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Abstract— Traditional intrusion detection systems (IDSs)
work in isolation and may be easily compromised by new
threats. An intrusion detection network (IDN) is a collaborative
IDS network intended to overcome this weakness by allowing
IDS peers to share collective knowledge and experience, hence
improve the overall accuracy of intrusion assessment. In this
work, we design an incentive model based on trust management
by using game theory for peers to collaborate truthfully without
free-riding in an IDN environment. We show the existence
and uniqueness of a Nash equilibrium under which peers can
communicate in an incentive compatible manner. Using duality
of the problem, we develop an iterative algorithm that converges
geometrically to the equilibrium. Our numerical experiments
and discrete event simulation demonstrate the convergence
to the Nash equilibrium and the incentives of the resource
allocation design.

I. INTRODUCTION

Intrusion Detection Systems (IDSs) identify intrusions by
comparing observable behavior against suspicious patterns.
They can be network-based (NIDS) or host-based (HIDS).
Traditional IDSs work in isolation and may be easily com-
promised by unknown or new threats. An Intrusion Detection
Network (IDN) is a collaborative IDS network intended to
overcome this weakness by having each peer IDS benefit
from the collective knowledge and experience shared by
other peers. This enhances the overall accuracy of intrusion
assessment as well as the ability of detecting new intrusion
types. However, many proposed IDS collaboration systems,
such as [1], [2], and [3], assume all IDSs cooperate honestly.
The lack of trust management leaves the system vulnerable
to malicious peers.

A few trust-based collaboration systems (e.g. [4] and [5])
and distributed trust management models (e.g. [5], [6], and
[7]) have been proposed for IDSs to cooperate with each
other effectively. However, none of these proposed models
have studied incentives for IDS collaboration. Without in-
centives, a collaboration system may suffer from a “free-
rider” problem [8], where some IDSs may take advantage of
others by always asking for assistance from others but not
contributing. This will eventually degrade the expected per-
formance of the collaboration system. Therefore, an effective
incentive design is important to encourage peers in the IDN
to cooperate truthfully and actively.
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More specifically, as shown in Figure 1, an IDN is
composed of a group of independent IDSs and the communi-
cation among the peers is through a peer-to-peer communica-
tion layer. An IDS may send requests to selected neighbors to
seek assistance when suspicious activities are detected. These
requests can be related to alert ranking, problem diagnosis, or
blacklist identification. The responses from its neighbors can
help the IDS to identify new types of intrusions. An IDS may
receive requests from different peers. Responding to those
requests requires a certain amount of computing resources,
such as CPU, memory, or network bandwidth. An IDS may
have a limited resource budget to assist other IDSs in the
network and cannot satisfy all the requests. An IDS may also
free-ride the system or send out false intrusion assessments.
Therefore, an effective resource allocation scheme is needed
for an IDS to manage responses to requests from neighboring
IDSs.

In this work, we propose an incentive compatible resource
allocation scheme for trust-based IDS collaboration net-
works, where the amount of resources that each IDS allocates
to help its neighbors is proportional to the trustworthiness
and the amount of resources allocated by its neighbors
to help this IDS. We construct an optimization problem
where an IDS can find an optimal resource allocation to
maximize the aggregated satisfaction levels of its neighbors.
We introduce an N−person (or peer) non-cooperative game
to investigate incentive compatibility of the IDS collaboration
system. We show that under certain controllable system
conditions, there exists a unique Nash equilibrium. Our
experimental results demonstrate that an iterative algorithm
which we introduce converges geometrically fast to the Nash
equilibrium, and the amount of help an IDS receives from
others is proportional to its helpfulness to others.

The contributions of this paper are: 1) a mechanism for
optimal resource allocation for each peer to maximize its
social welfare with a convex utility function, 2) an N -person
non-cooperative game model and an iterative primal/dual
algorithm to reach the Nash equilibrium, and 3) incentive
compatibility that is derived from the resource allocation
scheme to avoid the “free-rider” problem.

The rest of this paper is organized as follows: Section II
presents a brief overview of related work from other areas.
In section III, we describe our incentive compatible resource
allocation scheme. In Section IV, we devise a primal/dual
algorithm to compute the Nash equilibrium, and in Section
V we evaluate the convergence and incentives of the resource
allocation design. Finally, Section VI concludes this paper.



Fig. 1. Architecture of an IDS Collaboration System

A list of symbols and notations, as well as their in-
formation patterns, is summarized in Table I for readers’
convenience.

