
Characterization and Solution to A Stateful IDS Evasion

Issam Aib, Tung Tran, and Raouf Boutaba
University of Waterloo, Waterloo, ON, Canada

(iaib, t3tran, rboutaba)@uwaterloo.ca

Abstract

We identify a new type of stateful IDS evasion, named
signature evasion. We formalize the signature evasion on
those Stateful IDSs whose state can be modeled using
Deterministic Finite State Automata (DFAs). We develop an
efficient algorithm which operates on rule set DFAs and
derives a minimal rectification of evasive paths. Finally, we
evaluate our solution on Snort signatures, identify and rectify
existing vulnerable flowbit rule sets 1

1. Introduction

Stateful Intrusion Detection Systems (IDSs) use stateful
signatures to simulate the behavior of the application proto-
col they are protecting and to identify malicious behavior.
However, due to complexity and overhead reasons, it is
difficult to fully simulate every session state in an IDS.
This leads to a class of signature-based IDS evasion that
exploits possible differences between the IDS session state
and actual (application) session state making it susceptible
to false negatives. This paper identifies this type of evasion,
named signature evasions. The proposed evasion assumes
knowledge of IDS rules. However, if rules are not available,
reverse engineering of network signatures techniques [1] can
always be used.

To illustrate how a signature evasion is carried out, we
provide an example of such an evasion on the Snort [2]
rule set in Table 1. The rule set follows an FTP session.
It raises an alert if a non-admin user tries to do anything
related to an important file which should only be accessed
by the Admin. Rules r1 and r2 follow the login process of
a non-admin user, r3 signals a denied login, r4 detects a
successful login, r5 indicates that the user has logged out
of the FTP session, and r6 raises an alert when a logged-in
non-admin user tries to do anything with the restricted file.
Rules r7, r8 and r9 handle the case of an admin user log in.
In the right most column we give a symbol to each different
signature used in the rule set.

Snort flowbits offer the stateful property to the rules and
allow the detection engine to track state across multiple
packets in a single session. A flowbit is a boolean flag that

1. This research was partially supported by NSERC STPG 322235 05
and WCU Project R31-2008-000-10100-0.

can be set (1) or unset (0) by a rule. Rules without the
“flowbits: noalert” option are alert rules (r6).

Deriving a DFA representation of a Snort flowbits rule
set is relatively straightforward. Fig.1 shows the DFA of the
FTP rule set of Table 1. The signature alphabet of the FTP
rule set is Σ = {a, b, c, d, e, f, g}.

We define an evasive signature as a packet which triggers
an IDS rule (Snort in our example) while in reality it has
no effect on the actual session state at the server side. For
each signature sr of a rule r, it is ideally possible to divide
it into two subsignatures sr = sr

+ + sr
∗, where sr

∗ represents
all evasive signatures and sr

+ the set of correct signatures.

Let ps denote a packet that matches signature s. abde∗f is
an example of a successful signature evasion sequence to the
FTP rule set. The attacker can apply this evasion sequence to
perform a real attack as follows: First, he logs in as a normal
user (non admin) with a correct username and password.
This action requires the sending of pa and pb from the
attacker side and leads to the sending of pd from the server
to indicate that the user is successfully authorized. At this
phase, the Snort DFA reaches state 3 (Fig.1). In the next step,
the attacker tries to fabricate a pe

∗ packet that triggers r5 at
Snort taking it to state 0 but does not do so at the server side
(which remains at state 3). In order to do this, the attacker
sends a packet that matches r5 but actually does something
else rather than exiting the session as Snort thinks. The
attacker can do that, for example, by creating a directory
named “QUIT”. After that, he can perform the last step of
the attack of accessing the restricted file at the server, i.e.,
issues a pf packet. This last action will not trigger the target
rule r6 and hence successfully evades Snort. It can also be
noticed that many other signature evasions are also possible,
such as g∗abdf (evasion through state 5), abc∗g∗abdf , and
ab∗cbde∗f .

We formalize the signature evasion problem in Sec.2 and
develop a formal characterization of evasive paths in Sec. 3.
Sec. 4 provides an optimal rectification of signature evasions
based on the direct manipulation of a rule set DFA. Signature
evasion vulnerabilities are detected in a number of existing
Snort flowbit rules and the results are presented in Sec.5.
We then summarize related work and conclude.

