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Abstract. The accuracy of detecting an intrusion within a network of
intrusion detection systems (IDSes) depends on the efficiency of collab-
oration between member IDSes. The security itself within this network
is an additional concern that needs to be addressed. In this paper, we
present a trust-based framework for secure and effective collaboration
within an intrusion detection network (IDN). In particular, we define a
trust model that allows each IDS to evaluate the trustworthiness of others
based on personal experience. We prove the correctness of our approach
in protecting the IDN. Additionally, experimental results demonstrate
that our system yields a significant improvement in detecting intrusions.
The trust model further improves the robustness of the collaborative
system against malicious attacks.
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1 Introduction

Intrusions over the Internet are becoming more dynamic and sophisticated. In-
trusion Detection Systems (IDSes) identify intrusions by comparing observable
behavior against suspicious patterns. They can be network-based (NIDS) or
host-based (HIDS). Traditional IDSes work in isolation and may be easily com-
promised by unknown or new threats. An Intrusion Detection Network (IDN) is
a collaborative IDS network intended to overcome this weakness by having each
members IDS benefit from the collective knowledge and experience shared by
other member IDSes. This enhances their overall accuracy of intrusion assess-
ment as well as the ability of detecting new intrusion types.

Intrusion types include worms, spamware, viruses, denial-of-service(DoS),
malicious logins, etc. The potential damage of these intrusions can be signifi-
cant if they are not detected promptly. An example is the Code Red worm that
infected more than 350,000 systems in less than 14 hours in 2001 with a dam-
age cost of more than two billion dollars [7]. IDS collaboration can also be an
effective way to throttle or stop the spread of such contagious attacks.

Centralized collaboration of IDSes relies on a central server to gather alerts
and analyze them. This technique suffers from the performance bottleneck prob-
lem. In addition the central server is a single point of failure and may become



the target of denial-of-service attacks. The distributed collaboration of IDSes can
avoid these problems. However, in such a collaborative environment, a malicious
IDS can degrade the performance of others by sending out false evaluations about
intrusions. To protect an IDS collaborative network from malicious attacks, it
is important to evaluate the trustworthiness of participating IDSes, especially
when they are Host-based IDSes (HIDSes). Duma et al. [3] propose a simple
trust management model to identify dishonest insiders. However, their model is
vulnerable to some attacks which aim at compromising the trust model itself
(see Sections 4 and 5 for more details).

In this work, we develop a robust trust management model that is suitable
for distributed HIDS collaboration. Our model allows each HIDS to evaluate the
trustworthiness of others based on its own experience with them. We also propose
a framework for efficient HIDS collaboration using a peer-to-peer network. Our
framework provides identity verification for participating HIDSes and creates
incentives for collaboration amongst them.

We evaluate our system based on a simulated collaborative HIDS network.
The HIDSes are distributed and may have different expertise levels in detecting
intrusions. A HIDS may also become malicious in case it has been compromised
(or the HIDS owner deliberately makes it malicious). We also simulate several
potential threats. Our experimental results demonstrate that our system yields a
significant improvement in detecting intrusions and is robust to various attacks
as compared to that of [3].

The rest of the paper is organized as follows. Section 2 presents the collab-
orative IDS framework and collaboration management mechanisms. Section 3
formalizes our trust management model. Section 4 addresses common attacks
on the collaboration and proves how our trust model cancels them. Section 5
presents the different simulation settings used and discusses the obtained results.
Section 6 discusses related work. Finally, Section 7 summarizes our contributions
and addresses future work directions.

2 HIDS Collaboration Framework

The purpose of this framework is to connect individual HIDSes so that they can
securely communicate and cooperate with each other to achieve better intrusion
detectability. Figure 1 illustrates the key components of our framework. Collab-
oration is ensured by trust-based cooperation and peer-to-peer communication.
The trust management model allows a HIDS to evaluate the trustworthiness
of its neighbors based on its own experience with them. The P2P component
provides network organization, management and communication between the
HIDSes. The collaboration is ensured by three processes, which are explained in
the following.