II. RELATED WORK

Much work has been done for the collaborative framework
and trust management among intrusion detection systems,
such as [5], [6], [7]. In our previous work for trust man-
agement in IDS collaboration, we have proposed a trust
management system where IDSs exchange test messages to
build trust among themselves. Each IDS selects a trace of
possible attacks from its knowledge database where the risk
level of the attack is known by the IDS. Then, it sends the
trace to its acquaintances for the purpose of testing their
trustworthiness. Each acquaintance evaluates the risk of the
possible attacks based on the trace it receives and sends back
the feedback to the sender. The sender IDS compares the
feedbacks from others with its own knowledge and generates
a satisfaction level for each feedback using a satisfaction
mapping function. A trust value is a numerical value used to
predict the level of truthfulness for the next feedback from
a certain peer. [5] uses a simple weighted average model to
predict the trust value while [7] uses a Bayesian statistics
model to estimate the trust value as well as the confidence
level of the trust estimation.

Incentive design has been well studied in peer-to-peer
(P2P) networks. Ma et al. [9] have used a game-theoretical
approach to achieve differentiated services allocation based
on the history of a peer’s contribution to the community.
However, this system relies on a centralized contribution
ranking system which constitutes a single-point-of-failure.
Yan et al. [10] have proposed an optimal resource allocation
scheme for file providers. The resource allocation is based on
the ranking of consumers of files shared by file providers. A
max-min optimization problem has been constructed to find
the optimal solution which achieves fairness in the resource
allocation. However, their approach relies on an independent
ranking system, and the relation between ranking and the
contributions of consumers has not been studied. The au-
thors also have not studied the convergence of the resource

allocation of the entire system. Theodorakopoulos and Baras
[11] have used a game-theoretical approach to study the
impact of malicious users in P2P networks. The modeling
of malicious behavior there is based on users’ choice of
either “cooperate” or “defect” at each time slot. A game
learning algorithm is used for each peer to make a decision
at each stage by aggregating the play history in a certain
way. However, there is no theoretical result yet to show the
convergence of fictitious play to a unique Nash equilibrium
in the general topology for the proposed model.

Incentive compatibility has also been an important topic
in auction design whose analysis heavily relies on game-
theoretical approach, [12], [13]. For example, in [12], incen-
tive compatibility relates to a mechanism in which bidders
can only benefit the most by bidding at their true valuations.
It is also shown in [12] that under certain conditions,
the bidding profiles converge to a Nash equilibrium which
provides an efficient allocation of the resource under this
mechanism.

Recently, game-theoretical methods have been used for in-
trusion detection where in a two-player context, the attacker
(intruder) is one player and the intrusion detection system
(IDS) is the other player. Most of the existing work appears
in the context of matrix games in either normal form or
extensive form, but there are also a few exceptions to that.
In [14], cooperative game theory, namely, Shapley value, has
been used to analyze the relative importance of each sensor
in an intrusion detection system, and a two-person, non-zero-
sum, single-act, finite game with dynamic information is used
to model the interaction between the attacker and the IDS. In
[15], [16] and [17] also non-cooperative game frameworks
have been used to address different aspects of intrusion
detection. In [18], Liu et al. use a Bayesian game approach
for intrusion detection in ad-hoc networks; a two-person
non-zero-sum incomplete information game is formulated to
provide a framework for an IDS to minimize its loss based
on its own belief. It appears, however, that game theory has
not yet been used to study incentive compatibility problems
in networked IDS systems.



TABLE I
NOTATIONS

Symbol Meaning Information Private to

T u
v Trust value of v perceived by u u

puv Frequency of help response from u to v u, v
rvu Desired reply rate request of v to u u, v
mvu Minimum reply rate request of v to u u, v
Cu Resource capacity of u u
Su,v Satisfaction level of node u in response to v u, v

III. RESOURCE ALLOCATION AND INCENTIVE DESIGN

In this section, we first mathematically model resource al-
location in an IDN environment as independent optimization
problems for its member peers. A game problem (GP) can
then be defined for each peer. We use Lagrangian relaxation
to solve this problem for Nash equilibrium. Finally, we prove
that there exists a unique Nash equilibrium in the game.