2009 29th IEEE International Conference on Distributed Computing Systems

1063-6927/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDCS.2009.65

597

Table 1. FTP login rule set

r1 msg: “FTP Normal User Login Attempt - Send username”; flow: established, to server; content: “USER”;
depth:5; nocase; content:!“admin”; within:5; content: “|0D0A|”; flowbits: set, ULA; flowbits: noalert;

a

r2 msg: “FTP Normal User Login Attempt - Send password”; flow: established, to server; content: “PASS”;
depth:5; flowbits: isset, ULA; flowbits: set, ULA2; flowbits: noalert;

b

r3 msg: “FTP login denied”; flow: established, to client; flags:A; flowbits: isnotset, UL; flowbits: isset, ULA;
flowbits: isset, ULA2; flowbits: unset, ULA; flowbits: unset, Normal UserLoginAttempt2; flowbits: noalert;

c

r4 msg: “FTP login granted”; flow: established, to client; content: “230 Login successful.|0D0A|“; nocase;
flags: AP; flowbits: isset, NormalUserLoginAttept2; flowbits: set, UL; flowbits: noalert;

d

r5 msg: “FTP user exits”; flow: established, to server; content: “|QUIT|0D0A|”; nocase; flowbits: isset, UL;
flowbits: unset, UL; flowbits: unset, ULA; flowbits: unset, ULA2; flowbits: noalert;

e

r6 msg: “Normal User accesses important file”; flow:established, to client; content: “Windows”; content:
“system32”; content: ”sam”; nocase; flowbits: isset, UL;

f

r7 msg: “FTP Admin Login Attempt - Send username”; flow: established, to server; content: “USER”; depth:5;
nocase; content:‘ ‘admin”; within:5; content: “|0D0A|”; flowbits: set, ALA; flowbits: noalert

g

r8 msg: “FTP login denied”; flow:established, to client; flags:A; flowbits: isset, ALA; flowbits: unset, ALA;
flowbits: noalert;

c

r9 msg: “FTP Admin exits”; flow:established, to server; content: “|QUIT|0D0A|“; nocase; flowbits: isset, ALA;
flowbits: unset, ALA; flowbits:noalert;

e

2. Problem Definition

Let R be a signature rule set. A rule of R that generates
an alert is referred to as a target rule. A rule is evadable if
its signature can be triggered by a fake (fabricated) packet.
The set of all target rules in a rule set is called the target
rules set. A target rule group is a group of target rules that
generate the same type of alert (these rules may possibly
identify different signatures).

Let ga be a target rule group of R which detects attack
a. An a-attack is a flow of packets which trigger an alert
rule of ga.

Definition 2.1 (Target Rule Group Evasion): A target
rule evasion on ga, or a-evasion, is an a-attack camouflaged
by sequences of evasive signatures resulting in the non
triggering of any of the rules of ga.

A target rule evasion may be an evasion of the entire rule
set if it does not trigger any other alert rule. However, this
is not a mandatory requirement. Some target rule evasions
fall within the general category of evasions which trigger a
different set of alerts than those which the attack actually
does. This type of evasion is tricky as it diverts the attention
of the security administrator by providing a wrong diagnosis
of the problem, hence giving more time to the attacker to
accomplish his goal. The algorithm we provide in this paper
is also able to stop these evasions.

Let D = (Q,Σ, δ, n0, F) be a DFA of R, such as the
one in Fig.1. Crossing a transition in D is equivalent to
the triggering of a rule of R which may change the DFA
state as well as generate output (log, warning, alert). More
accurately, D is a Mealey FSM (Finite State Automaton)
since every rule is allowed to generate output. In addition, a

flow is accepted by D only if at least one target rule of R is
triggered, i.e., one target transition, and it is not important
after that in which state the last packet of the flow will
bring the DFA in. We use a simple algorithm to convert
each signature rule set DFA to a DFA where each target
state accepts only transitions that generate alerts related to
exactly one target rule group.

Definition 2.2 (A∗/A+ Notation): Let A ={ s1, . . . , sn}
be a set of signatures. A∗ denotes the subset of A formed
only by evasive signatures, i.e. A∗ = {si

∗|si ∈ A ∧ si
∗ 6=

φ}. Similarly, A+ = {si
+|si ∈ A}. This notation naturally

extends to DFA paths.

Definition 2.3 (⊕ operator): Let n be a node of DFA D
and p a string of signatures. n′ = n⊕D p denotes the node
of D reachable from n using p. The D subscript is omitted
if it is known from the context.

Definition 2.4 (operator): Let p be a string of signa-
tures belonging to signature alphabet Σ = A ∪ B, where
A∩B = φ. The string p′ = p	B is formed by systematically
deleting every element of B appearing in p. We also write
p = 	B(p′) or p′ ∈ 	−1

B (p).

