycle can be divided into three phases: ascending
phase, blind search phase and descending phase.

During theascending phasean initiating (or intermediate)
peer, checks its local information for the existence of a match.
If a match is found, then the query is forwarded to the
matching child, otherwise it is forwarded to any of its parents. *
This precess recurs until the query hits a peer with a match,
or reaches a highest level peer.

The Blind search phasés executed by a highest level peer,
say Z, upon receiving a query (from a child) that does not
match any aggrega}te.m its aggregate—llﬁs‘lc_)ods the query parent-list, and will wait for more peers to join at level
to all other peers in its group. If no peer in a group at the (1+1)
highest level contains a match, then the query was for a non- '
existent pattern, and so the search fails. H. Node Leave or Failure

A query enters into theescending phasehen it hits a peer |, ppMms, peer departure and failure are handled in the
containing a matching aggregate. The query is then forwardegg,o manner, i.e., a peer can leave the system without any
to the child peer 'advertising the matching aggregate. ThiSiice. The absence of an indexing peer, g@ywill affect
process recurs until the query reaches a leaf peer. Two typesf peers in its parent-list, child-list and replica-list. Parents
exceptions may occur. Firstly, a false match may occur and th&q children of £ can still communicate through any of the

search branch terminates. Secondly, a peer may have multilgjicas of peetz. So query routing is not hampered until all
children matching the query and multiple search branches ¢ghne replicas of a peer fail.

be initiated. Priority and the order in which search branchesggjiyre or departure of a leaf peer has greater impact on the
are |f1!t|ated 1S guided by predefined policy and app"cat'o%ystem. All the index information along the replication tree,
specific requirements. rooted at the failed leaf peer, has to be updated. During this
. period (from the point of failure to the update of all indexing
G. Node Join peers in the replication tree) a query directed towards the failed
A peer can join the system as a leaf peer or an indexitepf peer will be evaluated as a false positive. This will increase
peer or both. To join as a leaf, a peer $ayhas to find a level search overhead to some extent.
1 indexing peer, say, with an empty slot in its child-listC To efficiently deal with frequent join and leave of a leaf
joins the indexing hierarchy as a child éf. C' obtains the peer, indexing peers should advertise their index information at

constant intervals. Any advertisement from a child peer shoutalone. Experimental results presented in section IV-B places a
be delayed until the end of the interval. The interval length cdoound of1.3 one. The results also demonstrate that this bound
be used to tradeoff index update delay with network overheednot dependent on the number of peers in the network.
due to frequent advertisements.
IV. EXPERIMENTAL EVALUATION
HI. ANALYSIS To measure the performance of the proposed system and to
In this section we will provide an analytical bound on theerify the concepts presented in this paper, we have developed
levels of indexing hierarchy that will allow query routing ina prototype of the system and have simulated the prototype
O(log N) hops, whereN is the total number of peers in thewith various parameter settings. This preliminary version of
system. For this analysis we will usé to denote branching the implementation simulates a static P2P network confirming
factor, R for replication factor andy; as the number of peersto the DPMS architecture. Though, the current implementation
at level I. Leaf peers reside at level 0 and the height (a8 not capable of simulating node-joins and dynamic topology
maximum level) of the indexing hierarchy #&. Assuming maintenance, it has the ability to simulate peer failures. This
these definitions we can calculate the total number of peersafibws us to evaluate the impact of replication on routing

level [as: . performance and hit rate of a query, in the presence of peer
n = no (R> = ngal 1) failures. The current implementation can easily be plugged
B into the PeerSim [3] framework. We intend to use PeerSim

simulator for performing experiments with dynamic overlays.

and the total number of peers in the system as: - X k v
Each data point presented in this section has been calculated

=k . altt —1 as an average of the statistical values obtained from 10
N=> noa T T (@) independent simulation runs and 3000 random queries per
=0 simulation run.
Hence the total number leaf peers in the system, In these experiments, patterns advertised by the leaf peers
a—1 are uniformly distributed over the pattern space. But, this is
no = Nm () not the case for applications, like partial keyword matching

. or service discovery. In these applications the patterns are
Now, the number of groups at levels £'. So, the average yqom_filters, constructed from a finite set of elements, e.g.,

number of peers in a group at leviglsaym, is: n-grams for partial keyword matching, or attribute-value pairs
_ 4 for service discovery systems. As a result, the patterns are
R more likely to be concentrated at various regions in the pattern

space, instead of being distributed uniformly over the pattern

space. This property would allow better level of aggregation

N(a—1) of the advertised patterns than the pure random case presented
in this section.