A. Modeling of Resource Allocation

We consider an IDN with N peers or nodes. We denote
the set of nodes by N = {1, 2, · · · , N}. The set of neighbor
nodes of peer u is denoted by N d

u , which is parameterized by
a given distance d ∈ R+, i.e., N d

u = {i ∈ N : dist(i, u) 6
d, i 6= u}, where dist : N ×N → R+ is a distance function
measuring the distance between two nodes. For convenience,
we let N∞

u = N − {u}, a set of all nodes in a network
except the peer itself. Note that information in the network
is symmetric. If u is a neighbor of v, then v is also a neighbor
of u. We use rvu to denote the units of resource that node
u should allocate in order to serve v with full satisfaction.
The minimum acceptable resource from u to v is mvu. Let
puv ∈ R+ be the resource that u allocates to v, for every
u, v ∈ N . The parameter puv is a decision variable of peer
u and is private information between peer u and peer v. To
satisfy neighbor v, node u should allocate resource to v over
the interval [mvu, rvu].

In this model, we assume that for each node, the trust
values of its neighbors are given. This assumption is practical
if a distributed trust management exists in the system, as
shown in Figure 1. Let Tu

v ∈ [0, 1] be the trust value of peer
v assessed by peer u, representing how much peer u trusts
peer v. The allocated resource puv from peer u to v is closely
related to the trust value Tu

v perceived by u.
Each peer maximizes its effort to help its neighbor nodes

under its capacity constraint Cu, which is dependent on its
own resource capacity such as bandwidth, CPU, memory,
etc. Then, resource allocation should satisfy the following
capacity constraint:

∑

v∈Nd
u

puv 6 Cu, for all u ∈ N . (1)

Our system introduces a utility function for each peer
to model the satisfaction level of its neighbors. The utility
function Suv is given by

Suv =
ln

(
αpuv−mvu

rvu−mvu
+ 1

)

ln(α + 1)
, (2)

where α ∈ (0,∞) is a system parameter which controls the
satisfaction curve and the term ln(α+1) in the denominator
is the normalization factor. The function Suv is a concave
function on its domain. The choice of ln function is also
motivated by its property of proportional fairness.

Let Uu : RL(u,d)
+ → R+ be the peer u’s aggregated

altruistic utility, where L(u, d) = card(N d
u ), the cardinality

of the set N d
u . Let the payoff function, Uu, for u be given

by:

Uu =
∑

v∈Nd
u

wuvSuv, wuv = Tu
v pvu, (3)

where wuv is the weight on peer v’s satisfaction level Suv ,
which is the product of peer v’s trust value and amount of
helping resource allocated to u. A higher weight is applied
on peer v’s satisfaction level Suv if peer v is better trusted
and more generous to provide help to u. In this system, each
peer u ∈ N in the IDN intends to maximize Uu within its
resource capacity. A general optimization problem (OP) can
then be formulated as follows:

max{puv,v∈Nd
u}

∑
v∈Nd

u
wuvSuv (4)

s.t.
∑

v∈Nd
u

puv 6 Cu

mvu 6 puv 6 rvu, ∀v ∈ N d
u ,

where Suv and wuv are given by (2) and (3), respectively.
Every peer in the network is faced with an optimization

problem (OP) to solve. The problem (OP) is a concave
problem in which its objective function is a concave function
in puv and the constraint set is an L(u, d)-dimensional
simplex, where L(u, d) = card(N d

u ), the cardinality of the
set N d

u . Under the assumptions that the size of the network
is large and peers can only communicate locally within a
distance d, we have N independent optimization problems
in the form of (OP) for each node. Hence, we can introduce a
corresponding game (GP) by the triplet 〈N , Au, Uu〉, where
N is the set of players or peers, Au, u ∈ N , is the action
set of each peer, and Uu is the payoff function of peer
u, defined in (3). An action of a peer here is a decision
on the resource allocated to a neighbor peer. The action
set of each peer Au is given by Au = A1

u

⋂
A2

u, where
A1

u = {pu ∈ RL(u,d)
+ | ∑v∈Nd

u
puv 6 Cu} and A2

u = {pu ∈
RL(u,d)

+ | mvu 6 puv 6 rvu, v ∈ N d
u}. It is not difficult to

prove that under the condition

Cu >
∑

v∈Nd
u

mvu, (5)



the action set is nonempty.
We note that the decision variable of each peer is a vector

pu and the action sets of players are not coupled. We thus can
use Lagrangian relaxation to penalize the constraints to solve
for the Nash equilibrium. Let Lu(pu, σu, µu, λu) as follows
denote the Lagrangian of peer u’s optimization problem:

Lu(pu, σu, µu, λu) =
∑

v∈Nd
u

T u
v pvu

ln(1+α)

· ln
(

1 + α
puv −mvu

rvu −mvu

)
−

∑

v∈Nd
u

µuv(puv − rvu)

+
∑

v∈Nd
u

σuv(puv −mvu)− λu


 ∑

v∈Nd
u

puv − Cu


 ,

where µuv, σuv, λu ∈ R+ are the Lagrange multipliers.
Using Lagrangian relaxation, we can transform the game
(GP) to its relaxed counterpart (RGP), where the abbreviation
“R” is short for “Relaxed”. The triplet of the relaxed game
(RGP) is given by 〈N , Āu,Lu〉, where Āu is the action set
described by the base constraint puv > 0, i.e., Āu = {pu |
puv > 0, v ∈ N d

u}; and the payoff function is replaced by
the relaxed Lagrangian function Lu.

Remark 3.1: In the definition of the relaxed game (RGP),
we chose to relax simultaneously the two sets of constraints,
capacity constraint and range constraints. Instead, we could
have relaxed only the capacity constraint. In that case, the
action set Āu in the relaxed game would include a range
constraint, i.e.,

Āu = {pu | mvu 6 puv 6 rvu, v ∈ N d
u} .

Remark 3.2: By formulating the problem as a game, we
use a non-cooperative approach to model altruistic behavior
among peers. The non-cooperativeness is appropriate here
because there is no centralized control agent in the network,
and communications between peers are local and symmetric.
The aggregated utility comes from peers’ general intention to
help other peers. We assume that peers intend to be altruistic
when they are introduced into the network. Free-riding peers
are penalized via the weighting of the aggregation function.
When one peer appears to refuse to help other peers, the
other peers will correspondingly decline to assist in return,
and as a result free-riding is avoided.

B. Characterization of Nash Equilibrium

In this section, we solve the game (GP) for its Nash
equilibrium. Each peer u has a concave optimization problem
as in (4). Applying the first-order KKT condition as in [19]
and [20] to each peer’s concave problem in (OP),

∂Lu

∂puv
= 0,∀v ∈ N d

u , u ∈ N , (6)

we find

δuvTu
v pvu

1 + α′uvpuv − α′uvmvu
= ξuv, ∀v ∈ N d

u , u ∈ N , (7)

where

δuv =
α′uv

ln(1 + α)
; ξuv = −σuv + µuv + λu

and
α′uv =

α

rvu −mvu
.

In addition, from the feasibility condition, it is required that
an optimal solution satisfies the base constraints in Āu and
the complimentary slackness conditions for every u ∈ N :

λu


 ∑

v∈Nd
u

puv − Cu


 = 0. (8)

σuv(puv −mvu) = 0, ∀v ∈ N d
u , (9)

µuv (puv − rvu) = 0, ∀v ∈ N d
u . (10)

The variable ξuv is composed of three Lagrange multipli-
ers. If ξuv 6= 0, we can further simplify (7) into

puv − Tu
v pvu

ξuv ln(1 + α)
=

(
1 +

1
α

)
mvu − 1

α
rvu. (11)

Definition 3.1: (Başar & Olsder, [21]) A Nash equilibrium
p∗uv, u, v ∈ N for the game (GP) is a point that satisfies

Lu(p∗u,p∗−u) > Lu(pu,p∗−u), ∀pu ∈ Au, u ∈ N , (12)

and puv = pvu = 0, for v ∈ Nu\N d
u and u ∈ N , where the

vector p−u = {pi : i 6= u, i ∈ N} is comprised of decision
vectors of other peers.

Theorem 3.1: (Başar & Olsder, [21]) For each u ∈ N ,
let Au be a closed, bounded and convex subset of a finite-
dimensional Euclidean space, and the payoff functional Uu :
A1 × A2 · · · × AN → R be jointly continuous in all its
arguments and strictly concave in pu ∈ Au for every u ∈ N .
Then, the associated N -person non-zero-sum game admits a
Nash equilibrium in pure strategies.

Relying on Theorem 3.1, we can show that the game (GP)
admits a Nash equilibrium.

Proposition 3.2: The game (GP) admits a Nash equilib-
rium in pure strategies.

Proof: The action set Au is a closed and bounded
simplex and Uu is continuous in puv for all u ∈ N , v ∈ N d

u

and concave in pu. By Theorem 3.1, there exists a Nash
equilibrium to (GP).

