
Business-Driven Optimization of
Policy-Based Management solutions

Issam Aib and Raouf Boutaba
David R. Cheriton School of Computer Science,

University of Waterloo, Canada
{iaib;rboutaba}@uwaterloo.ca

Abstract— We consider whether the off-line compilation of a set
of Service Level Agreements (SLAs) into low-level management
policies can lead to the runtime maximization of the overall
business profit for a service provider. Using a simple web
application hosting SLA template for a utility service provider,
we derive low-level QoS management policies and validate their
consistency. We show how the default first come first served
(FCFS) mechanism for the runtime scheduling of triggered
policies fails to deliver an all times maximum business profit
for the service provider.

To achieve a better business profit, first a penalty/reward
model that is derived from the SLA Service Level Objectives
(SLOs) is used to assign runtime utility tags to triggered policies.
Then three policy scheduling algorithms, which are based on the
prediction of the future state of the running SLAs, are used to
drive the runtime actions of the Policy Decision Point (PDP).
The prediction function per see involved the unsolved problem
of predicting in realtime the evolution of the transient state of
a variant of an M/M/Ct/Ct queue. A simple approximative
solution to the latter problem is provided. Finally, using the PS
policy simulator tool, comparative simulation results for the busi-
ness profit generated by each of the proposed policy scheduling
algorithms are presented. PS is a novel tool which we have
developed to respond to the increasing need of benchmarking
SLA and policy-based management solutions.

I. INTRODUCTION

By separating the rules that govern the behavior of an
information system from the functionality it supports [8],
policy-based management (PBM) promises to reduce manage-
ment costs while simultaneously improving quality of service
(QoS) and dynamic adaptability to change. It is currently
present at the heart of a multitude of management architectures
and paradigms with such diversified prefixes as SLA-driven ,
business-driven, autonomous, adaptive, and self management,
to name a few. In this paper we only focus on QoS related
policies. However, policies are also extensively used in the
security arena. Hence being able to use policies to govern
an information system brings the key advantage of uniform
management by using one unified paradigm.

Although research in policy-based management has been
going on for more than a decade, it is still not easy to put
into practice. This owes much to the theoretical and practical
difficulties in proving not only the correctness but also the
efficiency of policy-based solutions when it comes to the man-
agement of real scale systems with hundreds or even millions
of policies interacting in a dynamic way. In addition, A multi-
tude of policy languages and architectures have been proposed

but techniques for refinement, and consistency/completeness
analysis remain scarce. It is then understandable why venturing
into a full PBM solution for managing one’s information
infrastructure remains difficult to justify.

System performance also lies at an equal level of interest.
While it is true that policy-based solutions promise dynamism
and flexibility, they often come with no guarantee of high
performance. Verma [11] states that PBM solutions should not
be considered a case of expert systems because of the strong
weight of the performance parameter they have to carry with
them. Work on the benchmarking of PBM solutions is also
marked by great scarcity. It is in fact insufficient to provide
a PBM solution which works, also must it be as efficient
as existing legacy solutions if not better. In this regard, the
maximization of business profit should represent the crucial
goal that any QoS PBM solution should target.

In this work, we develop a detailed use case for the business-
driven SLA refinement into low-level management policies.
In addition, an implementation which maximizes the business
profit of the service provider is presented. The use case
spans all of the business-driven SLA management loop. We
show how the refinement process is done and how the static
consistency and stability analysis can help detect anomalies
which are not easy to detect. We then introduce a new
approach to business-driven dynamic policy analysis in which
we emphasize the need for incorporating business (and SLA)
related data, encoded mainly within metrics generated during
the refinement process, to handle the orchestration of policies
at runtime. This analysis proves to be crucial in making the
same set of generated policies achieve best performance at
runtime.

By its nature, our presented work intersects with many
related efforts in the business, SLA, and policy-based man-
agement. QoS Policy refinement has been addressed in [3]
with a use case for DiffServ QoS management. It stresses
the need of application specific policy refinement patterns and
presents a tool that is being developed for that purpose. Our
work agrees with this and is complementary to it by detailing
the consistency checking into several sub-constituents (section
VI) such as policy set stability (loop/deadlock free). Our study
also emphasizes the necessity of application specific policy
refinement patterns.

In another respect, policy stability has been addressed
recently in [4]. The paper uses control theory for studying

1) Customer C is provided a web application hosting service
with schedule sc

2) Max Capacity is of cpmax simultaneous connections
3) C is charged $ch = a× cpmax

monthly
4) Monthly average availability of the hosted service ≥ avmin

• An ithsuccessive availability violation incurs a reward of
ri × ch

• At the 3rdsuccessive availability violation the SLA is
considered void

5) Minimum average time to process customer service requests
= rt ms
• Otherwise, C is rewarded rt.ref × rt

Fig. 1. Generic web application hosting SLA: AP SLA

the stability of feedback regulation on SLA-like policies in
bilateral provider agreements. Our work tackles also the sta-
bility issue and shows, among others, a technique for detecting
and preventing policy loops that might occur between different
QoS policies (section VI).

On the monitoring loop side, the automated generation of
metrics for SLA monitoring has been addressed in [7] [9] for
the special case of web service SLAs. [7] stresses the need for
customer side monitoring and provides a comprehensive XML
based notation for the specification, but not for the automatic
generation, of composite metrics for web services. In our work
we show through a detailed example, but do not develop a
full theory of, how metrics are identified and generated from
a Service Level Specification (SLS) (section V-C).