~ Bl(aMt1 1)
In practice, in an overlay network, the number of peers in In section IV-A, we identify the system parameters and

a group will be close ton,. And for efficient query routing performance metrics, and investigate the impact of various
we expect the number of peers in a group at leveb be system parameters on these performance metrics. Then we
f xlog N, wheref is a positive real number, in range.5 < focus on the scaling behavior of the system with network size,
F<2) S’O replacingm;, = f x log N in eéuation (5') we N section IV-B. This allows us to place some bound on the
obEain'. ’ h value of ¢ (see section lll) for specific parameter settings.

' hy hel N(a—1) Finally, in section IV-C, we present the experimental results
BYa™ 1) = flog N 6) 1o illustrate the impact of various levels of replication on the
system’s tolerance to peer failure.

Combining equations (1), (2), (4) and using = % we
obtain:

my

®)

For practical values of andh we can approximatén/+1 —
1) with (9 x o) for some constam. Replacing this value in A. Parameter tuning

equation (6) gives: DPMS uses aggregation for reducing index storage size at
1 N x (a—1) the peers contributing to the higher levels of the indexing
h =~ log R X IOgW =0 (1055 > (") nierarchy. The level of aggregation introduces a trade-off
. .) o between query routing efficiency and index storage size at
~ Thus we claim that if we can build and maintain apeers A higher level of aggregation results into a lower level
index hierarchy of hightO (log ;v | then we will be o g15rage overhead, a higher level of information loss in the
able to solve the Distributed Pattern Matching problem nggregateS, and a decrease in the query routing efficiency, and
O (log N + &log log%) time, where{ = ¢x, « is the number vice versa. In this section we intend to find a balance between
of results required by a query, andis the amount of false these two conflicting interests.
positives introduced by the lossy aggregation scheme. For @able | summaries the system parameters and their values
system without any aggregation the valuesafould be equal or ranges used for parameter tuning.

log N

The first four parameters in table | define a particular point Fig. 5(a) and 5(b) show the impact 6f and W on query
in the sample space, containing all possible instances of DPMfiiting accuracy. While Fig. 5(c) and 5(d) show the impact
hierarchies. These experiments are dedicated for analyzofgD andW on storage overhead. By analyzing the curves in
the impact of different system parameters on query routitigese figures, we can infer the followings:
performance and storage overhead. Hence, we have chosen gyery routing accuracy increases with increase in mini-
R=1. This allows us to separate the performance characteristics ,um number of non-X bits(?) in the aggregates. This
of the system from the fault-tolerance behavior.

The last three parameters, on the other hand, influences
query routing efficiency. The aggregation process strives to
achieve an aggregation ratio equal dowithout introducing
more than(W — O) don’t cares in any aggregate. The impact
of parameteil (pattern width) on query routing performance
and level of aggregation is intuitive though not trivial. Experi-
mental results demonstrate that, for a fixed valu@pihcrease
in W increases query routing accuracy while decreasing index
storage requirement at peers.

effect is intuitive. With higher number of original bits

we have more information and lower probability of false

positives.

« Indexing overhead increases with increase in the number
of non-X bits (0). An increase in non-X bits means lower
number of don't care bits are allowed in the aggregates,
which implies less space for aggregation. This results in a
higher number of aggregates in the system. This justifies
the previous observation as well.

« For O = W case there is no aggregation in the system
and the number of false positives is zero, which gives

Pagm. Xalue(s) g:e::gmg”faaor the best possible values for query routing metrics. For
R 1 Replication factor this case, the indexing overhead is 4, while effectiveness
H 3092 Maxir]pum level) of aggregation is 0.

N no. of peers in the system i _ _ ' i

P 10 number of patterns advertised by a leaf « With O = 60_and W = 80, at mOSt_ 20 qont Ca_re_ bits
peer. are allowed in the aggregates. With this restriction no

A 0.6 target aggregation rafio - aggregation takes place. This justifies the sharp rise in

O 10, 20...60 Minimum number of non-X bits in an indexing overhead for) = 60 curve at pointiV = 80
aggregate .

w 80, 100...200| Pattern or aggregate width (see F'Q-_S(C))- _ _
TABLE | « Not all bits of a pattern are required for query routing

with high accuracy. Query routing accuracy is almost the
same forO = 50 and O = W cases, whereas, indexing
overhead forO = 50 case is only65% of O = W case.