With the existence of Nash equilibrium at hand, we can
further investigate the solutions to the relaxed game by
looking at a pair of nodes u and v. Node u has its decision
vector pu satisfying (11) and similarly, node v has its
decision vector pv satisfying (11) by interchanging indices
u and v. Hence, we obtain a pair of equations involving puv

and pvu and they are described by

[
1 − T u

v

ξuv(ln(1+α))

− T v
u

ξvu(ln(1+α)) 1

] [
puv

pvu

]

=
[ (

1 + 1
α

)
mvu − 1

αrvu(
1 + 1

α

)
muv − 1

αruv

]
, (13)



or in the matrix form,

Muvquv = buv, (14)

where quv = [puv, pvu]T , and buv is the right-hand side
vector and Muv is the incident matrix.

Definition 3.2: (M -matrix, [22]) An N by N real matrix
A = [Aij ] is called an M -matrix if it is of the form A =
θI − P, where P is entrywise nonnegative and θ is larger
than the spectral radius of P, i.e., θ > ρ(P). An M -matrix
A has two key features:

1) the sign patterns aii > 0, i = 1, ..., N and aij 6 0 i 6= j
2) the eigenvalues of A have all positive real parts.
Theorem 3.3: [22] If A is an M -matrix, then A−1 > 0,

i.e. all of its entries are positive.
Using Theorem 3.3, we next state a result on uniqueness

of Nash equilibrium for a sufficiently large system parameter
α.

Theorem 3.4: Suppose only capacity constraints are active
and

α > max
u,v

{
e

T u
v

ξuv ,
rvu

mvu

}
− 1. (15)

Then, the game admits a unique Nash equilibrium. For each
pair of peers u and v, the equilibrium is given by

q∗uv = M−1
uv buv, ∀u, v ∈ N . (16)

Proof: Under the condition that the capacity constraint
is active, ξuv = kvλu > 0, since the objective function is
an increasing function. Firstly, we show that provided that

α > e
T u

v
ξuv − 1, we have the inequality 1 >

T u
v

ξuv ln(1+α) . For
each pair of nodes u and v, matrix Muv is an M−matrix
in (11); hence, Muv is strictly diagonally dominant and thus
non-singular; and by Theorem 3.3, the entries of the inverse
matrix M−1

uv is strictly positive.
Secondly, provided that α > ruv

mvu
− 1, the vector buv is

positive, i.e,
(
1 + 1

α

)
mvu > 1

αruv . Using (14) together with
the conclusion above, we arrive at a unique solution given
by (16), whose entries are all positive, residing in the base
constraint action set Āu for all u. Since (11) holds for any
interactive pair, the game admits a unique Nash equilibrium
under conditions in Theorem 3.4.

Remark 3.3: Under general conditions, to have ξuv > 0
requires multipliers µuv , λu, σuv to satisfy µuv + λukv >
σuv . Since payoff function Uu is increasing in puv , λu > 0
and only µuv and σuv can be zero. To ensure ξuv > 0,
we can separate into three cases for general discussion: (1)
when σuv = 0, µuv 6= 0, we require µuv + λukv > 0;
(2) when σuv = 0, µuv = 0, we require λukv > 0; (3)
when σuv 6= 0, µuv = 0, we require λukv > σuv . With an
assumption as in Theorem 3.4 that only capacity constraint
is active, it simply leads to ξuv > 0 itself.

C. Incentive Compatibility

We call a network design incentive compatible when at
the steady state, the helping resource puv from peer u to v
increases as the helping resource pvu from peer v to u also
increases. In addition, it is also desirable to have puv to be

proportional to the trust value of v, i.e., the more peer u
trusts peer v, the more help u is willing to give. We can
further study these properties of the solution obtained in (7)
and (16).

Proposition 3.5: Under the conditions of Theorem 3.4,
the Nash equilibrium solution of the game (GP) is incentive
compatible, i.e.,

1) the helping resource puv from u to v increases with
helping resource pvu from v to u;

2) when the system parameter α increases, the marginal
helping resource from u to v decreases for all u and v;

3) when peer u trusts v more, i.e., Tu
v increases, the

marginal helping resource from u to v increases.
Proof: Using (7), we take the derivative with respect

to pvu and denote ∂puv/∂pvu as marginal helping rate from
u to v.