Corollary 1 (Characterization of Evasive attacks): Let
p+ be an r-attack detectable by final states Fr of DFA D,
i.e. n0 ⊕ p ∈ Fr. An evasion of p is an attack with path p′

such that n0 ⊕ p′ /∈ Fr and p′ 	 Σ∗ = p+, where Σ is the
alphabet of signatures of D.

Definition 2.5 (D+ Notation): The false positive closure
D+ of a rule set DFA D is a DFA with the same detection
capability of D without the negative effect of generating
false positives.
Fig.2 shows the D+ of the FTP rule set (Table 1). For exam-

598

Figure 1. DFA of the FTP rule set Figure 2. False Positive Closure of the FTP DFA

ple, this DFA does not consider the evasive path a∗b∗d∗f∗ an
attack while D does (Fig.1). D+ never generates false alarms
due to evasive packets. Hence, it can be used to model the
actual session state of the service that the rule set protects,
so we will also refer to it as the actual session state DFA.

Definition 2.6 (D◦ Notation): D◦ denotes the NFA ob-
tained from D by making its final states the new set of start
states and all the states final (F = Q).

Let Lstd denote the usual function which returns the
language recognized by a DFA (all input which ends at a
final state).

Lemma 1 (Language of a rule set DFA): Let L(D) de-
note the language of a rule set DFA D: i.e., the set of all
flows that trigger a target rule of R. We have:

L(D) = Lstd(DD◦) (1)

Next, we identify the language of all signature evasions that
can be applied on D.

Theorem 1 (DFA of all signature evasions): Let Fr be
the set of target states of D related to target rule group gr ⊂
R. Let Dr = (Q,Σ, δ, n0, Fr) be the DFA obtained from D
by keeping only Fr as target states. Let D+

r be the false pos-
itive closure of Dr. Let D◦r = (Q,Σ, δ, Fr, Q) be the NFA
obtained by making Fr the new start states and all states in
Q target states. Let ¬D−r = (Q−Fr,Σ−r, δ−r, n0, Q−Fr)
be the DFA obtained from Dr by removing all states ∈ Fr

and making all the other states final. The DFA De
r which

generates all successful r-evasions is then:

De
r = ¬D−r ∩ (D+

r D
+,◦
r) (2)

3. Characterization of Evasion Paths

This section characterizes the form of an evasion path.
It also identifies a theorem which will be used in the next
section to derive a polytime solution to the signature evasion
problem.

Definition 3.1 (Trail DFA): It is a DFA of m nodes
{ni|0 ≤ i ≤ m} ordered from n0 to nm where: (1) There

is a trail which spans all the nodes of the DFA. That is,
∀i, ni+1 ∈ n+

i (ni+1 reachable from ni in one hop), (2) All
paths of D respect the initial ordering of the nodes. That
is, ∀i, n+

i ⊆ {nj |m ≥ j ≥ i}, and (3) All final nodes are
articulations of the DFA (cut nodes). That is, if nk ∈ F ,
then D has no transition (ni, s, nj) such that i < k < j.

Definition 3.2 (Disjoint-Hop Trail DFA): is a trail DFA
with the additional condition that if ∃i, j|j > i + 1 ∧
(ni, s, nj) ∈ δ then the DFA has no transition (nk, s, nl)
where i ≤ k < l < j.

Theorem 2: Disjoint-Hop Trails are unevadable.

Theorem 3 (Minimal Evadable Paths): If p is an evad-
able attack path of D then the attack simple path pmin

derived from p is also evadable.

Corollary 2: To determine if an alert rule r is evadable,
it is sufficient to consider only the simple paths to the set
of its final nodes Fr.

This result tells us that if we manage to prove that no
simple path to an alert node is evadable then any evasion to
that node is impossible.

Lemma 2 (Fork Property of Evasion Paths): Let r be an
evadable alert rule of R and Fr the set of final states of
D corresponding to r. Let p be a simple attack path which
triggers r. If q is an evasion of p (hence of r) then q forks
with p at a node a where the prefix sub-paths of p and q
from the start state to a form a disjoint hop trail (e.g., Fig.5).

Theorem 4 (Characteristic Evasion Path): Let p be an
evadable attack simple path. Let q be an evasion of p which
forks with it at a node a with a transition t as specified by
Lem.2, such that (Fig.3): p+ = p0

+s+p
1
+, q = q0tq1, t 6= n0,

n0⊕ p0
+ = n0⊕ q0 = a, a⊕ s = b, a 6= b, a⊕ t = c, a 6= c,

b 6= c, q 	 Σ∗ = p+, then:
1 – The transition in (d, s, e) ∈ q which corresponds to the
s+ in (a, s, b) has to occur after node c, i.e. ∈ q1 (Fig.3, 4)
where e 6= b.
2 – There exists another evasion q′ of p, which starts by
prefix p0

+, crosses transition (a, t, c) with evasion t∗ and
proceeds with an all evasive input q11,∗ until it reaches d,
i.e., q′ = p0

+t∗q
1
1,∗s+q

1
2 (Fig.5).

