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Abstract—The accuracy of detecting intrusions within an Intrusion De-
tection Network (IDN) depends on the efficiency of collaboration between
the peer Intrusion Detection Systems (IDSes) as well as the security it-
self of the IDN against insider threats. In this paper, we study host-based
IDNs and introduce a Dirichlet-based model to measure the level of trust-
worthiness among peer IDSes according to their mutual experience. The
model has strong scalability properties and is robust against common in-
sider threats, such as a compromised or malfunctioning peer. We evaluate
our system based on a simulated collaborative host-based IDS network. The
experimental results demonstrate the improved robustness, efficiency, and
scalability of our system in detecting intrusions in comparison with existing
models.

I. INTRODUCTION

Intrusion Detection Systems (IDSes) identify intrusions by
comparing observable behavior against suspicious patterns.
They can be network-based (NIDS) or host-based (HIDS). Tra-
ditional IDSes work in isolation and may be easily compromised
by unknown or new threats. An Intrusion Detection Network
(IDN) is a collaborative IDS network intended to overcome this
weakness by having each peer IDS benefit from the collective
knowledge and experience shared by other peers. This enhances
the overall accuracy of intrusion assessment as well as the abil-
ity of detecting new intrusion types.

The centralized collaboration of IDSes relies on a central
server to gather and analyze alerts. This technique suffers from
the classical performance bottleneck and a single point of fail-
ure problems. The distributed collaboration of IDSes can avoid
these problems. However, in such collaborative environments, a
malicious (or malfunctioning) IDS can degrade the performance
of others by sending out false intrusion assessments. To protect
an IDN from malicious attacks, it is important to evaluate the
trustworthiness of participating IDSes, especially when they are
host-based.

In this work, we develop a robust Bayesian trust management
model that is scalable and suitable for distributed HIDS collabo-
ration. More specifically, we adopt the Dirichlet family of prob-
ability density functions in our trust management for estimating
the likely future behavior of a HIDS based on its past history.
This theoretical model allows us to track the uncertainty in es-
timating the trustworthiness of the HIDS, which improves the
detection accuracy. Our model also offers excellent scalability
properties.

We evaluate our system based on a simulated collaborative
HIDS network. The HIDSes are distributed and may have dif-
ferent expertise levels in detecting intrusions. A HIDS may also

This research was partly supported by the Natural Science and Engineering
Council of Canada (NSERC) under the Strategic Program - Project 322235_05.

978-1-4244-3487-9/09/$25.00 (©) 2009 IEEE

turn malicious due to runtime bugs, having been compromised,
having been updated with a faulty new configuration, or having
been deliberately made malicious by its owner. We also simulate
several potential threats. Our experimental results demonstrate
that our system yields a significant improvement in detecting in-
trusions and is robust against various attacks, as compared to ex-
isting HIDS collaborative systems. The provided experimental
results also demonstrate the improved scalability of our system.

The collaborative HIDS framework is presented in Section II
and the management model in Section III. The scalability of
our system is discussed in Section IV and its robustness against
common threats in Section V. Section VI provides experimen-
tal evidence of the efficiency, robustness and scalability of our
model. Section VII surveys related work and Section VIII sum-
marizes our contributions and future work.

II. HIDS COLLABORATION FRAMEWORK

The purpose of this framework is to connect individual HID-
Ses so that they can securely communicate and cooperate with
each other to achieve better detection accuracy. Collaboration is
ensured by trust-based cooperation and peer-to-peer communi-
cation. The trust management model allows a HIDS to evaluate
the trustworthiness of its neighbors based on its own experience
with them. The peer-to-peer component provides network or-
ganization, management and communication between HIDSes.
The collaboration consists of the following two processes.