∂puv

∂pvu
=

∂

∂pvu

{(
1 +

1
α

)
mvu − 1

α
rvu +

Tu
v pvu

ξuv ln(1 + α)

}

=
Tu

v

ξuv ln(1 + α)

Since Tu
v > 0, ξuv > 0, under the conditions in Theorem

3.4, we have ∂puv

∂pvu
> 0, and thus puv is increasing with

pvu at Nash equilibrium. The incentive compatibility results
follow.

IV. PRIMAL / DUAL ITERATIVE ALGORITHM

In this section, we introduce a dynamic algorithm to
compute the unique Nash equilibrium. Let puv(t) be the
resource from peer u to v at step t. Consider the algorithm:

{
puv(t + 1) = suv + tuvpvu(t)
pvu(t + 1) = svu + tvupuv(t) , (17)

where

suv =
(

1 +
1
α

)
mvu − 1

α
rvu , tuv =

Tu
v

ξuv(ln(1 + α))
,

and svu, tvu are defined similarly by interchanging indices
u and v.

Proposition 4.1: Suppose that capacity constraints are ac-
tive, and rvu and muv are chosen such that they are large and
small enough to be inactive constraints, i.e., σuv = 0, µuv =
0 in (9) and (10). Given a Lagrange multiplier λ∗u 6= 0 and

provided that α > e
T u

v
λu − 1, algorithm (17) converges to the

unique Nash equilibrium in (16) at dual optimal λ∗u.
The algorithm described in (17) depends on the Lagrange

multiplier λu. We can exploit duality to devise an iterative
algorithm for the Lagrange multiplier. Let Du(λu) be the
dual functional given by

Du(λu) = max
pu

Lu(pu, λu). (18)



The dual function Du(λu) is a convex function and a dual
optimal λ∗u solves the dual optimization problem (DP)1

min
λu>0

Du(λu). (19)

Using the solution from (16), we can obtain Du(λu) as

Du = λu

(
Cu +

KR

α
+

(
1 +

1
α

)
KM

)
+

PT − PT

ln(α + 1)
,

and its first-order derivative in (20) as below

D′
u(λu) = Cu −

∑
v∈Nd

u
pvuTu

v

λu ln(1 + α)
+

1
α

∑

v∈Nd
u

rvu

−
(

1 +
1
α

) ∑

v∈Nd
u

mvu, (20)

where PT =
∑

v∈Nd
u

pvuTu
v is the sum of the weights;

KM =
∑

v∈Nd
u

mvu; KR =
∑

v∈Nd
u

rvu. KM and KR
can be interpreted as the total request weighted by marginal
costs; and

PT =
∑

v∈Nd
u

pvuTu
v ln

(
α

ln(α + 1)
pvuTu

v

λu(rvu −mvu)

)
(21)

The gradient of the dual function in (20) is dependent on
the local capacity of node u and the information sent by
the neighbor node v of peer u such as the helping resource
pvu, and the maximum (minimum) requested resources rvu

(mvu) from v. All the information is available to peer u to
calculate the gradient locally at each λu.

By taking the second-order derivative of the dual function,
we obtain

D′′
u(λu) =

∑
v∈Nd

u
pvuTu

v

λ2
u ln(1 + α)

. (22)

The dual function in (19) is not only a convex function but
also a strong convex function, whose Hessian is bounded
uniformly as in L1 6 ∇2Du(λu), for some L1 [20]. In
addition, provided that the sum of weights wuv are bounded
from above, i.e,

∑

v∈Nd
u

pvuTu
v 6 M, (23)

for some M ∈ R++, then ∇2Du(λu) 6 L2, for some
constant L2.

Proposition 4.2: Suppose that the sum of weights are
bounded as in (23). The dual function Du is strongly convex
and its Hessian is bounded from above and below uniformly.

Proof: Firstly, λu is bounded from above by some
constant λ̄u since the dual problem is feasible. Thus, ε1 6
λu 6 λ̄u, ε1 > 0. In addition,

∑
v∈Nd

u
wuv 6= 0; otherwise,

the primal problem is trivial because wuv = 0, for all v.
Therefore, ε2 6

∑
v∈Nd

u
wuv 6 M, ε2 > 0. Hence, the

statement is true.

1Peer u’s dual function is expressed in terms of λu and p−u, and the
decision variable for peer u changes from a multi-dimensional vector pu to
a scalar variable λu. Using the dual function, we can reduce the dimension
of the game (GP) as well as turn a constrained game into an unconstrained
one.