599

Figure 3. Possible evasion path Figure 4. Impossible evasion path

Applied to the DFA of Fig.6 where a corresponds to state
2 and s to transition b, it can be noticed that an evasion is
possible through transition e since (5, b, 5) ∈ δ. An example
of such an evasion is ae∗bc.

In what follows the use of a, b, c, d, e, s will be based on
their meaning as used in Thm.4.

The strength of the characteristic evasion path theorem
lies in three aspects. First, it indicates that, to check for
evadability, only fork nodes need investigation. Second, the
prefix to a fork node can be ignored and the only concern
is whether the transition at the fork node leading to a final
state is also reachable from the other side of the fork. What
is finally important to look at is whether from e it is possible
to generate a path which evades the path from b to a target
state. We will use this observation to identify a minimal
rectification of a rule set DFA against signature evasions.

4. Resolution of Signature Evasions

Based on Thm.4, it can be determined that rule r which
corresponds to the final nodes Fr of Fig.5 is evadable. To
rectify this, a patch can be applied by adding transition
(d, s, b) to D as shown in the figure. We name this procedure
stitching based on the characteristic evasion path theorem.
Using this stitching, any evasion q′ (ref.Thm.4) becomes
detectable as it now leads the stitched automaton to a state
in Fr. Since any evasion path q implies the existence of
a q′ as indicated by the theorem, then the non existence
of any successful q′ in the stitched automaton implies that
all the corresponding q evasions are no longer possible. By
applying this on all cases where the stitching is feasible, it

Figure 5. Characteristic Evasion Path

can be determined that all possible evasions are no longer
possible.

As an example, the application of this stitching method
on the automaton of Fig.6(a) results in the signature evasion
safe automaton of Fig.6(c). It can be noticed that the (5, b, 3)
stitching transition (Fig.6(b)) is able to stop evasion ae∗bc.

The stitching we employ is minimal in the number of
stitching transitions to add to an automaton. This is because
if the stitchings were to be carried beyond node e then
usually more than one transition (and at least one) will be
required.

When an alert is triggered by the stitched DFA, there is
still a possibility of it being a false alarm. To explain that,
let’s consider the notation:

Definition 4.1 (E(p) Notation): If p = s1s2 . . . sn is a
signature string then

E(p) = {q1q2 . . . qn|qi ∈ {si
+, s

i
∗}}

Note that, by definition, all flows in E(p) are considered
by the corresponding IDS rule set as the same flow since
by definition it does not differentiate an si

+ from an si
∗. In

this regard, if q is an evasion path detected by the stitched
DFA, then any flow in E(q) will also raise an alert even it is
not actually an evasion. This in fact is also true for normal
attacks that are detectable by the original rule set. This type
of false positives is always inevitable.

Figure 6. Application of Minimal Stitching

600

Algorithm 1 edgeSet minStitch (DFA D, NFA safeD)
1: Let D = (Q,Σ, δ, n0, F = ∪r∈RFr), and D+ =

(Q,Σ, δ+, n0, F) its positive closure.
2: safeD = D.clone();
3: edgeSet minStitch = φ;
4: for all target rule group Fr do
5: for all fork node a /∈ Fr do
6: // suc∗(b) =set of all nodes reachable from b
7: for all b ∈ suc(a) | suc∗(b) ∩ Fr 6= φ do
8: Let (a, S, b) be the set of transitions from a to b
9: for all fork tuple (a, b, c) do

10: // nodes(s) ={n|s is outgoing from n}
11: for all (d, s, e) ∈ δ|d ∈ ((nodes(s)−Fr −{a})∩

suc∗(c)) ∧ (e /∈ Fr ∩ b) do
12: // Eb,er defined in Thm.5
13: if Eb,er 6= Φ then
14: // there is an evasion suffix from e
15: minStitch + = {(d, s, e)}
16: safeD += {(d, s, e)} ;
17: end if
18: end for
19: end for
20: end for
21: end for
22: end for
23: return minStitch

The next step would be to find an efficient way to identify
the states d to apply the stitching on. To do so, we will
use Thm.5, which provides a straightforward procedure to
identify if an evasion can successfully proceed from state e
(Thm.4).