Finally, for the business-driven decision making during SLA
execution, [5] discusses a technique, independent of any PBM
solution, to automate and/or assist service personnel to prior-
itize the processing of action-demanding quality management
alerts as per provider’s service level management objective.

This article will proceed as follows. Section II presents
the generic SLA use case. Section III defines the business
profit function we would like to optimize and section IV
presents a lazy strategy to enforce it. Section V derives a
formal SLS for the generic SLA and discusses the different
stages of the proposed refinement process. After that, a static
analysis is conducted on the generated SLS and shows how
oscillation anomalies can be detected and fixed. Next, we
present our dynamic analysis approach in which we provide
an approximate solution of the transient state of a variant of an
M/M/Ct/Ct queue. We then use this solution to derive better
runtime scheduling algorithms of triggered policies and hence
a better generated business profit for the same low-level policy
set. Sections X and XI present the simulation environment we
used, the conducted simulations and finally summarized results
of the performance of our policy scheduling algorithms.

II. GENERIC AP SLA

We consider a web Application hosting service Provider
AP which offers a set of SLA contracts to its customers. The
AP operates in its information infrastructure a pool of server
units of size sp.cp with fixed cpu capacity and which it can

allocate to different SLA instances. The advertised SLA types
are derived from the simple generic SLA of figure 1. This SLA
states, in 5 clauses, that AP offers a web application hosting
service supporting a load (capacity) of cpmax simultaneous
end client connections to the system, an availability average
of avmin, an average response time rt, all with a monthly cost
ch.

Each instance of the tuple (sc, cpmax, a, avmin, r1, r2,
r3, rt, rt.ref) can generate an SLA type which the AP can
advertise to its potential customers. In the following, slai

denotes an SLA type and slai,j denotes SLA instance j of
SLA type i, all of which are derived from the generic SLA of
figure 1.

Before going further into the SLA refinement process, the
first step is to define the business profit function the AP
intends to maximize.

III. DEFINING THE BUSINESS PROFIT FUNCTION

Denoted in this paper as Ψ, the business profit function
reflects the measure of the profitability of the service provided
by the AP . In order to keep the use case simple, we define
Ψ as the sum of the raw financial profit gained from each
contracted SLA. This assumes that managing the AP’s infor-
mation infrastructure incurs a fixed cost which is independent
of the number of contracted SLAs. Hence,

Ψ =
∑

i∈SLA

 ∑

j∈SLAi

(RP (SLAi,j))

 (1)

where SLA represents the set of all SLA types the AP
supports, and SLAi the number of contracted instances of
SLA type SLAi. The dynamic problem the AP has to solve
is the maximization of Ψ. We will elaborate more on this in
section VIII.

IV. LAZY ENFORCEMENT STRATEGY

The clauses of figure 2 help identify the set of Service Level
Objectives (SLOs) the AP has to enforce. Using a policy-
based approach, the AP still has a variety of choices as to how
to enforce them. In this paper we assume that the AP adopts
a lazy strategy in enforcing its contracted SLAs. This means
that it will allocate server units to each SLA on a per need
basis. Similar to the statistical multiplexing of traffic crossing
a shared physical network cable, this technique allows the AP
to contract a number of SLAs with a total maximum sever pool
capacity beyond the actual capacity it possesses.

At SLA instantiation time a number of n0 server units is
allocated. When the connection intensity (number of simulta-
neous end customer connections) reaches a certain threshold
thA of the current SLA capacity, a request is made to the
server pool to get an additional server unit. Conversely, if a
low threshold thR is reached an action is triggered to release a
server unit to the pool of free server units. With this technique
the AP aims to achieve a higher business profit than if it used
a guaranteed enforcement approach (where all resources are
allocated before SLA instantiation).

sloSet sloSetL = {
slo slo1 = (ws.cp ≤ cpmax);
slo slo2 = (ws.av ≥ avmin);
slo slo3 = (ws.rt ≤ rt);
}

Fig. 2. SLO set for the lazy enforcement of the AP SLA

role AP = {
policyGroup pg1 = {
double thA; constraint 0 < thA ≤ 1;
double thR; constraint 0 < thR < thA;
int n0; constraint 1 ≤ n0;
double avw = 1 month; // availability window
event not(slo2) e1, e2, e3;
policy p1 = { at sc.deployT ime do ws.add(n0) }
policy p2 = {
on (ws.load ≥ thA) do ws.add(1) where (ws.cp ≤ cpmax)}

policy p3 = {
on (ws.load ≤ thR) do ws.free(1) where (|ws.su| > 1} }

policy p4 = {
on e1 do c.credit(r1) where not(p5 ∨ p6)}

policy p5 = {
on (e1 → e2) // e1 followed by e2
do c.credit(r2)
where ((time(e2)− time(e1) < avw) ∧ not(p6))}

policy p6 = {
on (e1 → e2 → e3)
do {c.credit(r3);SLA.terminate()}
where ((time(e3)− time(e1) < avw))}

policy p7 = { at sc.undeployT ime do SLA.undeploy()}
} // end of policyGroup pg1 } // end of role AP

Fig. 3. Initial policy set for the Lazy enforcement of the AP SLA

V. GENERATING THE AP GENERIC SLS

The AP Service Level Specification (SLS) is the result of
the refinement of the AP SLA. In the following, this will be
done using the lazy enforcement strategy.