Strong duality ensures a unique optimal solution. The
unique dual optimal λ∗u can be found explicitly by applying
the unconstrained optimality condition, i.e., D′

u(λu) = 0. As
a result, we obtain

λ∗u =
PT(

Cu −KM + 1
α (KR−KM)

)
ln(1 + α)

. (24)

To find the dual optimal, we can also devise a dynamic
algorithm that can be used in conjunction with Algorithm
(17). An iterative algorithm based on gradient methods to
find λu is given by

λu(t + 1) = λu(t)− βuD′
u(λu(t)),∀u ∈ N , (25)

where βu ∈ (0, 1) is the step size. The gradient algorithm
in (25) is distributed over the network. Each peer needs
to collect accessible open information from its neighboring
peers to evaluate KM , KR and PT . With the property
of strong convexity, we can show in the following the fast
convergence of the algorithm to (24).

Proposition 4.3: Suppose that D′
u(λu) is Lipschitz with

Lipschitz constant L3 and Du(λu) is strongly convex with
D′′

u(λu) > L1. The dual algorithm (25) converges geomet-
rically to dual optimal λ∗u in (24) with step size βu <
min(2,L1)

L3
.

Proof: We can use the technique in [20] to prove
the proposition. Using the property of strong convexity and
Lipschitz property, we obtain
‖λu(t + 1)−λ∗u‖2

=‖λu(t)− λ∗u‖2 − 2βuD′
u(λu(t))(λu(t)− λ∗u)

+ β2
u‖D′

u(λu(t)‖2
6‖λu(t)− λ∗u‖2 − 2βu(Du(λu(t))−Du(λ∗u))

+ β2
uL3‖λu(t)− λ∗u‖2

6‖λu(t)− λ∗u‖2 − βuL1‖λu(t)− λ∗u‖2
+ β2

uL3‖λu(t)− λ∗u‖2
=(1− βuL1 + β2

uL3)‖λu(t)− λ∗u‖2

Hence, when βu < min(2,L1)
L3

, we have a contraction. In
addition,

‖λu(t + 1)− λ∗u‖2 6 (1− βuL1 + β2
uL3)t+1‖λu(0)− λ∗u‖2.

Hence, the convergence rate is geometric.

V. EXPERIMENTS AND EVALUATION

In this section, we adopt two different approaches to
evaluate the Nash equilibrium of the collaborative system. In
the first experiment, we implement the dynamic algorithm
in Section IV to find the Nash equilibrium. We show that
the algorithm yields the Nash equilibrium of the game at the
steady state and the system is incentive compatible under the
equilibrium. In the second experiment, we use a stochastic
discrete-event based simulation to model an IDS network. In
the simulation, peers estimate their resources received from
the other peers and adjust their allocations of resources to
the others accordingly. We are interested in finding the Nash
equilibrium and verifying the incentives in the collaborative
system at the equilibrium.
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Fig. 7. Resource received varies with resource
contribution - second approach

A. Implementation of the Dynamic Algorithm

In this section, we implement the dynamic algorithm in
Section IV and design numerical experiments to evaluate the
incentives of the resource allocation scheme. We set up a
three-node network and observe that the algorithm yields a
Nash equilibrium within several updates. In this experiment,
we set the minimum demand of resource to 1 unit and the
maximum to 10 units for all peers. Every peer has an equal
capacity of 20 units and the system parameter α = 100.
We assume that trust values of all peers are publicly and
truthfully known. We find that, if all peers have the same
trust values, then the resource is fairly and evenly distributed
among all peers. When the trust values are different, peers
with higher trust values receive more resources. Figure 2
shows that the resources given to three peers with different
trust values converge fast within two or three iterations.

Fixing the resource capacity of all peers to 20 units and the
trust values of two of the peers to 0.5, we vary the trust value
of the third peer from 0.1 to 1.0. In Figure 3, we observe
that the resource that the third peer receives increases with
its trust value under different α values. We also see that
all curves cross at trust value 0.5 and resource 20. This is
because all peers should receive equal amount of resources
when they are equally configured, regardless of the α value
we choose. By fixing the trust values of all nodes to 1.0
and varying the resource capacity of the third peer from 3
to 30, we observe in Figure 4 that the amount of resource a
peer receives is almost linearly proportional to the resource
it contributes to the others. Similarly, all curves intersect at
capacity 20 and resource 20. The reason for that is resources
are evenly distributed when all peers are the same. These
results further confirm our theoretical analysis in Section III.