A. Network Join Process

Before joining the network, a HIDS needs to register to a
trusted digital certificate authority and get a public and private
key pair which uniquely identifies it. Note that we identify
the (machine, user) tuple. This is because a different machine
means a different HIDS instance. In addition, a different user
of the same machine may have a different configuration of its
HIDS. After a peer joins the IDN, it is provided with a pre-
liminary acquaintance list. This list is customizable and con-
tains identities (or public keys) of other peers within the net-
work along with their trust values. It serves as the contact list
for collaboration.

B. Test Messages

Each peer sends out either requests for alert ranking, or test
messages. A test message is a consultation request sent with the
intention to evaluate the trustworthiness of another peer in the
acquaintance list. It is sent out in a way that makes it difficult
to distinguish from a real alert ranking request. The testing peer
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knows beforehand the severity of the alert and uses the received
feedback to derive a trust value for the tested peer. This tech-
nique helps discover inexperienced or malicious peers within
the collaborative network.

III. TRUST MANAGEMENT MODEL

Trust modeling is an important element in an IDN. In this sec-
tion, we propose a robust and scalable trust model which uses
a Bayesian approach to evaluate the trustworthiness between
each pair of HIDSes . Specifically, we use a Dirichlet family
of probability density functions to estimate the future behavior
of a HIDS based on its past history.

A. Satisfaction Mapping

In our model, a HIDS peer sends requests to peer HIDSes and
evaluates the satisfaction level of received feedback. Note that
the request can be a test message or a real request. The true
answer of a test message is known beforehand while that of a
real request is estimated after sometime through the observed
impact of the corresponding alert.

HIDSes may have different metrics to rank alerts. Snort for
example uses three levels (low, medium, high), while Bro al-
lows up to 100 different levels. We assume the existence of a
function H, which maps a HIDS alert ranking onto the [0,1]
interval where 0 denotes benign traffic and 1 highly dangerous
intrusions. H preserves the “more severe than” partial order re-
lationship. That is, if alert a; is more severe than alert a; then
H preserves that relationship by having H(a;) > H(a;).

The satisfaction level of feedback is determined by three fac-
tors: the expected answer (r € [0, 1]), the received answer (a €
[0,1]) and the difficulty level of the test message (d € [0, 1]).
The larger d is the more difficult it is to correctly answer the re-
quest. We use a function Sat(r, a,d) (€ [0,1]) to represent the
satisfaction of the received answer based on its distance to the
expected answer and the difficulty level of the test message, as
follows:
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where c; controls the extent of penalty for wrong estimates. It
is set > 1 to reflect that estimates lower than the exact answer
get stronger penalty than those that are higher. Parameter co €
R™ controls satisfaction sensitivity, with larger values reflecting
more sensitivity to the distance between the correct and received
answers. The equation also ensures that low difficulty level tests
are more severe in their penalty to incorrect answers.

B. Dirichlet-based Model

In our previous work [4], we used a linear model with a for-
getting factor to calculate the average satisfaction levels of past
interactions. However, this approach does not capture trust mod-
eling uncertainties or provide statistical confidence information
on intrusion decisions.

Bayesian statistics provides a theoretical foundation for mea-
suring the uncertainty in a decision that is based on a collection
of observations. We are interested in knowing the distribution
of satisfaction levels of the answers from each peer HIDS and,
particularly, using this information to estimate the satisfaction
level of future consultations. For the case of a binary satisfac-
tion level {satisfied, —satisfied}, a Beta distribution can be used
as appeared in [12]. For multi-valued satisfaction levels, Dirich-
let distributions are more appropriate.

A Dirichlet distribution [9] is based on initial beliefs about an
unknown event represented by a prior distribution. The initial
beliefs combined with collected sample data can be represented
by a posterior distribution. The posterior distribution well suits
our trust management model since the trust is updated based on
the history of interactions.

Let X be the discrete random variable denoting the satisfac-
tion level of the feedback from a peer HIDS. X takes values
in the set X = {§,8¢,.... 8} (@ € [0,1], z41 > x3) of
the supported levels of satisfaction. Let p = {p1,p2,..., Pk}
(Zle p; = 1) be the probability distribution vector of X, i.e
P{X =z;} = p;. Also, let ¥ = {71, 72, -..,  } denote the vec-
tor of cumulative observations and initial beliefs of X. Then we
can model p'using a posterior Dirichlet distribution as follows:
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where ¢ denotes the background knowledge, which in here is
summarized by 4.