A. SLO set specification

Service Level Objectives (SLOs) represent logical con-
straints on SLA parameters. When an SLO is violated, an
event is generated which triggers concerned policy rule(s). The
policy rule(s) will implement the penalty mechanism specified
in the SLA as a result of the SLO violation. Figure 2 gives
the generated SLO set for the generic AP SLA.

B. Policy set Generation

The AP will have to enforce for each SLA instance the set
of policies of figure 3. The notation we used for policy rules
is inspired from [8]. The generation of this set of policies was
done manually as there is currently no automated technique
for doing so [3].

p1 is a deployment-time policy which requests one server
unit from the pool of server units and initializes the web
application of the SLA. At SLA undeployment time, policy
p7 liberates reserved resources, deactivates active policies, in
addition to some reporting. p2 and p3 implement the lazy

• slo1 ⇒
def metric mWSCP = ws.cp
policy pmWSCP = {
on (mWSCP > cpmax) do generate(not(slo1))}

• slo2 ⇒
def metric mAv = ws.av
policy pmAv = {
on (mAv < avmin) do generate(not(slo2))}

• slo3 ⇒
def metric mRT = ws.rt
policy pmRT = {
on (mRT < rt) do generate(not(slo3))}

• p2 ⇒
def metric mP2ThAdd = ws.load
policy pmP2ThAdd = {
on (mP2ThAdd ≥ thA)
do generate(mP2ThAddEv) }
update p2 = { on mP2ThAddEv }

• p3 ⇒
def metric mP3ThRem = ws.load
policy pmP2ThRem = {
on (mP3ThRem ≥ thR)
do generate(mP2ThRemEv) }
update p3 = { on mP2ThRemEv }

Fig. 4. Metric generation and policy set update

enforcement approach by tracking the load of the server units
available to the SLA and making necessary actions each time
a threshold is crossed.

Availability is implemented as a sliding window average
of length avw. It is initialized to one month as indicated by
clause 4 of the AP SLA (figure 1).

The latter clause also specifies the penalties incurred in
case of availability violation. The policy set {p4, p5, p6}
implements these penalties. p4 states that on the occurrence
of an event e1 of type not(slo2), meaning a violation of slo2,
the customer account needs to be credited with r1 monetary
units. p5 and p6 respectively implement the penalties for the
2nd and 3rd successive violations. The where clause enforces
the one month “memory” on successive violations and makes
sure that only one of {p4, p5, p6} can be triggered at a time.

slo3 (figure 2) is implicitly implemented by limiting the
maximum load on each server unit to su(rt).

C. Metrics definition and policy set completion

Metrics are needed in order to track SLO states and compute
the business profit. Knowing the formula for computing the
business profit Ψ, and having all SLOs and policies specified
in detail can help automate the metrics generation process.
Figure 4 exlains how this is done for the AP SLA.

D. The completed AP SLS

Figure 5 shows the completed AP SLS, which is the result
of the refinement of the AP SLA. The generation of this SLS
involved three sub processes. It is interesting to note that part
of the SLS needs to be enforced at the AP side, i.e. role AP ,
while a second one needs to be enforced at customer side (role
C). The inclusion of third parties in the SLS specification is
also possible but will not be discussed in this paper.

sls SLS = {
// service provide role role AP = {
def metric mWSCP = ws.cp
def metric mP3ThRem = ws.load
. . .
policyGroup pg1 = {
policy pmWSCP = {. . .}
policy pmP2ThAdd = {. . .}
. . .
policy p1 = { . . .
policy p2 = { on mP2ThAddEv. . .}}
}
// Customer role (to enforce by customer)

role C = {
policyGroup pgC = {
policy pC1 = {
on every month do AP .credit(ch)
start at sc.activationTime }

}} }

Fig. 5. Completed AP SLS

The resulting SLS hence contains two roles for each party
of the SLS with the AP role composed of thirteen policies
and four metrics.

VI. SLS STATIC ANALYSIS

The second phase after the generic SLS is generated consists
of conducting a static analysis to test the consistency of the
generated policy set. For the static analysis phase we identify
five main types of tests: action conflicts, deadlocks, oscillation
(loops), unreachable states (dead code (i.e policies)), and
erratic behavior. The AP needs to test the generated policies
to make sure they are free from any of these defects.

In the action conflicts test, policies with conflicting actions
are checked for potential concurrent execution. For the AP
SLS, p1 and p2 request additional server units but p1 executes
only once at SLA deployment time while p2 becomes active
only after the SLA activation. p3 releases one server unit,
which is an action expected to be always successful. p4, p5

and p6 cannot execute at the same time even though this does
not cause trouble. In the implementation, this translates to
make sure method c.credit() is synchronized. When several
SLA instances are running, policies p1 and p2 can conflict with
each other but this is a runtime conflict that derives from the
lazy enforcement strategy. So the policy set is action conflict
free from the static analysis point of view.

For the deadlock analysis, it is straightforward that the
policy set is deadlock free as there is only one possible
blocking action ws.add(), which requests a number of server
units from the pool of free server units. So a deadlock situation
at runtime is not possible.

The next step in this phase is to check for potential static
loops. A system static loop occurs if there exists at least one
system state Sl 6= Sfinal which when reached, the probability
that the system will come back to Sl after some time t > 0 is
equal to one.

Let (ws.cp, rp) denote the runtime state of an SLA, where
ws.cp is the capacity in number of allocated server units and
rp the accumulated raw profit. rp is affected by operations
AP .credit() of policy pC1 (figure 5) and c.credit() of policies
p5 to p7 (figure 3).

