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Abstract

Efficient discovery of information based on partially
specified and misspelled query keywords is a challenging
problem in large scale Peer-to-Peer (P2P) networks. This
paper presents QPM, a P2P search mechanism for efficient
information retrieval with misspelled and partial keywords.
QPM uses the Double Metaphone algorithm to phonetically
match misspelled query keywords with advertised keywords.
For achieving bandwidth efficiency and similarity matching,
QPM incorporates second order Reed-Muller code within
the Plexus protocol having a logarithmic routing efficiency
on overlay network size. QPM supports large scale net-
works and achieves better resilience to peer failure by main-
taining redundant routing paths and by systematically plac-
ing index replicas. The concept presented in this paper is
supported by necessary experimental evaluation.

1. Introduction

The query success rate in currently deployed P2P net-
works is very low, as pointed out in [6]. The reason behind
this low success rate is not only the lack of knowledge about
the advertised objects, but is also the rate of misspelled
query keywords. According to the study in [6] about 25%
queries in the Gnutella network contain at least one mis-
spelled keyword. There are many reasons for which spelling
mistakes may occur in query keywords, such as typing mis-
takes, inconsistencies between spelling and pronunciation
in the English language, difference of spelling in different
dialects of the English language etc.
Our proposed routing protocol QPM (Query with Par-

tial and Misspelled keywords) can search expected files ef-
ficiently even if the query keywords are partially specified
and misspelled. In QPM, advertised keywords are phonet-
ically encoded and injected into separate Bloom filters [3]
to create advertisement patterns (bit vectors). Query pat-
terns are constructed in a similar manner from query key-

words. During the query resolution process, all advertised
patterns within a given Hamming distance of the query pat-
tern are discovered. A second order Reed-Muller code is
used to route messages to the rendezvous peers for resolv-
ing queries and storing advertised signatures. QPM re-
duces the impact of spelling mistakes in two ways: (a) pho-
netic encoding of keywords and (b) list decoding of adver-
tisement(or search) patterns. The simulation results reveal
that the proposed routing mechanism scales logarithmically
with network size, provides high success rates even in pres-
ence of spelling mistakes and does not collapse due to fre-
quent peer failures.
The rest of this paper is organized as follows. Section 2

presents related works. Section 3 presents the model of
QPM. In Section 4, we present the performance evaluation
of QPM. Finally, we conclude and outline our future re-
search goals in Section 5.

2. Related Works

Structured search techniques, such as Chord [9],
CAN [7] etc., map file identifiers to network locations us-
ing Distributed Hash Table (DHT)-based techniques. DHT-
based techniques are not generally suitable for partial
matching. A number of proposals, including [2], [8], and
[10], have suggested additional layer on top of DHT rout-
ing to achieve partial matching capability. Squid [8] adopts
space-filling-curves to map similar keywords to numerically
close keys and uses Chord [9] for routing. pSearch [10]
adopts CAN for routing and distributes document indices
based on document semantics generated by Latent Seman-
tic Indexing(LSI). In general, these extensions to the DHT
routing support prefix matching only and require multiple
DHT-lookups for query resolution. Some signature based
techniques (like Plexus [1], NSS [5]) construct signatures
(bit patterns) using keywords extracted from file descrip-
tions or queries for routing. Although signature based
search techniques support search with partial information
with high performance, they fail to answer queries involving
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misspelled keywords. QPM addresses the issue of spelling
mistakes in query keywords while securing high levels of
bandwidth efficiency and query success rate.

3. Model of QPM

3.1. Core Concept

The basic concept of QPM is to advertise a file using as-
sociated keywords to a set of peers, say A(P) , and to search
a query in another set of peers, say S(Q) , in such a way
that at least one peer will be common in A(P) and S(Q) for
serving the query if

A(P) ∩ S(Q) �= ∅ (1)

QPM has purely decentralized architecture. We assign
each peer in the network one or more codewords from
the second order Reed-Muller code RM2,7 [4]. Now the
problem of finding A(P) and S(Q) is reduced to generating
nearby codeword sets for the advertisement pattern P or the
query pattern Q, respectively. We choose second order RM
code because of its ability to support very large networks
and simplicity of implementation.
QPM uses double metaphone as standard phonetic algo-

rithm. Edit distance between the double metaphone codes
of the advertisement and query keywords is less than the
edit distance between the advertisement and query keyword.
Moreover, list decoding of second order Reed-Muller code
in computing A(P) and S(Q) helps to match the A(P) and
S(Q) . In QPM, we satisfy the condition in Equation (1) by
combining phonetic encoding technique with list decoding
of RM(2, 7) code. We use both phonetic equity and edit
distance as similarity measures during query resolution.