Let

3

k
Yo = Z Vi
i=1

The expected value of the probability of X to be x; given the
history of observations ¥ is given by:

E(pi|y) = % @)

In order to give more weight to recent observations over old
ones, we embed a forgetting factor A in the Dirichlet background
knowledge vector v as follows:
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where n is the number of observations; gb is the initial be-
liefs vector. If no additional information is available, all out-
comes have an equal probability making S;-) 1/k for all
Jj € {1,..,k}. Parameter ¢y > 0 is a priori constant, which

puts a weight on the initial beliefs. Vector S denotes the sat-
isfaction level of the i*" evidence, which is a tuple containing
k — 1 elements set to zero and only one element set to 1, cor-
responding to the selected satisfaction level for that evidence.
Parameter A € [0, 1] is the forgetting factor. A small A makes
old observations quickly forgettable. Parameter ¢; denotes the
time elapsed (age) since the i*" evidence S was observed.

Let At; = t; — t;,1. For the purpose of scalability, the (")
in Equation 5 can be rewritten in terms of (1), S™ and At,
as follows:
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C. Evaluating the Trustworthiness of a Peer

,?(n—l) + S"n

After a peer receives the feedback for an alert evaluation, it
assigns a satisfaction value to the feedback according to Equa-
tion 1. This satisfaction value is assigned with one of the satis-
faction levels in the set X' = {§, §¢, ..., § } that has the closest
value. Each satisfaction level x; also has a weight w;.

Let pi* denote the probability that peer v provides answers to
the requests sent by peer u with satisfaction level z;. Let p*¥ =
P¥)i=1..k | ZZ 1 P = 1. We model p"* using Equation 2.
Let Y*? be the random variable denoting the weighted average
of the probability of each satisfaction level in p*

k
=5 pu @)
i=1

In this paper, we adopt a linear pondering factor for the
weights w; = z;. The trustworthiness of peer v as noticed by
peer u is then calculated as:

Zw E[p]

where ;" is the cumulated evidence that v has replied to u with
satisfaction level x;. The variance of Y is equal to (superscript
uw is omitted for clarity):
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Knowing that the covariance of p; and p; is given by:
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Let C*¥ € (0, 1) be the confidence level for the value of 7",

we describe it as:

C" =1—40[Y"] (12)

where 4 o[Y"?] is roughly the 95% confidence interval.

D. Feedback Aggregation

Based on their estimated trustworthiness, each peer requests
alert consulting only from those peers in its acquaintance list
whose trust values are greater than a threshold. After receiving
feedback from its acquaintances, a peer u aggregates the feed-
back using a weighted majority method as follows:
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where @' is the aggregated ranking of alert 7 from the feed-
back provided by each peer belonging to the acquaintance list
A" of peer u; D*? € [0,1] is the proximity weight of peer v
with respect to u. th* is the trust threshold set by u; a¥¥ € [0, 1]
is the feedback ranking of alert ¢ from v to u.

We introduce proximity as a measure of the distance between
two peers. In this paper, we consider it to be the geographi-
cal distance. This is because HIDSes that are located within
the same or close by geographical region are more likely to ex-
perience similar intrusions [1] and thus can help each other by
broadcasting warnings of active threats. Feedback from nearby
acquaintances is therefore more relevant than that from distant
ones.

IV. SCALABILITY OF OUR SYSTEM

Each HIDS u in our system maintains an acquaintance list
with a maximum size N*. This number can be fixed or slightly
updated with the changes in IDN size. However, it is always set
to a value small enough to account for scalability. Equation 6 en-
sures that the process of updating the trustworthiness of a peer
after the reception of a response is performed with only three
operations, making it linear with respect to the number of an-
SWers.