We also consider the state of the AP’s system to be the sum
of the states of all the SLAs contracted by the AP augmented
by the state of the free server units pool and all the business
metrics the AP maintains.

Policies p4 to p5 cannot be the cause of a system state loop
because they cannot occur more than once during any avail-
ability interval (one month) and if they occur all the three of
them during the same availability interval, the corresponding
SLA is terminated.

For policies p1, p2 and p3 there is a possible static loop.
This is because p1 and p2 request additional server units
while p3 requests an operation which nullifies their actions
by freeing one server unit. So further analysis is required on
these policies.

The constraints on the definition of thA and thR (figure 3)
have been set following the intuition that the threshold to
request a new server unit should be strictly greater than the
one which frees an acquired one. Without these constraints
and if thR was fixed, possibly due to a mistake by the system
operator, to a value > thA, then the related SLA instance
might never free any acquired server unit until it is terminated
or on the other extreme it might show erratic behavior in case
of shortage in server units.

For the first case, ws.load = thA ⇒ p2 triggered ⇒ new
ws.load < thA < thR. So if the number of connections
decreases, no action will be taken by the SLA and it will
continue to hold resources it is actually not using.

The latter case, however, is more harmful. It occurs when
p2 is triggered while no resources are available in the system
and ws.load continues to grow until reaching thR. At this
moment p3 is triggered reducing su.size by one.

Since we have

ws.load =
|connections|

(su.cp× su.size())
This implies that ws.load increases. Hence, p3 gets trig-

gered again, and so on, until all but one of the server units
are freed (because of the where clause in p3). It is then
expected that availability violations occur leading possibly to
SLA termination (policy p6). With a slight chance, the SLA
can still survive if before p6 is triggered the load on the unique
left server unit diminishes. A way to detect this type of erratic
behavior is to specify a rule for the static analyzer which states:

//fsupl = free server units pool
policy pS1 = {

on (triggered(p6) ∧ (fsupl.size > 0))
do signal(erraticBehavior);}

With this semi-formal static analysis, the AP should be
relatively assured that the generated SLS will achieve the goal
of enforcing the contracted SLAs.

However, there is still a subtle error which we discovered
only after running a batch of randomly generated simulations.

For some randomly generated input parameters which re-
spect all the above stated constraints, the system still enters
an infinite loop oscillating between policies p2 and p3. By
analyzing closely this case we found that the constraint 0 <
thR < thA ≤ 1 is not sufficient. This leads us to consider
when p3 can be automatically triggered once p2 is triggered
and vice versa.

Through mathematical analysis we prove that:

AP SLS is loop free ⇔ thA > 2× thR (2)

This result completes the static analysis phase. The output
of a static analyzer should be a recommendation to change the
constraint on thR to become compliant with eq.2.

The next step will focus on exploring in depth some aspects
of what we call a “business-driven dynamic analysis of the
SLS”. We provided the intuition around this new type of
analysis in [2]. Although it can result in complex mathematical
models, the following section stresses the need for considering
this phase for any QoS PBM solution which aspires to be
business-driven.

VII. BUSINESS-DRIVEN DYNAMIC ANALYSIS

The dynamic analysis we conduct here stems from the
conjecture that, however complex the technique employed to
compile an SLA into low-level SLS, one cannot be sure, and
actually has no proof, that assigning a set of priority levels to
low-level policies would be sufficient to maximize the overall
business profit of the SLA provider. Looking in the literature
on policy-based management only reinforced our belief in
this conjecture. In what follows we develop a technique for
handling policies at runtime which proved (Section XI-B) to
generate a much higher performance at runtime with the same
generated set of policies.

At normal SLA operation all triggered policies should
execute correctly. Conceptually, a triggered policy needs the
approval of the policy decision point (PDP) before it can
execute [11]. This implies the existence of a conceptual queue,
or waiting room, for triggered policies which the PDP serves
by scheduling them according to some predefined scheme. In
practice, the PDP can be implemented as a hierarchy of PDPs
distributed within the information infrastructure. Our analysis
will be based on the conceptual PDP of the AP’s information
infrastructure.

The default service the PDP offers to the Triggered Policies
Queue (TPQ) is a FCFS service. In the case a triggered policy
cannot execute because of insufficient system resources, which
can occur for p1 or p2, the PDP skips it until resources become
available for its execution.

If the AP chooses to contract a number of SLAs with a total
maximum capacity exceeding the actual capacity it has in its
servers pool, it can be proved that by carefully scheduling the
execution of policies in (or from) the TPQ we can achieve a
better overall business profit.

VIII. BUSINESS-DRIVEN TPQ SCHEDULING

In this section we develop a technique for TPQ scheduling,
which provides a better handling of peak utilization times
for the AP’s resources and yields a better overall business
revenue. This technique takes into consideration the runtime
states of instantiated SLAs in servicing the TPQ.

Since the only policies which may incur delay are p2 and
p1 we will only consider them for this analysis. The other
policies can hence be serviced according to the usual FCFS
discipline without loss of performance or business value.

The decision problem the PDP has to solve when faced with
a number of policies in TPQ requesting more resources than
available (here server units) is to determine which policies to
grant resources to, i.e. allow to execute, and which policies
it will delay hoping that enough resources will be freed.
Delaying a triggered policy can lead to a violation of SLOs
and violating an SLO can cause penalties paid to the AP
customers. The aim of the AP is to configure its PDP’s
decision algorithm so as to reflect the goal of maximizing
the business profit function Ψ defined in eq.1.