« For O = 10 and O = 20 curves query routing accuracy
increases with increase . This is because we are
using both positional value and content of each bit while

SYSTEM PARAMETERS AND THEIR VALUES USED FOR THE PARAMETER
TUNING EXPERIMENTS

The performance metrics analyzed in this section are:

first-hit probes: The number of peers that are being
probed before the first match is found.

Avg. probes/hit The average number of probes required
for each hit, in cases where multiple matches are present.
We have traced up to 20 matches. .

matching a query to an aggregate. WHen increases,
possible positions of non-X bits increases, which reduces
the probability of false positives. Hence, the decrease in
the number of hops.

For a fixed value ofO, indexing overhead decreases

« Indexing overhead (IO): This metric gives a measure With increase in pattern-widthl(). Given two random
of the extra storage space requirement introduced by the Ppatterns, the probability that they will match on a given
indexing hierarchy. Indexing overhead is measured as the number of bits increases wifl'. This results into higher
ratio of the total number of aggregates in the system to Probability of aggregation and lower indexing overhead.
the total number of patterns advertised by the leaf peers.

no. of aggregates (at the inexing peers) B. Scaling Behavior

I =
© no. of patterns (at the leaf peers)

)

In this section we analyze the scaling behavior of DPMS

. . L _) with growth in network size. Based on the observations
« Effectiveness of aggregation (EA)This metric provides presented in section IV-A we have choséi — 180 and

with a measure of the amount of reduction in the 10t@¢h _ 50 for the experiment presented in this section. The
number of aggregates achieved with the aggregatigimper of peers) in the system has been varied from
mechanism. The following equation is used to measug,ng 8000 to 16000 while keeping the number of peers per
this quantity: group at the highest level of indexing hierarchy in the range
of log N and2log N. We have used? = 1 and B = 4 to
remain compatible with experiments present in the previous
section. The value off was set to5 to accommodate all the

1A is computed as the ratio of the number of aggregates in the out-IistQ@erS_ in the mdex_mg hierarchy, without violating the above
the number of patterns/aggregates in the in-lists, received fBochildren. mentioned constraints.

no. of aggregates with aggregation

EA=1- - .
no. of aggregates without aggregatio

50

first-hit probes
s
&

©
8
avg. probes/hit

20

60 80 100 120 140 160 180 200 220

pattern width in bits (W)
pattern width in bits (W)

(2) First hit probes (b) Avg. probes per hit

o
2
3

Min. non-X
bits (O)

T
1\

—=— 0=10-bits

—a— 0=20-bits

—— 0=30-bits

o g
@
8

Effectiveness-of-aggregation
g

—*— 0=40-bits

Indexing overhead
°
Iy
8

—e— 0=50-bits

o
5

—+— 0=60-bits

~

S

8
°
3
8

80 100 120 140 160 180 200 220 —e—O0=W

pattern width in bits (W) pattern width in bits (W)

2
g
o
8
-
5
38
5
S
5
3
"
3
&8
=
&
&8
N
5]
8
N
N
S
Y
8

(c) Indexing overhead (d) Effectiveness of aggregation

Fig. 5. Impact of O and W on routing performance and storage overhead

N
]

increased O (and decreaseB A), as the number of aggregates

/ﬁ/ increases while the number of leaf patterns remains the same.
For this experiment neither the value &f nor the value of

N
S

No. of Probes
.
&

b e R has been varied, which kept the ratio of the number of
’ advertised patterns to the number of aggregates in the system
So00 o000 11000 12000 o0 17000 the same. We obtained an averafge of 3.09 and FA of
No. of peers 0.48 for each of the sample points. The valuefofl indicates
e Firsthit probes —»— Avg. probesihit ——2nd-hit probes — €=1.3 that the aggregation process allows us to reduce the number

Fig. 6. Scaling behavior of aggregates in the system b§% from no aggregation case.