There is a trade-off to be resolved in order to account for scal-
ability in the number of messages exchanged in the IDN. On one
hand, the forgetting factor in Equation 6 decays the importance
given to existing highly trusted peers. This implies that their
corresponding test messages rates need to be above a certain
minimal rate. On the other hand, sending too many requests to
other peers may compromise scalability. To solve this issue, we
adapt the rate of test messages to a given peer according to its
estimated trustworthiness. The adaptation policy is provided in
Table I, where acquaintances are categorized into highly trust-
worthy, trustworthy, untrustworthy, and highly untrustworthy.
There are three levels of test message rates: R; < R,, < Rp.
For the purpose of exploration, acquaintances that are highly un-
trustworthy are periodically replaced by randomly chosen new
peers. We can observe that the test message rate to highly trust-
worthy or highly untrustworthy peers is low. This is because we
are confident about our decision of including or not their feed-
back into the aggregation. A higher test message rate is assigned
to trustworthy or untrustworthy peers because their trust values
are close to the threshold and hence need to be kept under close
surveillance.

Each peer in the system needs to actively respond to others’
requests in order to keep up its trustworthiness and be able to re-
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TABLE I
ACQUAINTANCE CATEGORIZATION

TABLE II
SIMULATIONS PARAMETERS

Peer Category Criterion Rate Parameter  Value Description
Highly Trusted 0 <th < E[Y]-20[Y] R R 2/day Low test message rate
Trusted ElY]-20[Y]<th< E[Y] Ry R, 10/day Medium test message rate
Untrusted EY]<th< E[Y]+20Y] Rpn Ry, 20/day High test message rate
Highly Untrusted  E[Y]+20[Y] <th <1 R A 0.9 Forgetting factor
th 0.8 Trust threshold for aggregation

co 10 Priori Constant

ceive prompt help when needed. However, actively responding c1 1.5 Cost rate of low estimate to high estimate

to every other peer will cause bottleneck situations. Therefore, Ca 1 Satisfaction sensitivity factor
as a consultant to others, a peer would like to limit the rate of an- s Size of grid region
swers it provides. In this regard, each peer in our system would k 10 Number of satisfaction levels

respond to requests with a priority proportional to the amount of
trust it places on the source of the request. It will give higher
priority to highly trusted friends. This obeys the social norm:
“Be nice to others who are nice to you”, and also provides in-
centives for encouraging peers to act honestly in order to receive
prompt help in times of need.

V. ROBUSTNESS AGAINST COMMON THREATS

Trust management can effectively improve network collabo-
ration and detect malicious peers. However, the trust manage-
ment itself may become the target of attacks and be compro-
mised. In this section, we describe common attacks and provide
defense mechanisms against them.

A. Sybil attacks

occur when a malicious peer in the system creates a large
amount of pseudonyms (fake identities) [2]. This malicious peer
uses fake identities to gain larger influence over the false alert
ranking on others in the network. Our defense against sybil at-
tacks relies on the design of the authentication mechanism. Au-
thentication makes registering fake identities difficult. In our
model, the certificate issuing authority only allows one identity
per (user, machine) tuple. In addition, our trust management
model requires HIDSes to first build up their trust before they
can affect the decision of others, which is costly to do with many
fake identities. Thus, our security and trust mechanisms protect
our collaborative network from sybil attacks.

B. Newcomer attacks

occur when a malicious peer can easily register as a new user
[8]. Such a malicious peer creates a new ID for the purpose
of erasing its bad history with other peers in the network. Our
model handles this type of attack by assigning low trust values
to all newcomers, so their feedback on the alerts is simply not
considered by other peers during the aggregation process.

C. Betrayal attacks

occur when a trusted peer suddenly turns into a malicious one
and starts sending false feedbacks. A trust management system
can be degraded dramatically because of this type of attacks.
We employ a mechanism which is inspired by the social norm:
“It takes a long-time interaction and consistent good behavior to
build up a high trust, while only a few bad actions to ruin it.”
When a trustworthy peer acts dishonestly, the forgetting factor
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(Equation 6) causes its trust value to drop down quickly, hence
making it difficult for this peer to deceive others or gain back its
previous trust within a short time.