A. Mathematical formulation of the Business-aware TPQ
scheduling decision problem

Delaying p1 or p2 can lead to the violation of the availability
SLO (slo2 in figure 2). slo2 is defined over the monthly
average availability of the web application to end customers.
Based on figure 1 , availability (= ws.av in figure 2) of
each SLA instance is defined as the fraction of successful
service requests to the fraction of total service requests of end
customers computed over a month time window.

Definition: monthly availability of web service

ws.av =
|processed requests|inavw

|total number of requests|inavw

(3)

When confronted with a sequence of p1 and p2 policies in
the TPQ, the PDP can utilize the information on the availabil-
ity metric for the SLA to which each policy is associated in
order to predict the impact time associated to each policy.

We will make use of a greedy approach to business profit
maximization. We consider the maximization of Ψ to be
approximated as the minimization of impact (i.e. loss) on Ψ
for each decision cycle the PDP performs on the TPQ.

Let Ptpq be the set of policies of type p1 or p2 that are
queued in TPQ at time t0. The PDP constructs for each
policy pi ∈ TPQ a tuple (pi, ri, I(pi)). ri is the time pi

was triggered. I(pi) is an impact probability function which
gives for each t ≥ 0 the expected impact on Ψ in the case pi

is delayed t time units after the current system time t0. Based
on these sets of tuples, the PDP has to make a decision which
will lead to the best minimization of impact on Ψ.

B. Mathematical model of the AP SLA

Predicting the impact of delaying p1 or p2 implies predicting
the violation probability of slo2 in time. This implies predict-
ing the evolution of availability wsav in time. In its turn, this
means predicting the number of processed requests and the

total number of requests during the last availability window
avw of the SLA associated to each pi ∈ Ptpq .

To do so we model the state of an SLA instance as a
tuple M/M/Ct/Ct |At|Dt. M/M/Ct/Ct models a variable
capacity markovian queue where:
• λ =rate of end client requests
• µ =service rate for a single client request
• the number of available server slots at time t

Ct = ws.cp = su(rt)× su.size()
• no waiting queue, all requests arriving at 100% load time

are lost
At denotes for each t the number of granted end customer
requests during the last availability window [t − avw, t]. Dt

denotes the number of the denied ones. Tt = At + Dt repre-
sents the total number of arrivals during the last availability
window.

Requests arrival is modeled as a poisson source as it reflects
the most common type of arrivals. Exponential service times
denote the time the customer remains connected to the web
service. In the case of a web site this can model the time a
customer spends surfing into the server web site. A similar case
applies to other types of servers such as audio/video streaming
servers. Note that this does not contradict with the response
time SLO as the response time represents the responsiveness
of the web service to end customer queries during one end
customer session.

The servers’ capacity varies within the discrete set {su(rt),
su(rt), 2su(rt), . . ., cpmax}.

In what follows we will focus more on policy p2. The study
of p1 follows a similar approach.

Let Nt denote the number of end customer requests being
serviced at time t. We have at any time 0 ≤ Nt ≤ Ct

Note that all of At, Dt, Tt, Ct, and Nt can be easily obtained
at runtime by defining corresponding metrics at the SLS level.

Policy p2 is triggered when the SLA load exceeds thA. Let
t0 denote this time. In the following, when t0 is used as a
subscript we will omit the t for clarity.

Because markovian processes are memoryless, the PDP can
take as input to its Impact Prediction Algorithm (IPA) the tuple
(t0, A0, D0, C0, N0). The output is the probability function I .
As a simplification of I , the IPA can determine the time it
will take starting from t0 until avt drops bellow avmin, hence
triggering an availability violation.

In spite of all the simplification done still remains the
difficult problem of predicting the evolution of a Markovian
process at transient state.

On page 78 of his book Queueing Systems, Vol. 1,
Leonard Kleinrock, commenting on the transient solution of
an M/M/1/∞ queue, says ’This last expression is most
disheartening. What it has to say is that an appropriate model
for the simplest interesting queueing system leads to an
ugly expression for the time dependent behavior of its state
probabilities.’

More recently, Sharma describes in his book Markovian
Queues [10] a novel approach to the transient analysis prob-

lem. He was the first to provide the transient solution for
the M/M/∞, M/M/N and M/M/2/N queues. Sharma
states that for higher order queues the problem becomes much
more complicated to be handled by currently known Algebraic
techniques. This problem remains open until today.

In order to make the policy decision-making process busi-
ness aware, and based on the above literature, we attempt here
to find an acceptable solution to the transient analysis of an
M/M/Ct/Ct queue. Indeed, this is still feasible even with
the very short time frame (near realtime) available to the PDP.
The decision making problem is further complicated by the
fact that the PDP is not just concerned with predicting when
the servers become 100% loaded. It is in fact concerned with
predicting when, after all servers are fully loaded, will the
availability drop bellow its minimum contracted value.

In the following two subsections we present the technique
we developed and for which we provide performance results
in section XI-B.