3.2. The Framework

Figure 1. Framework

Advertisement and query routing mechanism in QPM
consists of the following four steps as depicted in Figure 1.
1. Phonetic encoding: QPM extracts keywords from the

file description or query and filter out the popular keywords

to avoid hot-spot in the network. Then phonetically encoded
words are generated from the selected keywords using the
double metaphone algorithm.
2. Bloom filter construction: The double metaphone

words are used to create Bloom filter Pbf (or Qbf ). Good
advertisement and search patterns requires 20% to 50% bit
to be 1 (see Figure 3(a)).
3. List decoding : In this step, the advertisement Bloom

filter Pbf or the query Bloom filter Qbf is mapped to target
codewords A(P) or S(Q) for advertisement or query, re-
spectively. The pseudocode for list decoding is presented
in Algorithm 1. We compute A(P) by exact decoding
of all the patterns within the Hamming sphere of radius
d centered at the advertisement pattern P(bf) that have
lower weights (i.e., number of 1-bits) than P . We compute
S(Q) through exact decoding of all the patterns within the
Hamming sphere of radius d centered at the query pattern
Qbf that have higher weights than Qbf .
4. Routing : Routing in QPM is done by RM(2,7) code

as explained in the next section.

Algorithm 1 Find List(P , depth, type)
Inputs:

P : a 2m bit pattern to be list decoded for advertising
depth : current decoding distance form the original pattern
type : advertisement or query

Externals:
maxDepth: max. decoding distance form the original pattern
Decode(p): exact decoding algorithm for 2nd order RM-code

result← Decode(P )
if depth < maxDepth then
for each bit xi in P do
if xi = 1 and type=advertisement then

P � ← P with ith-bit reset to 0
else if xi = 0 and type=search then

P � ← P with ith-bit set to 1
end if
result← result ∪ FindList(P �, depth + 1)

end for
end if
return result

3.3. Routing

The routing mechanism in QPM requires that each peer
maintains k + 1 routing entries in its routing table, where
k is the dimension of the RM-code in use. These k + 1
routing entries contain links to the peers responsible for the
codewords X1,X2, . . . , Xk+1 computed as follows:

Xi =

�
X ⊕ gi 1 ≤ i ≤ k

X ⊕ g1 ⊕ g2 ⊕ . . .⊕ gk i = k + 1
(2)

Since we are interested in routing a message to the
peers responsible for the list decoded codewords in A(P) or
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S(Q)we require a overlay multicast routing mechanism. We
adopt the multicast routing algorithm from [1].
RM(r,m) code has exactly 2k codewords, where k is the

dimension of the code and the generator matrix G of the
code has k rows. Now, we define a k-bit ID to identify
the 2k codewords in RM(r, m). The ith bit of the ID for a
codeword will be 1 if the ith row of G (i.e., gi) is required
to construct that codeword. We use this ID to partition the
codewords into a logical binary tree of height at most k as in
Plexus [1] to map the codewords to the peers. The join and
recovery processes inQPM are similar to those processes in
the Plexus[1] network.

4. Simulation Result and Evaluation

In this section, we present the experimental results ob-
tained by simulating the QPM framework. In this experi-
ment we have varied network size, failure rate and the edit
distance between advertised and queried keywords to mea-
sure the scalability, robustness and spelling mistake correc-
tion ability of QPM.
We have developed a simulator using Java to evaluate