D. Collusion attacks

happen when a group of malicious peers cooperate together
by providing false alert rankings in order to compromise the
network. In our system, peers will not be adversely affected by
collusion attacks. In our trust model each peer relies on its own
knowledge to detect dishonest peers. In addition, we use test
messages to uncover malicious peers. Since the test messages
are sent in a random manner, it will be difficult for malicious
peers to distinguish them from actual requests.

E. Inconsistency attacks

happen when a mailcious peer repeatedly changes its behav-
ior from honest to dishonest in order to degrade the efficiency
of the IDN. Inconsistency attacks are harder to succeed in the
Dirichlet-based model because of the use of the forgetting fac-
tor and the dynamic test message rate, which makes trust values
easy to lose and hard to gain. This ensures that the trust values
of peers with inconsistant behaviour remain low and hence have
little impact.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we present a set of experiments used to eval-
uate the effeciency, scalability and robustness of our trust man-
agement model in comparison with existing ones [4][3]. Each
experimental result presented in this section is derived from the
average of a large number of replications with an overal negligi-
ble confidence interval.

A. Simulation Setting

The simulation environment uses an IDN of n HIDS peers
randomly distributed over an s x s grid region. The proximity
distance is given by the minimum number of square steps be-
tween each two peers. The expertise level of a peer can be low
(5%), medium (50%) or high (95%). In the beginning, each peer
receives an initial acquaintance list containing neighbour nodes
based on proximity. The initial trust value of every peer in the
acquaintance list is 50%. To test the trustworthiness of acquain-
tances, each peer sends out test messages following a Poisson
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Fig. 1. Decision Density Function for Expertise Levels

process with rates according to Table I. The parameters we used
are shown in Table II.

B. Modeling the Expertise Level of a Peer

To reflect the expertise level of each peer, we use a Beta dis-
tribution to simulate the decision model of answering requests.
A Beta density function is given by:

£l ) —B(; =)
1 b

B(a,B) = /iw*agwﬁ*ﬁ (14)
0

where f(p|a, () is the probability that a peer with expertise level
I answers with a value of p € [0, 1] to an alert of difficulty level
d € [0,1]. Higher values for d are associated to attacks that are
difficult to detect, i.e. many peers fail to identify them. Higher
values of [ imply a higher probability of producing correct alert
rankings.

Let r be the expected ranking of an alert. We define o and (3

as follows:
- 14 I(1—-d) r 2 1
“ = d1—n\V1-rV1
(1—-d) [1—7r [2
= 1 - —1 1
h taa=pV TV (15)

For a fixed difficulty level, the above model has the property
of assigning higher probabilities of producing correct rankings
to peers with higher levels of expertise. A peer with expertise
level [ has a lower probability of producing correct rankings for
alerts of higher difficulty (d > [). I = 1 or d = 0 represent
the extreme cases where the peer can always accurately rank the
alert. This is reflected in the Beta distribution by o, 3 — o0.
Figure 1 shows the feedback probability distribution for peers
with different expertise levels, where we fix the expected risk
level to 0.7 and the difficulty level of test messages to 0.5.

C. Deception Models

We model four deception models for a dishonest peer: com-
plementary, exaggerate positive, exaggerate negative, and max-
imal harm. The first three deception models are described in
[11], where an adversary may choose to send feedback about
the risk level of an alert that is respectively opposite to, higher,
or lower than the true risk level. We propose a maximal harm
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model where an adversary always chooses to report false feed-
back with the intention to bring the most negative impact to the
request sender. Figure 2 shows the feedback curve for the dif-
ferent deception strategies. For instance, when a deceptive peer
using the maximal harm strategy receives a ranking request and
detects that the risk level of the request is “medium”, it sends
feedback “no risk” because this feedback can maximally devi-
ate the aggregated result at the sender side.