C. Mathematical approximation of the first time to violation

As a first approximation we divide the prediction process
into two phases, the fill up phase and the time to violation
phase. In the first phase the system starts with configuration
(t0, A0, D0, C0, N0) and evolves to the new configuration
(tf , Af , Df = D0, Cf = C0, Nf = C0), where tf represents
the time when the SLA reaches full load (Nf = C0). During
interval [t0, tf] it is expected that no service request denial
occurs as the SLA can still handle more load. The time
to violation phase starts at time tf and lasts until reaching
the violation of availability SLO (slo2) and is described by
configuration (tv, Av, Dv, Cv, Nv) where Av

Av+Dv
≤ avmin

(and also ' avmin). Given this information, the PDP can
predict that if it delays policy p2 the corresponding SLA will
experience a violation of slo2 at time tv , i.e. after a duration
of tv − t0 from the current evaluation time.

The problem is hence amenable to providing an approximate
solution of the fill up and time to violation phases.

1) Fill up phase - predicting tf : The computation of tf
is based on the average behavior of the M/M/Ct/Ct queue.
The incoming flow λ of end customer requests is subdivided
into two sub flows. A first sub flow with rate µ × N0 works
on average to keep busy the N0 occupied server slots, as their
aggregate average service rate is µ×N0.

Let’s denote the remaining sub flow as

λ′ = λ− µ×N0

λ′ constitutes the new flow of incoming connections for
the servers of rank > N0 (after a simple reordering of server
slots).

We now consider this new set of servers slots separately.
At time t the number of connected customers is N ′

t . At time
t + dt this number will increase by dN ′

t where:

dN ′
t = λ′dt− µN ′

tdt

⇒ dN ′
t

dt
+ µ N ′

t = λ′ (4)

We define ρ = λ
µ and ρ′ = λ′

µ = ρ−N0. With the condition
N ′

0 = 0 we get:

⇒ N ′
t = ρ′(1− e−µt) (5)

By putting:
tf = t0 + t′f (6)

t′f is then the solution in t of Nt = C0. Hence,

t′f =
−1
µ

ln

(
1− C0

ρ′

)

⇒ t′f =
1
µ

ln

(
ρ−N0

ρ−N0 − C0

)
(7)

2) Time to violation phase - predicting tv: Following the
same reasoning, we assume that λ gets divided into two sub
flows. The first sub flow of rate µ×C0 works on keeping all
server units busy. The second sub flow represents the loss flow
and serves to count down towards availability violation.

As in the first case, we define our modified incoming flow
as:

λ′′ = λ− µ× C0 , and ρ′′ =
λ′′

µ
= ρ− C0

All customers in the poisson flow of rate λ′′ get rejected.
Hence, on average availability is expected to be violated at
tv = tf + t′v where:

avmin =
Af + µ× C0t

′
v

Tf + λ× t′v
Let 4av = (avmin − av0). Using algebraic computations

we find the expected absolute time tv at which a violation of
the availability SLO will occur as follows:

tv = t0 +
(C0 − ρ)

µ (C0 − ρ avmin)

×
(

T0 ×4av

(C0 − ρ)
− ln

(
1− C0

ρ−N0

))
(8)

¤
tv represents, in average, the time at which a violation is

expected to occur if p2 is not granted execution privilege. It
does not necessarily reflect the actual time of first violation at
runtime.

However, it is interesting to note that this formula can be
computed in O(1) if the values of {C0, T0, N0, av0} are
available. Fortunately, the metrics instantiated from the devel-
oped AP SLS (figure 5) provide this information instantly at
runtime. This has a definite advantage at runtime over any
formula which predicts the exact transient evolution of an
M/M/Ct/Ct |At|Dt queue, even though such a formula has
not been discovered yet [10].

D. Impact Minimization Scheduling (IMS) Algorithms

Provided with an approximation for tf and tv , the PDP
can be configured to use several possible algorithms for the
minimization of impact on the business profit function Ψ.
In this work we developed three different algorithms the
performance of which is evaluated through simulations in
section XI-B.

First, for each triggered policy pi ∈ SLApi
, the PDP will

create a tuple (pi, SLApi , ttpi , tdpi , tvpi , Pnpi), where:
• ttpi

corresponds to the triggering time of pi,
• tdpi the time of the next service degradation phase

(corresponds to t′f in eq.6),
• tvpi

the expected time of availability SLO violation (tv
in eq.8) in case pi is delayed,

• and Pnpi
which is the penalty incurred based on the rules

defined in SLApi (one of {p4, p5, p6} depending on the
runtime state of SLApi

).
The PDP has, among other possibilities, the following set

of different scheduling policies (techniques) to select the next
triggered policy to execute from TPQ :
• select the one with the first(lowest) time to violation,

Min(tvpi)
• select the one with the first(lowest) time to degradation,

Min(tdpi)
• select the one with highest penalty first, Max(Pnpi)
This selection is applied of course to those policies whose

action part can be satisfied in terms of resource availability.
Policies whose actions require more resources than available
will be delayed until there are enough resources to execute
them.

In the remaining of this paper, we will use simulations to
evaluate the performance of these algorithms and study how
they compare to the default FCFS scheduling.

IX. SIMULATION ENVIRONMENT:
THE PS POLICY SIMULATOR

The first problem faced when implementing the AP generic
SLA use case is the lack of a simulation environment for
testing the performance, correctness, and other properties of
policy-based solutions. We therefore developed a full fledged
policy simulation tool to use for the AP generic SLA use
case. However, we have designed PS in such a way that it
can be used by the wider SLA and Policy-based management
research community. The detailed description of PS is beyond
the scope of this paper and will be subject to a separate
publication. In this section, we will describe briefly PS main
characteristics.