Theorem 5: Let Eb,e
r be the set of all suffixes q12 of r-

evasions q (ref. Thm.4). Let D+b
r be the DFA formed from

D+ by making b a start state and only Fr ⊂ F as final
states. Let ¬De

−r be the DFA formed from Dr by making e
a start state, then removing all final states Fr, then making
all the other states final. We have:

Eb,e
r = ¬De

−r ∩ (D+b
r D+◦

r) (3)

At this point, we can present Alg.1 which applies minimal
stitching using the result of Thm.5. For each target rule
group Fr it does the following: For each fork tuple (a, b, c)
where Fr is reachable from b, it checks whether there is a
d reachable from c (d ∈ suc∗(c)) where (d, s, e) ∈ δ and
Eb,e

r 6= Φ. If this is the case then a stitch is required at node
d.

Lemma 3: Alg.1 generates a minimal rectification of sig-
nature evasions and has a polytime complexity.

5. Evaluation

We collected 400 publicly available flowbit rule sets (most
of them from BleedingEdge [3] and SourceFire [4]). We
implemented a parser that generates a rule set DFA and
runs Alg.1. In case necessary stitches are found, a safe

stitched NFA is generated as well as the corresponding safe
(non vulnerable) DFA. 4.5% of the flowbit rule sets were
found vulnerable to the proposed attack when all rules are
considered evadable (for all signature s, s∗ 6= φ). Because
of its polytime complexity, the code runs in few minutes
over all rule sets except for rule set 6 which took about two
hours.

It can be noticed from Table 2 that most of the vulnerable
rule sets require a digit number of stitches to become safe for
the exception of four of them. This first indicates that most
of the times our stitching method generates DFAs which can
be easily converted to a safe rule set. For example, the DFA
of the 10th flowbit rule set is shown in Fig.8. It has five
states, an alphabet of three different signatures, one fork
state, and only requires one stitch. The resulting NFA is
given in Fig.8 and the corresponding safe DFA in Fig.9.
The tool we developed automatically generates DFAs/NFAs
in the standard DOT format [5] for easy visualization.

There are however four flowbit rule sets for which more
than 10 stitches are required. For rule set 12, this is rather
good as the overall stitching results in a reduced DFA size.
Hence, only three rule sets pose problem: 6, 7, and 18. Rule
set 7 has 12 fork nodes and requires 719 stitches resulting
in a safe DFA of 2095 states. For rule set 18, the safe DFA
has 21448 states and 671609 transitions. Finally, rule set 6
has a large DFA of 192 nodes, of which 142 are fork nodes.
The number of stitches alone is 30142 and the resulting
safe DFA could not fit within the 1.5 GB allocated by our
code. This shows that there is a need for using a different
resolution method for these three and similar rule sets. When
the safe DFA size is reasonable, a new rule set can be readily
generated by considering each state as a separate binary
number. This implies dlog2(|Q|)e binary digits, then map

Table 2. Vulnerable Rule Sets

Flowbit Rule Set DFA SafeNFA SafeDFA

ID Σ Q δ Forks Stitches Q1 δ1 Q1
Q

δ1
δ

1 6 5 30 2 3 7 20 1.40 0.67
2 5 17 85 13 7 37 160 2.18 1.88
3 6 2 12 1 4 5 21 2.50 1.75
4 3 5 15 2 1 6 17 1.20 1.13
5 3 3 9 1 2 4 10 1.33 1.11
6 34 194 6596 142 30142 Huge Huge Huge Huge
7 13 21 273 12 719 2095 2x104 99.76 88.84
8 3 5 15 1 1 7 18 1.40 1.20
9 5 17 85 13 7 37 155 2.18 1.82

10 3 5 15 1 1 7 20 1.40 1.33
11 3 3 9 1 1 5 14 1.67 1.56
12 39 3 117 1 35 5 49 1.67 0.42
13 16 3 48 1 10 5 35 1.67 0.73
14 12 3 36 1 6 5 31 1.67 0.86
15 2 3 6 1 1 4 8 1.33 1.33
16 2 3 6 1 1 4 8 1.33 1.33
17 8 3 24 1 6 5 22 1.67 0.92
18 56 18 1008 8 1328 2x104 7x105 1191 666

601

Figure 7. DFA of rule set 10 Figure 8. Its Stitched NFA Figure 9. Its Safe DFA

each digit to a flowbit label and use that in the condition
and output of each transition, resulting in a number of δ
rules.