D. Trust Values and Confidence Levels for Honest Peers

The first experiment studies the effectiveness of the collabora-
tion and the importance of our trust management. In this experi-
ment, all peers are honest. We simulate the scenario where each
peer u has a fixed size N* of its acquaintance list. The peers are
divided into three equally-sized groups of low, medium and high
expertise levels respectively. The first phase of the simulation is
a learning period (50 days), during which peers learn about each
other’s expertise level by sending out test messages. Figure 3
shows the resulting average trust values of the 30 acquaintances
of peer u. The trust values converge after 30 days of simula-
tion and the actual expertise levels of the peers are able to be
effectively identified by our trust model.

To study the impact of different test message rates on the con-
fidence level of trust estimation (Equation 12), we conduct a
second experiment to let u use a fixed test message rate in every
simulation round. The rate of sending test messages starts with
one message per day and increases by five for every simulation
round. We plot the confidence level of trust evaluation for each
test message rate in Figure 4. We can observe that the confi-
dence level increases with the increase of the test message rate.
This confirms our argument that sending more test messages im-
proves the confidence of trust estimation. We also observe that
the confidence levels increase with the expertise levels. This is
because peers with higher expertise levels tend to perform more
consistently.

E. Trust Values for Dishonest Peers

The purpose of this experiment is to study the impact of dis-
honest peers using the four different deception strategies de-
scribed in Section VI-C. To study the maximum impact of these
deception strategies, we only use peers with a high expertise
level as deceptive adversaries since they are more likely to know
the true answers and can perform the deception strategies more
accurately.
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Fig. 3. Convergence of Trust Values for Differ-
ent Expertise Levels

In this experiment, we let peer u have an acquaintance list of
40 dishonest peers divided into four groups. Each group uses
one of the four deception models: complimentary, exaggerate
positive, exaggerate negative, and maximal harm. We use a dy-
namic test message rate and observe the convergence curve of
the average trust value for each group of deceptive peers. Re-
sults are plotted in Figure 5.

We notice that the trust values of all adversary peers converge
to stable values after 30 days of the learning phase. It is not
surprising that adversary peers using the maximal harm strat-
egy have the lowest trust values, while adversary peers using
the complimentary strategy have the second lowest ones. The
converged trust values of adversary peers using exaggerate pos-
itives are higher than those using exaggerate negatives. This is
because we use an asymmetric penalization mechanism for inac-
curate replies (c; > 1 in Equation 1). We penalize more heavily
peers that untruthfully report lower risks than those which un-
truthfully report higher risks.

FE. Robustness of Our Trust Model

The goal of this experiment is to study the robustness of our
trust model against various insider attacks. For the newcomer
attack, malicious peers white-wash their bad history and re-
register as new users to the system. If the trust value of a new-
comer can increase quickly based on its short term good behav-
ior, the system is then vulnerable to newcomer attacks. How-
ever, a newcomer attack is difficult to succeed in our model. In
our model, we use parameter ¢y in Equation 6 to control the
trust value increasing rate. When cy is larger, it takes longer for
a newcomer to gain a trust value above the trust threshold.

We compare our Dirichlet-based model with our previous
model [4] and the model of Duma et al. [3] in Figure 6. We
observe that in the Duma et al. model, the trust values of new
users increase very fast and reach the aggregation trust thresh-
old (80%) in the first day, which reveals a high vulnerability to
newcomer attacks. The reason for this is that their model does
not assign an initial trust to new peers and therefore their trust
values change very fast in the beginning. In the model we de-
veloped in [4], the trust values increase in a slower manner and
reach the trust threshold after three days. However, that model is
not flexible in that it does not offer control over the trust increase
speed. In the Dirichlet-based model, the trust increase speed is
controlled by the priori constant cy. For ¢ 10, it takes a

15

Test Messages/Day

Fig. 4. Confidence Levels of Estimation for Dif-
ferent Test Message Rates

10 15 20 25 30 35 40 45 50
Days

20 25 30 35 5

Fig. 5. Trust Values of Deceptive Peers with Dif-
ferent Deception Strategies

newcomer four to five days of consistent good behavior to reach
the same trust value. Larger values of cy make it even slower
to reach high trust, hence offering robustness against newcomer
attacks.