The policy simulator PS implements a discrete event sim-
ulation system based on the process interaction world view.
The design of it follows that of the business-driven manage-
ment framework we proposed in [2]. PS builds on the open
source package javaSimulation [6], which is a Java package
for process-based discrete event simulation. The design of
javaSimulation follows closely the design of the SIMULA
programming language.

PS features the core of a policy-based management ar-
chitecture augmented by SLA and business awareness [2].
These include the support for SLS specification, definition
of business objectives, specification of metrics at resource,
service and up to the overall business profit function Ψ.
Also, included is the connection with the business profit
maximization (impact minimization) engine at the PDP level
by determining which decision making algorithm to apply with
respect to the scheduling of TPQ.

SLAs are modeled according to the simple GSLA infor-
mation model, introduced in [1]. In this model, an SLA is
composed of a service package and a set of parties. Each
party plays a (set of) role(s) related to a service provi-
sion/consumption. A Role defines exactly the duties of a party.
As an example, in the AP SLS specification of figure 5 two
roles were defined, the service provider role AP and the
service Customer role C.

X. GENERIC AP SLA SIMULATION PACKAGE

This package (figure 6) was built as a simulation instance
which we run over PS . Also, because of the relative complete-
ness of the AP SLA test case, in terms of the exhaustive usage
of PS components, the AP package served as a validation test
unit many subtle tunings of the policy simulator.

The AP generic SLS was implemented as a single class
descendent of the PS SLA class. The class contains two
instances of the Role class implementing the AP role and
C role respectively. The same hierarchy is constructed for
policy groups, policies, metrics, and events. Each AP role
has a serverGroup instance which manages a set of server
units it gets from the AP serverPool component. A Poisson
traffic source is attached to each serverGroup and is used to
simulate session requests of end customers. At the reception of
each session request the severGroup object calls an exponential
random generator to set the duration of the new session.

Almost all communications between the simulation com-
ponents are done via events. The event service allows any
component to register as a source of a given event type.
Time events (timeout counters) are also supported as a special
event type. Another component can register as a listener to
the same event type from that event source and the event
service maintains this relationship. Policies are triggered by
events. The server pool, for example, generates an event
each time it receives, accepts, denies or terminates a session.
Leaf metrics propagate information they receive from server
pool events and other components up to higher level metrics
(At, Dt, Tt, Avt, RPt, Nt, Ct, etc.) until reaching the overall
business profit function Ψ. To help analyze/debug simulation
execution graph components can be hooked to any metric and
report their evolution in time and record them into matlab
scripts developed for this purpose. Matlab has been selected
as the graph plotter because of its ability to handle relatively
large graph files.

Fig. 6. The AP testbed over PS

XI. SIMULATION RESULTS

A. Generation of input batches

In order to validate the policy-based implementation of the
genericAP SLS solution and more importantly to compare the
performance of each of the impact minimization scheduling
algorithms (HPF, FTD, and FTV) against the basic FCFS
scheduling, there is a need to generate an acceptable number
of simulation instances each with different values for the main
simulation parameters.

For each simulation instance we fixed the values for the
following sets of parameters:
• Simulation wide parameters

Including simulation life time (start time, duration (was
fixed to 6 months)), location of simulation input property
files, output folder, etc.

• AP parameters
Including the scheduling algorithm to use (i.e., {FCFS,
HPF, FTD, FTV}) the number of supported SLA types,
number of instances of each SLA type, server pool
capacity in number of server units,

• SLA type parameters
Including cpmax, a, rt, rt.ref , avmin, avw, λ, µ, su(rt),
penalties {r1, r2, r3}, thA, thR and availability probe
interval.

In addition to the above mentioned parameters, a number
of simulator and policy specific parameters are used but not
described here for the sake of clarity.

For statistical significance, we run an acceptable number of
simulations using a random input generator which respects the

Fig. 7. Generated Ψ by the different TPQ scheduling Algorithms

above constraints. An MS excel VB script was used to generate
an acceptable number of simulation inputs. Spread sheets were
useful because they allow to automatically update cells through
existing formulae. We generated an actual number of 384
simulation inputs and estimate that running roughly 5% ('20)
of this number (by random selection within the space of the
384 simulation inputs) can give a good first impression of the
performance of the proposed scheduling algorithms. Running
the whole set of simulations would certainly provide a better
view but will not be feasible within a reasonable amount of
time (with 15 parameters, each varying for instance through
5 values only, will yield a simulation space of 5 power 15,
where one simulation instance runs within an interval of 12
hours to several days).

B. Summarized results

A number of thirty six simulations was conducted. Several
computers have been used to run small batches of four sim-
ulations each (for the four scheduling algorithms). Two SLA
types were used with avmin = 99% and 99.9% respectively.
Ten SLA instances were used for type 1 SLA and Eight for
type 2. In addition, the following key parameters <ratio of
actual to expected Max(server pool size), ρ, thA, thR >
ranged, respectively, within the values < 70% − 100%, <
6.3, 69, 90, 100 >, < 74%, 99% >, < 25%, 34% >>.

Three P4 1.6GH Windows machines, two Sun OS SUNW-
Ultra-4 300MHZ machines, and two Sun Ultra 60 (512 MB
RAM, 450 MHz) Solaris 8 machines were used. The simula-
tions run in an accumulated cpu time of ∼one month, giving
an average of ∼16 hours per simulation.

Figure 7 depicts the generated business profit Ψ for each of
the three proposed impact minimization scheduling algorithms
against the default FCFS scheduling.