2.1 Network Join Process

In our framework, each HIDS connects to other HIDSes over a peer-to-peer
network. Before joining the network, a HIDS node needs to register to a trusted
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Fig. 1. IDS Collaboration Framework

digital certificate authority (Figure 1) and get a public and private key pair
which uniquely identifies it. Note that we identify the (machine, user) tuple.
This is because a different machine means a different HIDS instance. In addition,
a different user of the same machine may have a different configuration of its
HIDS. After a node joins the HIDS network, it is provided with a preliminary
acquaintance list. This list is customizable and contains IDs (or public keys) of
other nodes within the network along with their trust values and serves as the
contact list for collaboration.

2.2 Test Messages

Each node sends out either requests for alert ranking (consultation), or test
messages. A test message is a consultation request sent with the intention to
evaluate the trustworthiness of another node in the acquaintance list. It is sent
out in a way that makes it difficult to be distinguished from a real alert ranking
request. The testing node knows the severity of the alert described in the test
message and uses the received feedback to derive a trust value for the tested
node. This technique helps in uncovering inexperienced and/or malicious nodes
within the collaborative network.

2.3 Incentive Design

Our framework also provides incentives to motivate collaboration. Nodes that are
asked for consultation will reply to only a number of requests in a certain period
of time because of their limited bandwidth and computational resources. Thus,
only highly trusted nodes will have higher priority of receiving help whenever
needed. In this way, nodes are encouraged to build up their trust. In addition,
our system accepts the reply of “don’t know” to requests in order to encourage
active collaboration in the network. This is explained in section 3.1.



3 Trust Management Model

This section describes the model we developed to establish trust relationships
between the HIDSes in the collaborative environment. We first describe how we
evaluate the trustworthiness of a HIDS and then present a method to aggregate
feedback responses from trusted neighbours.

3.1 Evaluating the Trustworthiness of a node

The evaluation of the trustworthiness of a node is carried out using test messages
sent out periodically using a random poisson process. After a node receives the
feedback for an alert evaluation it assigns a satisfaction value to it, which can
be “very satisfied” (1.0), “satisfied” (0.5), “neutral” (0.3), “unsatisfied” (0.1), or
“very unsatisfied” (0).

The trust value of each node will be updated based on the satisfactory levels
of its feedback. More specifically, the replies from a node i are ordered from
the most recent to the oldest according to the time tk at which they have been
received by node j. The trustworthiness of node i according to node j can then
be estimated as follows:

twj
i (n) =

n∑

k=0

Sj,i
k F tk

n∑

k=0

F tk

(1)

where Sj,i
k ∈ [0, 1] is the satisfaction of the reply k and n is the total number of

feedback. To deal with possible changes of the node behavior over time, we use
a forgetting factor F (0 ≤ F ≤ 1) which helps in assigning less weight to older
feedback responses [10]. Compared to Duma et al. [3], our model uses multiple
satisfaction levels and forget old experiences exponentially, while [3] only uses
two satisfaction levels (satisfied and unsatisfied) and all experiences have the
same impact.

We also allow a node to send a “don’t know” answer to a request if it has no
experience with the alert or is not confident with its ranking decision. However,
some nodes may take advantage of this option by always providing “don’t know”
feedback responses so as to maintain their trust values. In order to encourage
nodes to provide satisfactory feedback responses whenever possible, the trust
value will be slowly updated every time the node provides a “don’t know” answer.
The trustworthiness of a node i according to node j is then formulated as follows:

T j
i = (twj

i − Tstranger)(1− x)m + Tstranger, (2)

where x is the percentage of “don’t know” answers from time t0 to tn. m is
a positive incentive parameter (forgetting sensitivity) to control the severity of
punishment to “don’t know” replies, twj

i is the trust value without the integra-
tion of “don’t know” answers (Equation 1), and Tstranger is the default trust
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Fig. 2. Trust Convergence Curves with “don’t know” answers

value of a stranger. As illustrated in Figure 2, Equation 2 causes trust values
to converge to Tstranger with the increase in the percentage of don’t “know an-
swers”. Eventually, the trust value will become that of a stranger. This allows the
trust value of an untrusted node to slowly increase up to the level of a stranger
by providing “don’t know” answers. In addition, nodes with little experience are
motivated to provide “don’t know” answers rather than incorrect alert rankings.

3.2 Feedback Aggregation

Based on the history of trustworthiness, each node i requests alert consulting
only from those nodes in its acquaintance list whose trust values are greater
than a threshold thi

t. We also consider proximity, which is a measure of the
physical distance between the node that provides feedback and the node that
sends the request. Physical location can be an important parameter in intrusion
detection. HIDSes that are located in the same or close by geographical region
are likely to experience similar intrusions [1] and thus can help each other by
broadcasting warnings of active threats. Feedback from nearby acquaintances
is therefore more relevant than that from distant ones. We scale the proximity
based on the region the node belongs to.

After receiving feedback from its acquaintances, node j aggregates the feed-
back using a weighted majority method as follows:

Rj(a) =

∑

T j
i ≥thj

t

T j
i Dj

i Ri(a)

∑

T j
i ≥thj

t

T j
i Dj

i

, (3)

where Rj(a) is the aggregated ranking of alert a from the feedback provided by
each node belonging to the acquaintance list Aj of node j. T j

i (∈ [0, 1]) is the
trust value of node i according to node j. Dj

i (∈ [0, 1]) is the proximity weight of



node i. thj
t is the trust threshold set by node j. Ri(a) (∈ [0, 1]) is the feedback

ranking of alert a by node i.
Compared to [3], our model only integrate feedback from trusted nodes while

[3] integrates feedback from all neighbors.

4 Robustness against Common Threats

Trust management can effectively improve network collaboration and detect ma-
licious HIDSes. However, the trust management itself may become the target of
attacks and be compromised. In this section, we describe possible attacks and
provide defense mechanisms against them.

Sybil attacks occur when a malicious node in the system creates a large
amount of pseudonyms (fake identities) [2]. This malicious node uses fake iden-
tities to gain larger influence of the false alert ranking on others in the network.
Our defense against sybil attacks relies on the design of the authentication mech-
anism. Authentication makes registering fake IDes difficult. In our model, the
certificate issuing authority only allows one ID per IP address. In addition, our
trust management model requires IDSes to first build up their trust before they
can affect the decision of others, which is costly to do with many fake IDes.
Thus, our security and trust mechanisms protect our collaborative network from
sybil attacks.

Identity cloning attacks occur when a malicious node steals some node’
identity and tries to communicate with others on its behalf. Our communication
model is based on asymmetric cryptography, where each node has a pair of public
and private keys. The certificate authority certifies the ownership of key pairs
and in this way protects the authenticity of node identities.

Newcomer attacks occur when a malicious node can easily register as a
new user [8]. Such a malicious node creates a new ID for the purpose of erasing
its bad history with other nodes in the network. Our model handles this type of
attack by assigning low trust values to all newcomers, so their feedback on the
alerts is simply not considered by other nodes during the aggregation process.

Betrayal attacks occur when a trusted node suddenly turns into a malicious
one and starts sending false alerts or even malware. A trust management system
can be degraded dramatically because of this type of attacks. We employ a
mechanism which is inspired by the social norm:

It takes a long-time interaction and consistent good behavior to build up
a high trust, while only a few bad actions to ruin it.

When a trustworthy node acts dishonestly, the forgetting factor (Eqn.1) causes
its trust value to drop down quickly, hence making it difficult for this node to
deceive others or gain back its previous trust within a short time.