C. Fault tolerance
This section presents the impact of replication on routing

performance. This figure presents the curves for the first Hi rformance in the presence of peer failure. For the experi-

probe and the average probes per hit metrics accordingr[t](‘?mS of this s_ectlon we have varied the replication factor
definitions presented in section IV-A. The metd@nd hit from 1 to 6 while keeping all other parameter at a constant

probes represents the average number of additional prob glueﬁ We have useﬁ{ =4, ﬁ - 4f' O =50 ar;1dW = 180. 4
required for the second hit. The first hit probe includes t ot te)se jettlngfs t e_num er ompeers 'P t e_system vane
cost of flooding O(log N)) the peers in a group at the hight rom aboutd, 000 (for R = 1 case) tol0, 500 (for 1 = 6 case).

level of the indexing hierarchy. This justifies the gap betweé:rpr each value oft we have deactiyated (.e. removed) upto
the first hit probes and the second hit probes. 50% of the peers from the system in a step56%, and have

The upper bound curve is a plot of the following equatiorﬁxecmed 3000 queries on the rest of the peers for each case
(simulation run). Each point in the curves in Fig. 7 represents

(10) the average of 10 such simulation runs.
log N Like the previous experiments, we have used the first hit
The value of: was found to be .3. This implies that the value probes (Fig. 7(c)) and the average number of probes per
of ¢ is not dependent on the number of peers in the systerhit (Fig. 7(d)) as the metrics for measuring query routing

It has also been revealed from the experiment that tperformance. For the previous experiments there were no
indexing overhead/(O) and effectiveness of aggregatiaiid) failure of peers, and so all the matches to a query could be
does not depend on the number of peers in the system. Thdseovered. But, for the experiments in this section this is
metrics are dependent on the maximum number of levé)s (not true anymore. Due to the failure of peers we may have
and the replication factorR). An increase inH (and/orR) leaf peers that are unreachable from some peers at the highest

Fig. 6 presents the impact of network size on query routin

probes = no. of root peers + € log

presented in Fig. 8.

1 20000
0.6

0 10 20 30 40 50

15000

10000

hit rate (%)

5000

Number of failed peers

Failed peers (%)

Failed peers (%)

(a) Hit rate (b) Number of failed peers

IS
S
IS
S

Replication
factor

w
&
w
&

w
s
w
8

5 ——R=1

N
]
N

i

-
]

First hit probes

N
3

.

&

Pl

1]

w

Avg. probes/hit
3
ol
11
S

=
o
=
S

o «
o o

0 10 20 30 40 50 0 10 20 30 40 50 —8—R=6

Failed peers (%) Failed peers (%)

(c) First hit probes (d) Avg. probes per hit

Fig. 7. Impact of replication and peer failure on routing performance and hit rate of a query

g

level of the indexing hierarchy. To measure this phenomena
have used the hit rate (Fig. 7(a)), i.e., the average percent:
of matches that are discovered by a query. The impact
replication on the overall storage overhead in the system

120

8

Effect. of Aggregation (EA)

Indexing overhead (1O

By analyzing the curves in Fig. 7 and Fig. 8 we can infe

2 3 4 5 6

2 3 4 5

the fOIIOW|ngS Replication factor (R) Replication factor (R)

reliability of the proposed system. A replication factor in th
range of2 or 3 can satisfy the need of most application
assuming the peer failure rate is less ti3af.

« Without any replication g = 1 case) the hit rate reduces G)) (b)
drastically with increase in the percentage of failed pee
(see Fig. 7(a)). Failure of an indexing peer, in this cas Fig. 8. Impact of replication on storage overhead
makes all of the leaf peers in its subtree unreachab
Routing efficiency is also low in this case, as many probe
are wasted (i.e., evaluated as false positive at a parent V. RELATED WORKS

a failed indexing peer) in trying to route queries towar Existing solutions for pattern matching [4], [10] in central-

unreachable peers. ized environment, hold linear relationship with the number of

* IR%OI_JI_trl]r.]g .eff|C|ency. am hltt rate(;ncre? S€s fvfwth Increase advertised patterns (¢extaccording to pattern-matching liter-
- 'S Increase In hit-rate and routing €etliciency (|.e_., ature) to be matched. This implies flooding, for an equivalent
decrease in the number of probes) diminishes with hlgl'g

values ofR (e.g. R — 5 or R — 6) olution to the DPM problem.
(€.g. .t =5 0r fi =), I From architectural point of view, Secure Service Discovery
« The downside of replication is the exponential mcrea;abe

in the indexing overhead (see Fig. 8(a)). However effeB-erV'ce (SSDS) [11] is the closest match to DPMS. Like

tiveness of aggregation increases with increasds (see PMS, SSDS uses Bloom filter and aggregation. However,
ggreg index distribution in SSDS is through a tree-like hierarchy