The second possible threat is the betrayal attack, where a ma-
licious peer first gain a high trust value and then suddenly starts
to act dishonestly. This scenario can happen, for example, when
a peer is compromised. To demonstrate the robustness of our
model against this attack type, we set up a scenario where u
has seven peers in its acquaintance list, of which six are hon-
est with an expertise evenly divided between low, medium, and
high. The malicious one has high expertise and behaves hon-
estly in the first 50 days. After that, it launches a betrayal attack
by adopting a maximal harm deceptive strategy. We observe the
trust value of the betraying peer and the satisfaction levels of
aggregated feedback in each day with respect to u.

Figure 7 shows the trust value of the betraying peer before and
after the launching of the betrayal attack when respectively us-
ing Duma et al., our previous and our new trust models. For the
Duma et al. model, the trust value of the malicious peer slowly
drops after the betrayal attack. This is because their model does
not use a forgetting factor, hence providing the previous hon-
est behavior of a malicious peer with a heavy impact on the trust
calculation for a considerable amount of time. The trust value of
the betraying peer drops much faster using our previous model,
while the fastest rate is observed when using our Dirichlet-based
model. This is because both models use a forgetting factor to
pay more attention to the more recent behavior of peers.

We also notice that the Dirichlet-based model has a slight im-
provement over our previous model. The Dirichlet-based model
adopts the dynamic test message rate and can react more swiftly.
The rate of sending messages to malicious peers increases as
soon as they start to behave dishonestly. Higher rates of test
messages help in the prompt detection of dishonest behavior.
However, in our previous model, the test message rate remains
the same. This phenomenon can be further observed in Figure 9.

The results for the satisfaction levels of aggregated feedback
with respect to u before and after the betrayal attack are shown
in Figure 8. We notice that the satisfaction level of u for the
aggregated feedback drops down drastically in the first day fol-
lowing the learning period and recovers after that in all three
models. The recovery period is however much shorter for the
Dirichlet-based and our previous models. This is again at-
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tributed to the use of the forgetting factor. The Dirichlet-based
model has a slight improvement in the recovering speed over our
previous model. This is because in the Dirichlet-based model,
the trust values of betraying peers drop under the aggregation
threshold faster than our previous model. Therefore, the im-
pact of betraying peers is eliminated earlier than in the previous
model.

G. Scalability of Our Trust Model

The result of test message rates under betrayal attack is shown
in Figure 9. We notice that in our Dirichlet-based model, the av-
erage test message rates for highly trusted as well as highly non
trusted peers are the lowest. The average test message sending
rate to peers with the medium expertise level is higher but still
below the medium rate (R,;,,). Compared to our previous model,
the average message sending rate is much lower, which demon-
strates the improved scalability of our Dirichlet-based model.
Note that the spike from the betraying group on around day 50
is caused by the drastic increment of the test message rate. The
sudden change of a highly trusted peer behavior will cause the
trust confidence level to drop down quickly. The rate of sending
messages to this peer then switches to R}, accordingly.

H. Efficiency of Our Trust Model

To demonstrate the efficiency of our Dirichlet-based trust
model, we conduct another experiment to evaluate the intrusion
detection accuracy. In this experiment, we let peer u have 15
acquaintances, which are evenly divided into low, medium, and
high expertise groups. Among the expert peers, some are ma-
licious and launch inconsistency attacks synchronously to de-
grade the efficiency of the IDN. More specifically, in each round
of behavior changing, these malicious peers adopt the maximal
harm deception strategy for two days followed by six days of
honest behavior.