Collusion attacks happen when a group of malicious nodes cooperate to-
gether by providing false alert rankings in order to compromise the network.
In our system, nodes will not be adversely affected by collusion attacks. In our
trust model each node relies on its own knowledge to detect dishonest nodes.



In addition, we use test messages to uncover malicious nodes. Since the test
messages are sent in a random manner, it will be difficult for malicious nodes to
distinguish them from actual requests.

5 Simulations and Experimental Results

In this section, we present the experiments used to evaluate the effectiveness and
robustness of our trust-based IDS collaboration framework.

5.1 Simulation Setting

In our simulation model, we have n nodes in the collaboration network ran-
domly distributed in a s× s grid region. The proximity weight of nodes is anti-
proportional to the distance between the nodes in the number of grid steps. The
expertise levels of the nodes can be low(0.1), medium(0.5) or high(0.95). In the
beginning, each node builds an initial acquaintance list based on the communi-
cation cost (proximity). The initial trust values of all nodes in the acquaintance
list are set to the stranger trust value (Tstranger). To test the trustworthiness of
all the acquaintances in the list, each node sends out test messages following a
Poisson process with average arrival rate λt. The intrusion detection expertise
of a HIDS is modeled using a beta function. A honest HIDS always generates
feedback based on its truthful judgment, while a dishonest HIDS always sends
feedback opposite to its truthful judgment. The parameters used in the simula-
tion are shown in Table 1.

To reflect a HIDS expertise level, we use a beta distribution for the decision
model of HIDSes. The beta density function is expressed in Eqn.5:

f(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1, (4)

B(α, β) =
∫ 1

0

tα−1(1− t)β−1dt, (5)

Table 1. Simulation Parameters for Experiments

Parameter Value Description

λt 5/day Test messages frequency

F 0.9 Forgetting factor

Tstranger 0.5 Stranger trust value

tht 0.8 Trust threshold

m 0.3 Forgetting sensitivity

ThDK 1 Threshold of “don’t know” replies

s 4 Size of grid region

n 30 (+10) Number of HIDS
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We define α and β as:

α = 1 +
(1−D)

D

√
E(b− 1)
1− E

, β = 1 +
(1−D)(1− E)

DE

√
E(b− 1)
1− E

(6)

where E is the expected ranking of the alert. D (∈ [0, 1]) denotes the difficulty
level of a alert. Higher values for D are associated to attacks that are difficult to
detect, i.e. many HIDSes fail to identify them. L(∈ [0, 1]) denotes the expertise
level of an IDS. A higher value for L reflects a higher probability of producing
correct rankings for alerts. f(p; α, β) is the probability that the node with ex-
pertise level L answers with a value of p (1 ≥ p ≥ 0) to an alert of difficulty
level D, α ≥ 1, β ≥ 1, and b = 1/(1−L)2. For a fixed difficulty level, this model
assigns higher probabilities of producing correct ranking to nodes with higher
levels of expertise. For a node with fixed expertise level, it has a lower probabil-
ity of producing correct rankings for alerts with higher D values. A node with
expertise level 1 or an alert with difficulty level 0 represents the extreme case
that the node can rank the alert accurately with guarantee. This is reflected in
the Beta distribution by parameters α = ∞ and β = ∞. A node with expertise
level 0 or an alert with difficulty level 1 represents the extreme case that the
node ranks the alert by picking up answer randomly. This is reflected in the
Beta distribution by parameters α = 1 and β = 1 (Uniform distribution). Figure
3 shows the feedback probability distribution for IDSes with different expertise
levels, where the expected risk level is fixed to 0.7 and the difficulty level of test
messages is 0.5.