6. Related Work

Ptacek and Newsham [6] were the first to bring up a
way to evade a NIDS by using TCP Segmentation and
IP Fragmentation. FragRoute was the tool created to carry
out these evasion techniques. A NIDS needs to carry out
TCP segments and IP fragments reassembly to counter these
evasion techniques. Handley and Paxson [7] [8] discussed
evasion techniques based on inherent ambiguities of the
TCP/IP protocol which lead to the difference between a
NIDS and its protected system in performing TCP seg-
ments and IP fragments reassembly. Traffic normalization
suggested by Handley et al. [7] tries to remove these am-
biguities by patching the packet stream. Active Mapping is
another solution proposed by Shankar and Paxson [9], which
eliminates TCP/IP-based ambiguities in a NIDS analysis
with minimal runtime cost. It is implemented in the Snort
Stream5 preprocessor [10].

Besides NIDS evasion techniques, several attacks on IDSs
have been identified in the literature. Wagner and Soto
[11] revealed mimicry attacks on a HIDS. Snot [12], Stick
[13], IDSWakeup [14] and Mucus [15] are stimulation tools
that cause DOS attacks on Snort by overloading it with
alerts from mutated packets constructed from Snort rules.
The algorithmic complexity DOS is another NIDS attack
identified in [16] [17].

Rubin et al. [18] created the AGNET tool which uses
an inference engine to generate as well as detect attacks
on a NIDS starting from an exemplary attack instance. Our
signature attack is not an instance generated by AGENT,
assuming that the rule set represents the original exem-
plary attack instance. Our attack is neither a TCP nor an
application-level transformation. Existing evasion techniques
can be used by our evasion. However, these techniques only
apply to injected packets which are not part of the actual
session. Automatically generated semantic-aware signatures
[19] or session signatures [20] can also be vulnerable to our
evasion. In order to avoid false positives, these generated
signatures consider “innocent”paths (or sequences) which

are not attack instances. Our signature evasion exploits these
“innocent” paths and tries to convince the IDS that the
session is following one of the “innocent” paths.

7. Conclusion

In this paper, we identified and formally specified a new
type of evasion on IDS signature rule sets, named signature
evasions. We provided an algorithm to patch a rule set
against this type of evasion based on DFA manipulation.
The algorithm runs in polytime and derives a minimal rec-
tification to the rule set by identifying the smallest number
of transitions (stitchings) to apply on the rule set DFA to
render it safe.

We will develop a tool to assist in the design of signature-
evasion safe rule sets as well as the patching of existing
ones. We also intend to investigate the problem of optimal
mapping from a stitched NFA to a signature rule set in order
to solve the scalability problem inherent to using signature-
evasion safe DFAs.

References

[1] D. Mutz, C. Kruegel, W. Robertson, G. Vigna, and R. A.
Kemmerer, “Reverse engineering of network signatures,” in
AusCERT, 2005.

[2] I. Sourcefire, Snort Users Manual, 2003-2008.

[3] BleedingEdge Inc., http://www.bleedingthreats.net.

[4] SourceFire, Inc., http://www.sourcefire.com.

[5] E. Gansner, E. Koutsofios, and S. North, “Drawing graphs
with dot,” Jan 2006.

[6] T. Ptacek and T. Newsham, “Insertion, Evasion, and Denial
of Service: Eluding Network Intrusion Detection,” 1998.

[7] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion
detection: evasion, traffic normalization, and end-to-end pro-
tocol semantics,” in USENIX Security, 2001.

[8] V. Paxson, “Bro: a system for detecting network intruders in
real-time,” in USENIX Security, 1998.

602

[9] U. Shankar and V. Paxson, “Active mapping: resisting NIDS
evasion without altering traffic,” in IEEE Symposium on
Security and Privacy, 2003.

[10] J. Novak and S. Sturges, “Target-Based TCP Stream Reassem-
bly,” Sourcefire, Inc., 2007.

[11] D. Wagner and P. Soto, “Mimicry attacks on host-based
intrusion detection systems,” in ACM CCS, 2002.

[12] SoftPedia, “Snot description,” Mar 2009.

[13] C. Giovanni, “Fun with Packets: Designing a Stick,” White
Paper, Tech. Rep., 2001.

[14] HSC, “Idswakeup collection of tools,” Jan 2002.

[15] D. Mutz, G. Vigna, and R. Kemmerer, “An experience devel-
oping an IDS stimulator for the black-box testing of network
intrusion detection systems,” in IEEE ACSAC, 2003.

[16] S. Crosby and D. Wallach, “Denial of Service via Algorithmic
Complexity Attacks,” in USENIX Security, 2003.

[17] R. Smith, C. Estan, and S. Jha, “Backtracking algorithmic
complexity attacks against a NIDS,” in IEEE ACSAC, 2006.