Fig. 8(b)). Based on the equations in section IIl and the". . . N .
definition of EA (see equation (9)it can be shown tha?er indexing nodes, in contrast to the lattice-like hierarchy

the valueE A tends tol — A"~! (actual aggregation ratio _used_by D_PMS' SSD.S does not use any replica_tion in the
as R tends to infinity. This jusgifies theggragllual decrea)éhgdex'ng .hlerarchy. Higher level nodes_ in SSDS _mdex tree
in EA in Fig 8(b). andle higher volume of query/advertisment traffic and the
. . . _ . system is more sensitive to the failure of these nodes. Another
In the light of the experiments presented in this secti ajor drawback of SSDS, compared to DMPS, lies in its
we can conclude that, replication is necessary for improw%%gregation mechanism. éSDS uses bitwise Ioé]icaI-OR for
fhdex aggregation. The aggregation scheme adopted in DPMS
?éxplained in section 11-C) retains unchanged bits from con-

stituent patterns and provides more useful information during

guery routing. into non-overlapping clusters, while preserving the notion of
Unstructured systems ([2],[1]) identify objects by keywords:loseness in patterns. Secondly, DHT-techniques cannot handle

Advertisements and queries are in terms of the keywordemmon keywords problefid3] well. Popular n-grams like

associated with the shared objects. Structured systems, ontlen” or "ing” can incur heavy load on the peers responsible

other hand, identify objects by keys, generated by applyirfigr these n-grams, resulting into unequal distribution of load

one-way hash function on keywords associated with an objeatmong the participating peers.

Key-based query routing is much efficient than keyword-

based unstructured query routing. But, the downside of key- VI. CONCLUSION AND FUTURE WORKS

based query routing is the lack of support for partial-matching |, this paper, we have defined the Distributed Pattern Match-

semantics. Unstructured systems, utilizing blind search memg (DPM) problem and have presented a scalable solution,
ods (like flooding[2] and random-walks [14]), can easilyp\is to this problem. DPMS can be used to solve problems
be modified to facilitate partial-matching of queries, and ifxe wildcard searching (for file-sharing P2P systems), partial
general to solve DPM problem. But, due to the lack of propggryice description matching (for service discovery systems)
routing information, the generated query routing traffic wouldi= The number of probes for finding each match (or hit)

be very high. Besides, there would be no guarantee on seaichhpms is in (O(log%)), where N is the number of
completeness. o _ _ _ _peers in the system. For moderately stable networks DPMS
Many research activities are aimed at improving the routingiges guarantee on search completeness. DPMS can exploit
performance of unstructured P2P systems. Different routifg, heterogeneity of peers and can handle churn problem by
hints are used in different approaches. In [7] routing is biasﬁﬁ’aintaining replicas for indexing peers. In DPMS, peers do

by peer capacity; queries are routed to peers of higher capagjbt need to have any global view of the system and require
with higher probability. In [22] and [20] peers learn from tth0 communicate with only a constant number of peeBs (

results of previous routing decisions and bias future quegidren. R parents and optionally some neighbors).

routing based on this knowledge. In [9] peers are organizedrne main drawback of the proposed system is the storage
based on common interest, and restricted flooding is performad, a4 introduced by hierarchical indexing and replication.
in different interest groups. Many research papers ([7], [24yperimental results presented in this paper demonstrates the
[12], etc.) propose storing index information from peers withif st possible values for the indexing overhead (i.e., for
a radius of 2 or 3 hops on the overlay network. All of thesg,\4om case). For most application, there exists some bias
techniques reduce volume of query traffic to some extent, Qfmijarity) in the advertised patterns, which can enable much
do not provide guarantee on search completeness. higher level of aggregation and hence much lower levels of

_ Bloom filter is used by many unstructured P2P systems fpjyeying overhead. Another problem in DPMS stems from
improving query routing performance. In [12], each peer Storgss |eave/join of leaf peers. Leaveljoin of indexing peers has
Bloom filters from peers one or two hops away. Experimentglyy a |ocal effect. But, leave/join of a leaf peer can result
results presented in [12] show that logical OR-based aggregdy cascaded update along its replication tree. This problem
tion of Bloom filters is not suitable for aggregating mformaﬂor&an be mitigated by using periodic and differential updates
from peers more than one hop away. In [17] each peer storg@gex information between the indexing peers. This update
I!st of Blopm filters per ne|ghbor.. Thé&h Bloom filter in the latency will not hamper the normal operation of the system
I'|st for neighbor, s_ayM, summarizes the documents 'Fhat Bther than degrading the query routing performance.