5.2 Results for a Honest Environment

The first experiment studies the effectiveness of IDS collaboration and the im-
portance of trust management. In this experiment, all IDSes are honest. 30 IDSes
are divided into three equally-sized groups, with expertise levels of 0.1, 0.5 and
0.95 respectively. We simulate the first 100 days to observe the trust values of
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nodes from each group, where nodes send only test messages to the others. Fig-
ure 4 shows the average trust values of nodes with different expertise levels. We
can see that after 40-50 days, the trust values of all nodes converges to stable
values.

Starting from day 101, we inject one random attack to all the nodes in the
network in each day. The risk values of the attacks are uniformly generated from
[low, medium, high]. The difficulty levels of attacks are fixed to 0.5. Each IDS in
the network ranks the alert generated by the attack. If a node ranks “no risk”
or “low risk” for a high-risk attack, then it is assumed to have been infected. We
observe the total number of infected nodes in the network from day 101 to day
150 under different collaboration modes: no collaboration, collaboration without
trust management, the trust management adapted from the model of Duma et
al. [3] and our trust management method. The results of the total number of
infected nodes are shown in Figure 5. In this figure, we can see that the network
in collaboration mode is more resistant to attacks than the network in non-
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collaborative mode. Trust management models further improve the effectiveness
of the collaboration. Our trust model performs better than that of Duma et
al. [3]. Almost all attacks are detected and almost no node is infected after 50
days.

5.3 Results for an Environment with some dishonest nodes

The purpose of the second experiment is to study the effectiveness of the col-
laboration model in a hazard situation where some nodes in the network are
dishonest. We look at a special case where only some expert nodes are dishonest
because malicious expert nodes have the largest impact on the system.

In this experiment, we have 10 expert nodes that are dishonest. There are two
cases, without and with “don’t know” replies. In the latter case, the percentages
of “don’t know” answers from nodes with expertise levels of 0.95, 0.5 and 0.1
are 0%, 4% and 45% respectively. The forgetting sensitiveness parameter (m)
varies from 0.3 to 2. Figure 6 shows the converged trust values of nodes with
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different expertise/honesty levels in “report all” case and “report don’t know”
case after 100 simulation days. When m is large, the punishment of reporting
“don’t know” is heavier. For m = 0.3, the nodes with medium (0.5) and low (0.1)
expertise levels will be slightly rewarded. Therefore, we suggest using m = 0.3 to
encourage non-expert nodes to report “don’t know” when they are not confident
about their replies.

After 100 days, we start injecting randomly generated attacks to all the
nodes in the network at a rate of one attack per day. Figure 7 shows the total
number of infected nodes under different collaboration modes. The number of
infected nodes in the no-collaboration case is about the same as that in Figure 5
because the HIDSes make decisions independently. When there is no trust model
or using the model of Duma et al. [3] to detect malicious nodes, the total number
of infected nodes is larger than the corresponding case in Figure 5. The network
hence suffers from malicious nodes. The number of infected nodes remains very
small when using our trust model. This shows how important effective trust
management is for a HIDS collaboration system.

5.4 Robustness of the Trust Model

The goal of this experiment is to study the robustness of our trust model against
attacks. For the newcomer attack, malicious nodes white-wash their bad history
and re-register as new users to the system. However, a newcomer attack is diffi-
cult to succeed in our system. This is because it takes a long time for a newcomer
to gain trust over the trust threshold. In our experiment, it takes about 15 days
for an expert node to gain trust of 0.8 to pass the threshold (as shown in Figure
4).

The second possible threat is the betrayal attack, where a malicious node
gains a high trust value and then suddenly starts to act dishonestly. This sce-
nario happens, for example, when a node is compromised. To demonstrate the
robustness of our model against this attack type, we add 10 expert nodes which
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spread opposite alert rankings on day 110. Figures 8 and 9 show the trust val-
ues of the betraying nodes and the number of correct attack rankings before
and after the betrayal attack when using the trust model of Duma et al. and
our trust model respectively. When using our trust model, we notice that the
impact of the betrayal attack is smaller and the trust of malicious nodes drops
down faster. This is because our trust model uses a forgetting factor. The trust
values of dishonest nodes rely more on recent experience and therefore decrease
more quickly. Our recovery phase is also shorter because we use a threshold to
eliminate the impact of dishonest nodes. Once the trust values of malicious nodes
drops under the trust threshold of 0.8, they are ignored in the alert consultation
process and their impact is completely eliminated.