According to Figure 7, it appears that FCFS never achieves
the best performance except for simulation batch 45-48 were
all scheduling algorithms produce the same value for Ψ.
Second, no single IMS algorithm performs best at all times.

Fig. 8. Performance of FCFS against Min/Max IMSA

HPF performs best 5 times, FTD 3 times, and FTV 4 times.
Surprisingly, FCFS, although it never outperformed the maxi-
mum output of the three IMS algorithms, in Sim 1-4 it actually
outperformed FTD; in Sim 9-12 it outperformed FTV and
in Sim 61-64 it performed better than HPF. Hence, FCFS
is not that bad after all! Figure 8 traces the performance of
FCFS against the best performance produced by the three IMS
algorithms as well as the worst one. FCFS can hence be viewed
to provide average performance between the worst and best
achieved Ψs.

To better illustrate the importance of this search for
Max(IMSA), figure 9 plots, for each simulation batch:

Max(ΨIMSA)−ΨFCFS

|ΨFCFS|

It shows the relative gain of the best Ψ produced by the three
IMS algorithms and Ψ produced by FCFS. The gain reaches
up to 1000% in batch 9-12 and 467% in batch 193-196.

Fig. 9. Relative gain of Max(IMSA) compared to FCFS

XII. CONCLUSION

In this paper, we presented a detailed case for the business-
driven refinement and implementation of a generic web ap-
plication hosting SLA into low-level QoS management poli-
cies. The refinement process involved an iterative approach
the output of which was a set of metrics and low-level
QoS policies structured into roles. The static analysis phase
served in detecting static anomalies in the generated SLS
as well as discovering additional constraints important for
the runtime stability of the SLS. In the dynamic analysis
phase, we attempted to bridge the gap between low-level
management actions and the high-level business profit of the
service provider. The bridging involved the difficult problem
of the realtime resolution of the transient state of a variant
of an M/M/Ct/Ct queue. We provided a mathematical
approximation which respected the realtime requirement and
achieved acceptable results. Using the results of the dynamic
analysis phase, three greedy algorithms were proposed for the
runtime maximization of the business profit. These algorithms
scheduled the queue of triggered policies by minimizing the
impact of local penalties in the hope to achieve a minimal loss
in the overall business profit.

Using PS , a new tool we developed for the simulation of
policy-based management solutions, we implemented all the
required components for the AP SLA use case as well as all
the proposed policy scheduling algorithms. The simulations
showed interesting results, where the impact minimization
scheduling algorithms managed to provide an overall business
profit that is up to three orders of magnitude higher than the
default behavior. Another interesting result was that no single
algorithm provided best performance at all times.

Bridging the gap between high-level business goals and low-
level management actions is a difficult research subject. This
work provided an insight on how it can be tackled. We believe
that the policy simulator tool PS can be helpful in this regard
by providing an environment where policy-based management
solutions can be assessed for their business-related viability
and efficiency. It is therefore our intention to make the tool
available for the research community at large.

REFERENCES

[1] I. Aib, N. Agoulmine, and G. Pujolle. A multi-party approach to
SLA modeling, application to WLANs. In Second IEEE Consumer
Communications and Networking Conference (CCNC), pages 451 – 455.
IEEE, Jan 3-5 2005.

[2] I. Aib, M. Salle, C. Bartolini, and A. Boulmakoul. A business driven
management framework for utility computing environments. In pro-
ceedings of the Ninth IFIP/IEEE International Symposium on Integrated
Network Management (IM 2005). IEEE, May 16-19 2005.

[3] A. K. Bandara, E. C. Lupu, A. Russo, N. Dulay, M. Sloman, P. Flegkas,
M. Charalambides, and G. Pavlou. Policy refinement for diffserv quality
of service management. IEEE eTransactions on Network and Service
Management (eTNSM), 3(2):12, 2nd quarter 2006.

[4] K. Begnum, M. Burgess, T. M. Jonassen, and S. Fagernes. On the
stability of adaptive service level agreements. eTransactions on Network
and Service Management (eTNSM), 2(1):13–21, Jan 2006.

[5] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf, and P. S.
Yu. Utility computing SLA management based upon business objectives.
IBM Systems Journal, 43(1):159–178, 2004.

[6] K. Helsgaun. Discrete event simulation in java. Technical Report
1-1, Department of Computer Science, Roskilde University, DK-4000
Roskilde, Denmark, Department of Computer Science, Roskilde Uni-
versity, DK-4000 Roskilde, Denmark, March 2004.

[7] A. Keller and H. Ludwig. The WSLA framework: Specifying and
monitoring service level agreements for web services. Journal of
Networks and Systems Management, 11(1), 2003.

[8] L. Lymberopoulos, E. Lupu, and M. Sloman. An adaptive policy based
framework for network services management. Journal of Networks
and Systems Management (JNSM), Special Issue on Policy Based
Management of Networks and Services, 11(3):277–303, September 2003.

[9] A. Sahai, V. Machiraju, M. Sayal, A. P. A. van Moorsel, and F. Casati.
Automated SLA monitoring for web services. In M. Feridun, P. G.
Kropf, and G. Babin, editors, DSOM, volume 2506 of Lecture Notes in
Computer Science, pages 28–41. Springer, Nov. 16 2002.

[10] O. Sharma. Markovian Queues. Mathematics and its applications. Ellis
Horwood, 1990.

[11] D. C. Verma. Policy-Based Networking: Architecture and Algorithms.
Technology series. Sams, 2000 edition, Novermber 14 2000.