[18] S. Rubin, S. Jha, and B. P. Miller, “Automatic generation and
analysis of NIDS attacks,” in IEEE ACSAC, 2004.

[19] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha, “An
architecture for generating semantics-aware signatures,” in
USENIX Security, 2003.

[20] S. Rubin, S. Jha, and B. Miller, “Language-based generation
and evaluation of NIDS signatures,” in IEEE Symposium on
Security and Privacy, 2005.

Proofs

Proof of Lem.1 (page 3)

By definition, any flow p ∈ L(D) triggers at least one alert
rule of R. p can be decomposed into two sub flows p1p2

where the last packet of p1 triggers the first alert. Hence,
p1 ∈ LstdD as it brings it to a target state by definition
of how we construct a rule set DFA. The second sub-flow
p2 is only required to continue taking D from one state to
another (i.e., no unexpected input). Since it starts doing so
starting from a final state of D, hence p2 ∈ Lstd(D◦). We
conclude that:

L(D) = Lstd(D)Lstd(D◦) = Lstd(DD◦)

Proof of Thm.1 (page 3)

By definition, an r-evasion q is a sequence of signatures
which never crosses a target state of Dr, i.e., q ∈ ¬D−r.
In addition, an r-evasion is detectable by the actual session
DFA. By Lem.1 this implies that q ∈ D+

r D
+◦
r .

Figure 10. Disjoint-Hop Trail DFA

Proof of Thm.2 (page 3)

Let D = (Q,Σ, δ, n0, F) be a trail DFA where Q =
{n0, n1, . . . , nm} and D+ its false positive closure. With-
out limiting the generality of the proof we assume that
nm ∈ F (because of the articulation property of target states
(Def.3.2)). Let Si the disjunction of signature that link node
ni−1 to ni, i.e., (ni−1, Si, ni) ⊂ δ. Transitions between
nodes ni, nj |j > i+ 1 are denoted by Si

j . In addition, since
buckles are allowed in a trail DFA, we denote by Bi the
buckle at state ni (disjunction of all individual buckles at
that state).

Let’s assume that target state nm is evadable. This implies
that there exists a path p1

m such that n0 ⊕ p1
m,+ = nm and

another path p2
m such that: p1

m,+ = p2
m 	 Σ∗, n0 ⊕D p2

m 6=
nm, n0 ⊕D+ p2

m = nm.
We will prove by recurrence on m:

1) Case where m = 1: Since p2
1 cannot reach n1, it can

only be of the form (B0)∗, which in turn cannot end with
s1 because s1 /∈ B0 by definition of a DFA. Hence, p2

1

cannot exist ⇒ D is not evadable.

2) Case where m = N + 1, N ≥ 1 (Fig.10): Let’s assume
that disjoint-hop trail DFAs where 1 ≤ m ≤ N are not
evadable. Let D be a disjoint-hop trail DFA where m =
N + 1. p1

m is of the form:

p1
m = (B0

+)as0j,+p
1
m−j,+ (4)

where a ≥ 0, s01 ∈ S1, s0j ∈ S0
j , and nj ⊕ p1

m−j,+ = nm.
nj cannot be node n0 by definition of the DFA.
If p2

m exists, it has then to be of the form:

p2
m = qkp

2
m−k (5)

where, n0 ⊕ qk = nk, qk 	Σ∗ = (B0
+)as0j,+, nk ⊕ p2

m−k 6=
nm. Since s0j,+ ∈ q, k cannot be less than j because of the
dijoint-hop property (Def.3.2) and the trail property of the
DFA (once n0 is left it cannot be re-visited). Hence, k ≥ j.
We have n0⊕ p2

m = n0⊕ (qkp2
m−k) = (n0⊕ qk)⊕ p2

m−k =
nk ⊕ p2

m−k. That p2
m is an evasion of p1

m implies that we
need to have: nj ⊕D p1

m−j,+ = nk ⊕D p2
m−k, and nj ⊕D+

p1
m−j,+ = nj⊕D+ p2

m−k. The solution to this latter problem

603

if it exists implies a solution to the problem where nj ⊕
p1

m−j,+ = nj ⊕ q′ ⊕ p2
m−l in D. Since by hypothesis of

recursion this latter condition is impossible, it implies that
p2

m−k cannot exist, which in turn concludes the proof.