In Figure 10, we vary the percentages of malicious peers
from 0% to 80%. We inject daily intrusions to peer u with
medium difficulty (0.5) and random risk levels. We then plot
the average satisfaction level for the aggregated feedback. We
observe that our Dirichlet-based model outperforms the others.
This is because the dynamic test message rate in Dirichlet-based
model causes the trust of malicious peers to drop faster and in-
crease slower, hence minimizing the impact of dishonest behav-
ior. Among the three models, Duma et al. has the least sat-

Fig. 7. Trust of Malicious Peers under Betrayal

Fig. 8. Impact on Accuracy of Betrayal Attack

isfaction level because of its slow response to sudden changes
in peer behavior and its aggregation of all feedback from even
untrustworthy peers.

Figure 11 shows the success rate of peer u in detecting intru-
sions. We notice that both our previous model and the Duma et
al. model cannot effectively detect intrusions when the majority
of peers are malicious. Our Dirichlet-based model shows excel-
lent efficiency in intrusion detection even in the situation of a
dishonest majority.

VII. RELATED WORK

Most of the existing work on distributed collaborative intru-
sion detection relies on the assumption that all peer HIDSes are
trusted and faithfully report intrusion events [5][7]. These sys-
tems can be easily compromised if some of the peers are (or
become) dishonest. Duma et al. propose in [3] a trust man-
agement model to identify dishonest insiders and a trust-aware
collaboration mechanism for correlating intrusion alerts. Their
trust management scheme uses the past experience of each peer
to predict the trustworthiness of other peers. However, their trust
model does not address security issues within the collaborative
network. For instance, in their system, the past experience of
a peer has the same impact on its final trust value regardless of
the age of its experience, therefore making it vulnerable to new-
comer and betrayal attacks. In our model, we use a forgetting
factor when computing the trust to put more emphasis on the
recent experience of the peer. The Duma et al. model integrates
feedback from all the peers in the IDN, which does not scale.
Our model avoids this deficiency by only integrating feedback
from trusted peers.

Different models have been proposed for trust management
in distributed networks. Jiang and Baras [6] use a global repu-
tation management to evaluate distributed trust by aggregating
votes from all peers in the network. Sun et al. [10] propose an
entropy-based model and a probability-based model, which are
used to calculate the indirect trust, propagation trust and multi-
path trust. These models have a lot of overhead and are not
suitable for our system because the peers can be easily compro-
mised. They also suffer from collusion attacks since their trust
values are based on the votes from others.

Our model is also distinguished from the trust models devel-
oped for the application of e-marketplaces [12]. We introduce
the concepts of expertise level and proximity to improve the ac-
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curacy of intrusion detection. We also allow the peer HIDSes
to send test messages to establish better trust relationships with
others. The alert risk ranking is categorized into multiple levels
as well.

Our previous work [4] propose a robust trust management
model that uses test messages to gain personal experience and
a forgetting factor to emphasize most recent experiences. How-
ever, this model needs to repeatedly aggregate all past experi-
ence with a peer when updating its trust, which makes it not
scalable over time. It also lacks a sound theoretical basis. Our
new model uses Dirichlet distributions to model peer trust. It
limits the size of the acquaintance list and uses dynamic test
message rates in order to account for better scalability. Also,
the dynamic adaptation in test message rates provides improved
robustness over our previous model.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present an efficient trust-based HIDS IDN
management solution, which is robust against common insider
threats and offers strong scalability properties. The experimen-
tal results demonstrate the improved performance of our model
in detecting intrusions, as well as its robustness and scalability.

Our work contributes to the area of trust-based collaborative
intrusion detection and achieves the important properties of ef-
ficiency, robustness and scalability in IDN management.

As future work, we plan to develop and deploy a real IDN
using existing intrusion detection systems. We will also inves-
tigate more sophisticated types of insider threats, such as col-
lusion attacks. Furthermore, we will design effective incentive
approaches so as to avoid free-rider problems and offer better
rewards to honest participants.
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