QPM on various aspects. We have simulated a growing net-
work, which is grown from an initial set of nodes. The over-
lay network has a growing phase and a steady state phase to
achieve different network sizes. During the growing phase,
arrival rate is kept higher than departure rate (up to five
times) until the network reaches a target size and enters the
steady state phase. During this phase, peer departure and ar-
rival rates remain almost equal. Advertisements and queries
are performed during the steady state phase to measure the
performance metrics as mentioned above.
Our major contribution in this paper is the search in pres-

ence of spelling mistakes in keywords. From Figure 2(a),
we see that QPM has greater than 90% success rate for even
up to edit distance three. From the figure, it is observed
that search completeness is very close to 100% for exact
match keywords for all network sizes. Search complete-
ness remains almost constant at around 98% as the network
is grown from 2000 peers to 20000 peers which is for edit
distance one to three. This implies that QPM is scalable
and successful for queries with misspelled keywords. Here,
search completeness slightly decreases with the increase of
edit distance, because Hamming distance increases with the
increase of edit distance. By double metaphone encoding
we reduce the impact of edit distance on Hamming distance.
We have estimated the search completeness with the follow-
ing function: Searchcompleteness = 100

N

�N
i=0

df (i)
da(i)

Here,N is the total number of keywords used for search-
ing. da(i) is the actual number of documents with the ith

keyword and df (i) is the number of documents from da(i)
as returned by the search mechanism.

QPM requires at most k
2 hops for routing a message from

any source peer to any destination peer, where k is the di-
mension of the code (here k = 29). Figures 3(d) and 2(b)
depict that QPM requires to visit small percentage of peers
for the search and advertisement process. It is also evident
that the percentage of visited peers declines as the network
size increases. Moreover, the impact of increasing edit dis-
tance is not significant on search efficiency.
We have measured load of the peers in the simulated net-

work. Each file is advertised to multiple peers along with
their replicas. As depicted in Figure 3(c), variation in av-
erage load on each peer is very low and decreases with in-
creasing network size, which implies uniform distribution
of load over the participating peers in the network.
To measure the join overhead in the growing network

simulated in this experiment, we recorded the number of
messages exchanged for finding local minima, failed neigh-
bors and routing table entries during the join process at dif-
ferent network sizes. Figure 3(b) presents the average per-
centage of visited peers during a join operation for different
network sizes. Scalability of the join process is evident form
Figure 3(b), since the percentage of visited peers decreases
significantly as the network size increases.
In this experiment, we measure the robustness of QPM

in presence of simultaneous peer failure in a simulated net-
work of 20,000 peers. Figure 2(c) presents search complete-
ness and figure 2(d) provides query routing traffic in case of
various levels of peer failures. From Figure 2(c), we find
that search completeness remains at almost constant levels
of 100%, 98%, 97.8% and 97.2% for edit distances zero,
one, two and three, respectively for up to 35% peer fail-
ures. From Figure 2(d), it can be seen that the percentage
of visited peers does not increase significantly below 35%
failure levels. This indicates that the network can success-
fully and efficiently route queries below 35% failure lev-
els. As the failure level increases beyond 35%, the per-
centage of visited peers increases and search completeness
decreases. The reason behind this behavior is that many
hops are wasted due to the failure of intermediate peers on
a routing path and that of the target peers. However, for ex-
act queries (i.e., with edit distance 0) search completeness
does not decline even if the failure level rises above 35%. In
case of exact matching, the Hamming spheres for the query
pattern and advertisement pattern are identical and all the
codewords in A(P) and S(Q) coincide. Hence, an exact
match query will fail only if all the peers responsible for the
codewords in A(P) (or S(Q) ) fail, which will happen with a
very low probability.

5. Conclusion and Future work

In this paper we have presented QPM, which is an effi-
cient P2P search mechanism capable of handling misspelled
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Figure 2. Search Completeness and Search Efficiency
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Figure 3. Join Overhead, Load Distribution and Advertisement Efficiency

keywords in query. QPM is a purely decentralized, struc-
tured search technique based on RM(2, 7) code and dou-
ble Metaphone encoding. Routing in QPM scales logarith-
mically with network size and remains stable in the pres-
ence of peer failures. Search completeness in QPM is high.
Experimental results show that QPM achieves search com-
pleteness levels of 100% for zero edit distance and 97% for
an edit distance of 3 by visiting around 0.4% peers in a net-
work of 20000 peers. Below 35% peer failure rate,QPM re-
tains these search completeness levels though visited peers
rises to 0.6%.
We intend to extended QPM to a multi-level routing

framework by combining 1st and 2nd order RM codes in
order to exploit the heterogeneity in peers’ capability. We
also intend to deploy the protocol on a distributed testbed,
like PlanetLab, to gain indepth knowledge of the real life
performance of QPM.
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