6 Related Work

Most of the existing work on distributed collaborative intrusion detection re-
lies on the assumption that all IDSes are trusted and faithfully report intru-
sion events. For instance, [4] proposes a distributed information sharing scheme
among trusted peers to guard against intrusions. and [6] proposes a distributed
intrusion detection system based on the assumption that all peers are trusted.
However, both systems can be easily compromised when some of the peers are
(or become) dishonest. Duma et al. [3] address possibly malicious peer IDSes by
introducing a trust-aware collaboration engine for correlating intrusion alerts.
Their trust management scheme uses each past experience of a peer to predict
the trustworthiness of other peers. However, their trust model is naive and does
not address security issues within the collaborative network. For instance, in
their system, the past experience of a peer has the same impact on its final trust
values regardless of the age of its experience, therefore making it vulnerable to
betrayal attacks. In our model, we use a forgetting factor when computing the
trust to put more emphasis on the recent experience of the peer.



Different models have been proposed for trust management in distributed
networks [5, 9]. [5] uses a global reputation management to evaluate distributed
trust by aggregating votes from all peers in the network. Sun et al. [9] propose an
entropy-based model and a probability-based model, which are used to calculate
the indirect trust, propagation trust and multi-path trust. These models involve
a lot of overhead and are not suitable for our system because IDSes can be easily
compromised. They also suffer from collusion attacks.

Our model is also distinguished from the trust models developed for the
application of e-marketplaces [10]. We introduce the concepts of expertise level
and physical location to improve the accuracy of intrusion detection. We also
allow IDSes to send test messages to establish better trust relationships with
others. The alert risk ranking is categorized into multiple levels as well.

7 Conclusions and Future Work

In this paper, we presented a trust-based HIDS collaboration framework that
enhances intrusion detection within a host-based IDN. The framework creates
incentives for collaboration and we prove it is robust against common attacks on
the collaborative network. The conducted simulations demonstrate the improved
performance of our framework in detecting intrusions as well as its robustness
against malicious attacks.

As future work, we will investigate the design of a communication proto-
col for the collaborative network, which takes privacy and efficiency issues into
consideration. We will also design an automatic feedback to satisfaction level
converting function, which takes risk levels of test messages, difficulty levels of
test messages, and feedback from IDSes as inputs and generates satisfaction
levels to the feedback as output.

Furthermore, we intend to extend our trust model to go beyond a generalized
trust value for an HIDS. More specifically, since in practive HIDSes might have
different expertise in detecting different types of intrusions, we would want to
model the trustworthiness of a HIDS with respect to each individual type of in-
trusion. This will result in more effective trust management for assisting HIDSes
to seek advice from truly helpful others. The subjectivity of HIDSes needs to
be addressed when modeling their trustworthiness. HIDSes may have different
subjective opinions on the risk levels of alerts. They can be more or less sensitive
to certain intrusions.

Incentive design is another possible extension of our work. In the current
protocol, the system may encounter free-rider problem such that some nodes
forward the test messages to its neighbors and receive the rankings, then they
forward the aggregated feedback from its neighbors to the tester. Free-riders
can create unnecessary traffic in the network and degrade the inefficiency of
the system. Honest users may be taken advantage and be deceived by dishonest
“middle-agents”. In our future work, we will investigate this problem and cre-
ate corresponding incentive design to discourage free-riders and reward honest
participants.



Finally, we also intend to evaluate the resistance of our framework against
collusion attacks; as well as investigate its scalability in terms of number of
HIDSes, rate and type of attacks.
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