Proof of Thm.3 (page 3)

Let pmin = s1s2 . . . sm be the simple path derived from
p. By definition of a simple path, n0⊕p = n0⊕pmin, pmin

has no loops or cycles, and p is of the form:
p = p1s1p2s2 . . . pmsmpm+1

where each pi ∈ Σ∗. Since q evades p, then q is of the form:
q = q1s1+q

2s2+ . . . q
msm

+ q
m+1

where qi 	 Σ∗ = pi
+. It implies that the path:

q′ = q1∗s
1
+q

2
∗s

2
+ . . . q

m
∗ s

m
+ q

m+1
∗

has the properties:
q′ 	 Σ∗ = pmin,+ ⇒ n0 ⊕ q′ = n0 ⊕ pmin,+, n0 ⊕ q′ =

n0 ⊕ q
which by definition evades pmin.

Proof of Lem.2 (page 3)

By definition of a simple path, p and q cannot be on the
same trail by virtue of Thm.2. Hence, q has to fork at least
once with p. In addition, Thm.2 indicates that a disjoint-
hop fork (Def.3.2) on a trail cannot lead to any successful
evasions. Hence, q has at least one non disjoint-hop fork
with p.

Proof of Thm.4 (page 3)

Case the s+ of q belongs to q1.

1) Case where transition (a, t∗, c) ∈ q: This case fits
perfectly with the condition of the theorem (Fig.5).

2) Case where transition (a, t+, c) ∈ q (Fig.3): We look if
it is possible to derive a new evasion path q′ that evades p
but uses transition (a, t∗, c) instead of (a, t+, c). Let g be
the node crossed by p0 such that:
p0 = p0

1tp
0
2, n0 ⊕ p0

1 = g,
q0 = q01t

′q02 , n0 ⊕ q01 = g,
t′ is null (g = h) or any transition of Σ including t,
g ⊕ t = g ⊕ t′ = h,
t+q

1
1s+ 	 Σ∗ = t+p

0
2s+.

It derives from t+q
1
1s+ 	Σ∗ = t+p

0
2s+ that q11 	Σ∗ = p0

2.
This implies that the path q′ = (p0

1,+t+p
0
2,+)t∗(q11,∗s+q

1
2)

evades p, which also fulfills the conditions of the theorem.

Case the s+ is traversed by p0 (Fig.4).

Let g be the node crossed by p0 such that:
p0 = p0

1tp
0
2, n0 ⊕ p0

1 = g,
q0 = q01s

′q02 , n0 ⊕ q01 = g,
s′ may be null (g = h) or any signature ∈ Σ

g ⊕ s = g ⊕ s′ = h, and
g ⊕ s+p0

2s+ = b,
We then have: p+ = p0

1,+s+p
0
2,+s+p

1
1,+t+p

1
2,+ and q =

q01s+q
0
2t+q

1. It derives that n0 ⊕ q01 = n0 ⊕ p0
1,+s+p

0
2,+,

which by Thm.2 implies that g = h = · · · = a. However,
the latter condition is impossible by DFA definition because
a has already a transition to b 6= a. Hence q cannot exist.

Proof of Thm.5 (page 5)

Let q be an evasion path as identified in Thm.4. For q
to be successful (1) q12 has to make D+

r pass through a
target state of Fr starting from state b and (2) from state
e in Dr no target state in Fr is traversed through q12 . The
first constraint implies that from state b in D+

r a target state
∈ Fr is first reached then any other walk in D+

r is acceptable
⇔ q12 ∈ D+b

r Db+◦
r . By definition it can be easily noticed

that Db+◦
r = D+◦

r ⇔ q12 ∈ D+b
r D+◦

r . The second constraint
implies that q12 ∈ ¬De

−r. Hence Eb,e
r = ¬De

−r∩(D+b
r D+◦

r).

Proof of Lem.3 (page 5)

Since finding the set of all fork tuples (a, b, c) takes
O(|Q||δ|), identifying suc∗(c) for all nodes is ' O(|Q|),
identifying the function nodes(s) giving the set of nodes
with an outgoing transition s is O(|δ|) we conclude that
algorithm Alg.1 runs in polytime if only the test Eb,e

r 6= Φ
is doable in polytime. In fact not only Eb,e

r 6= Φ can be done
in polytime but also the construction of Eb,e

r . The intersection
needs to be made by traversing states of ¬De

−r and using a
marker m initially unset. The traversal of ¬De

−r is done by
making sure the corresponding transition is also feasible in
D+b

r . If in the process of doing so a target state of D+b
r is

encountered the marker m is set. At that point, all states of
D+b

r are set as final by the traversing process and the process
of computing the intersection continues in the standard way.
Hence, in essence constructing Eb,e

r will take no longer than
the time it takes to constructing ¬De

−r ∩D+b
r twice.

604