Figure 3 and 4 also reveal that a larger α value leads to a
lower marginal helping resource. This is because a larger α
value means that peers are easier to be satisfied, and therefore
peers have less incentives to contribute.

B. Stochastic Discrete-Event Based Simulation

In this experiment, we use a stochastic discrete-event
based simulation [23] to model the collaboration mechanism
in an IDS network. It is commonly used to aid strategic deci-
sion making since it has the capability of emulating complex
real world problems. Discrete-event simulation concerns the
modeling of a system as it evolves over time by representing
the changes as separate events. It bridges over our model and
a real-life IDS network.

In this simulation, each node collaborates with others
by sending out requests and waits for their responses. The
requests from each node are generated randomly following
a Poisson process with an average arrival rate of 10 requests
per day. Upon the arrival of a request at its destination queue,
it will be replied by the corresponding peer on first-come-
first-serve basis. The processing rate of requests depends on
the amount of resource that the node allocates to the sender.
Each peer estimates the resource they have received from
other peers by observing traffic and updates its allocation to
other peers accordingly. In the experiment, all peers initialize
with an unbiased allocation and then apply the optimized
resource allocation scheme.

For the purpose of comparing with numerical experiments,
we use the same experiment configuration as in Section V-A,
i.e., we simulate a network of 3 nodes; we set the minimum
resource requirement to 1 unit and the maximum to 10 units
for all peers; every peer has a capacity of 20 units; we set



α = 100 and the trust values of nodes to be 0.2, 0.6, and
1.0, respectively.

Figure 5 illustrates the received resources for all three
nodes with respect to time. We note that the helping resource
converges to the Nash equilibrium at the steady state and
nodes with higher trust values obtain more share of the
resources. It confirms that our resource allocation scheme
provides incentives to the collaborative network.

By fixing the resource capacity of all peers to 20, the trust
values of two of the peers to 0.5, and varying the trust values
of the third peer from 0.1 to 1.0, we obtain in Figure 6 that
the received resource of the third peer increases with its trust
value under different α values. Fixing the resource capacity
of the first two peers to 20 and trust values to 1.0 for all
peers, we vary the capacity of the third peer from 3 to 30
and observe that the resource received by the third node also
increases with its resource capacity under different α values,
as shown in Figure 7. These results also reveal that a higher
α value brings less incentive to the resource allocation. The
simulation results are consistent with the theoretical results
obtained in Section III and the ones in Section V-A.

C. Large-Scale Simulation

Previous experiments were based on a small-scale net-
work. In this subsection, we design numerical experiments
to study the resource allocation in a large-scale intrusion
detection network. We set up a network of 100 nodes, which
are randomly scattered in a 100 × 100 square. Each node
shares its resource with the other nodes in the proximity
distance of 5. The trust values are generated according to a
uniform distribution from 0 to 1.0. The lower bounds and the
upper bounds on the requests are 1 and 10, respectively, for
each node. We separate nodes into two groups: one group
with capacity of 10 units and the other with 20. In Figure 8,
we can see that, for either group of nodes, nodes with higher
trust values tend to receive more assistance. The response
to trust value appears to be more prominent for the group
with capacity of 20 units. It can be explained by the fact
that when the resource capacity is low, most of the resource
is used to satisfy the lower bound of all the neighbors and
little is left to allocate based on incentives. In the second
experiment, we fix trust values of all nodes to 1.0 and
randomly choose the resource capacity of each node from
0 to 30. Figure 9 shows the resource received by nodes with
different resource capacities. We note that, on average, nodes
with higher resource capacities receive more resources. This
confirms the incentives under a large collaboration group.

VI. CONCLUSION

In this paper, we have studied an incentive compatible
resource allocation problem in the context of a collaborative
intrusion detection network. By formulating an associated
continuous kernel game, we have shown that a Nash equi-
librium exists and is unique under certain system conditions.
We have also shown that the Nash equilibrium possesses
features that allow peers to communicate in a conducive en-
vironment in which peers endeavor to contribute knowledge
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and resource to assist neighbor nodes. Any selfish or free-
riding behavior will receive a tit-for-tat response from the
neighbors as a consequence. The dynamic algorithm pro-
posed in the paper is used to compute the Nash equilibrium.
Experimental results show that the algorithm converges to the
Nash equilibrium at a geometric rate, further confirming the
theoretical results. In follow-up work, we plan to develop an
admission control system for IDSs to build up their dynamic
neighbor lists based on dynamic evaluations of trust and
expertise levels.
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