. 1 hops away viall. A query is forwarded to th_e nelghbor_ The experimental results presented in this paper demonstrate
with a matchmg Blo_om filter at the smal_lest hop-distance. Th_{ﬁe strengths of DPMS. It has been shown that only a little
approach aims to find the closest replica of a document Wlllrl?;\ction of the peers are probed for finding each match. The

a high probability. effectiveness of replication has also been presented. We are ex-

Schmidt et. al. [18] have presented an approach, na”}%ﬂding this research to demonstrate the applicability of DPMS

Squid, for supporting partial keyword matching in DHT;y, yitterent application domains, and to show the impact of a

based structured P2P networks. They have adopted Spafigs iy the advertised patterns on indexing overhead.
filling-curves to map similar keywords to numerically close

keys. Squid supports partial prefix matching (e.g. queries like REFERENCES
compu* or net*) and multi keyword queries. But, Squid does

not have provision for Supporting true inexact matching fOI[]'] Fasttrack peer-to-peer technology, http;//www.fasttrack.nu/.
. e [2] http://www.gnutella.com, gnutella website.
queries like*net. [3] Peersim peer-to-peer simulator, http://peersim.sourceforge.net/.
In general DHT-techniques ([19], [16], [15] etc.) are not[4] Amihood Amir, Ely Porat, and Moshe Lewenstein. Approximate subset
suitable for solving partial keyword matching problem (and matching with don’t cares. IIBODA '01: Proceedings of the twelfth

. . annual ACM-SIAM symposium on Discrete algorithnpages 305-
DPM problem) for two reasons. Firstly, DHT-techniques re- 306, philadelphia, PA, USA, 2001. Society for Industrial and Applied

quire to partition the key-space into non-overlapping regions Mathematics. _ _ o

and to assign each region to a peer bearing an ID from th&l Burton H. Bloom. Space/time trade-offs in hash coding with allowable
. But f hi . o ite dif errors. Commun. ACM13(7):422-426, 1970.

r_eglon. ut _r_om pattern ma_tc |ng_ perspective It is quite di T6] A. Broder and M. Mitzenmacher. Network applications of bloom filters:

ficult to partition even one dimensional pattern (or key) space A survey. InProceedings of the Allerton Conferen@902.

(7]
(8]
El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[29]

[20]

[21]

[22]

[23]

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker.
Making gnutella-like p2p systems scalable. Sigcomm 2003.

E. Cohen and S. Shenker. Replication strategies in unstructured peer-
to-peer networks. I'8IGCOMM ConferengeAugust 2002.

Edith Cohen, Amos Fiat, and Haim Kaplan. Associative search in peer
to peer networks: Harnessing latent semantics.|HEE INFOCOM
2003.

R. Cole and R. Harihan. Tree pattern matching and subset matching in
randomized(n log® m) time. InProc. 29th ACM STO(pages 6675,
1997.

Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph,
and Randy H. Katz. An Architecture for a Secure Service Discovery
Service. InMobile Computing and Networkingages 24-35, 1999.

Mei Li, Wang-Chien Lee, and Anand Sivasubramaniam. Neighborhood
signatures for searching p2p networksIDEAS pages 149-159, 2003.
Lintao Liu, Kyung Dong Ryu, and Kang-Won Lee. Supporting efficient
keyword-based file search in peer-to-peer file sharing systems. In
GLOBECOM 2004.

C. Ly, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured peer-to-peer networks. @S, 2002.

Petar Maymounkov and David Mazi. Kademlia: A peer-to-peer infor-
mation system based on the xor metric Ravised Papers from the First
International Workshop on Peer-to-Peer Systepages 53-65. Springer-
Verlag, 2002.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable networkPrémeedings of

the ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communicatignsages 161-172, 2001.

S. Rhea and J. Kubiatowicz. Probabilistic location and routing. In
INFOCOM, 2002.

C. Schmidt and M. Parashar. Flexible information discovery in decen-
tralized distributed systems. Proceedings of HPDCWA, USA, June
2003.

lon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. InProceedings of the ACM SIGCOMM '01 Conference
pages 149-160, San Diego, California 2001.

D. Tsoumakos and N. Roussopoulos. Adaptive probabilistic search for
peer-to-peer networks. IBrd IEEE Intl Conference on P2P Computijng
2003.

Spyros Voulgaris, Mrk Jelasity, and Maarten van Steen. A robust
and scalable peer-to-peer gossiping protocol. Phoceedings of the
Second International Workshop on Agents and Peer-to-Peer Computing
(AP2PC) 2003.

B. Yang and H. Garcia-Molina. Improving search in peer-to-peer
networks. InICDCS 2002.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, UC Berkeley, April 2001.

