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Abstract—Intrusion Detection and/or Prevention Systems
(IDPS) represent an important line of defense against a variety of
attacks that can compromise the security and proper functioning
of an enterprise information system. Although many IDPS
systems have been proposed, their appropriate configuration and
control for effective attacks detection/prevention and efficient re-
sources consumption has always been challenging. The evaluation
of the IDPS performance for any given security configuration
is a crucial step for improving real-time capability. This paper
aims to analyze the impact of security enforcement levels on the
performance and usability of an enterprise information system.
We develop a new analytical model to investigate the relationship
between the IDPS performance and the rules mode selection.
In particular, we analyze the IDPS rule-checking process along
with its consequent action (i.e., alert or drop) on the resulting
security of the network, and on the average service time per
event. Simulation was conducted to validate our performance
analysis study. Our results show that applying different sets of
rules categories and configuration parameters impacts average
service time and affects system security. The results demonstrate
that it is desirable to strike a balance between system security
and network performance.

Index Terms—Security Performance Evaluation, Security
Management, Security Configuration.

I. INTRODUCTION

Among other security enforcement tools and mechanisms,
Intrusion Detection and/or Prevention Systems (IDPSs) repre-
sent an important line of defense against a variety of attacks
that can compromise the security and proper functioning of
an enterprise information system [1]. IDPSs can be signature-
based or anomaly-based. Signature-based IDPSs, such as
SNORT [2] and BRO [3], are the most popular and are
based on the pre-knowledge of attack signatures which help
distinguish between malicious and benign traffic. Anomaly-
based IDPSs work differently in that they learn about the
normal behavior of a system and then raise alerts whenever an
abnormal behavior is detected. IDPSs can be network or host-
based and can operate in centralized or distributed clusters in
order to provide better detection of malicious traffic across a
distributed networked system.

One of the major requirements for deploying any security
technology is to defend against the variety of attacks. Another
requirement is related to the avoidance of any unnecessary
network performance degradation when maximum security is

applied. This results in a tradeoff between security enforce-
ment levels on one side and the performance and usability
of an enterprise information system on the other [4]. Existing
IDPSs do not seem to provide a satisfactory method of achiev-
ing the two conflicting goals mentioned above. Network-based
Intrusion Detection Systems (NIDSs) inspect copies of the
packets that are transmitted over the network and generate
alerts whenever malicious contents are found. In contrast,
Network-based Intrusion Prevention Systems (NIPSs) have an
extra ability to prevent the attacks from being successful.
IDSs fulfill the network performance requirement (in terms
of delay) but exhibit a poor protection as the attacks have
already succeeded. On the other hand, IPSs can protect the
network by dropping the malicious packets that match any
attacking pattern; however, this can have a negative impact on
the network performance in terms of delay as the attacking
patterns increase.

Although many IDPS systems have been proposed, their
appropriate configuration and control for effective attacks
detection/prevention and efficient resources consumption has
always been challenging [5], [6]. The evaluation of the IDPS
performance for any given security configuration is a crucial
step for improving their realtime capability [7]. Another con-
cern is related to the impact of security enforcement levels
on the performance and usability of an enterprise information
system. In this paper, we study the impact of security enforce-
ment levels on the performance and usability of an enterprise
information system. In particular, we analyze the impact of
configuring an IDPS rule-checking process along with its
consequent action (i.e. alert or drop) on the resulting security
of the network, and on the average service time per event. We
develop a new analytical model to investigate the relationship
between the IDPS performance and its configuration. Our
results show that applying different sets of rules categories
and configuration parameters impacts average service time
and affects system security. The results demonstrate that it
is desirable to strike a balance between system security and
network performance.

The paper proceeds with an overview of related work in
Section II, then presents a background of the rule-checking
process in Section III. In Section IV, we present an an-
alytical model to investigate the relationship between the



IDPS performance and the rules mode selection. Section V
presents the performance analysis study of the impact of IDPS
configuration on average service time. It also describes the
relationship between the system security level and deferring
configuration parameters. Section VI, discusses the challenges
encountered in IDPS performance analysis. Finally, Section
VII concludes the paper and anticipates the nature of future
work.

II. RELATED WORK

A signature-based IDPS heavily relies on deep packet in-
spection. Studies show that the IDPS rule checking process is a
performance bottleneck [8], [9], [10]. Accordingly, researchers
focus on finding solutions and algorithms, either software
or hardware, to improve the performance of the content-
matching process. However, very little work has addressed
the problem of dynamic adaptation for the sake of balancing
system performance and security.

There have been some efforts in measuring the IDPS
performance in terms of resource requirements (i.e., CPU and
memory). In [11], [12], the authors aim to fine tune the trade-
off between security level versus resource consumption. Our
study goes a step further by analyzing the impact of IDPS
configuration on average service time.

Lee et al. [13] propose a technique to measure the perfor-
mance of an IDS by quantifying the benefits and costs of de-
tection rules. They aim to dynamically determine the optimal
configuration for an overloaded IDS to prevent data dropping
under resource constraint and to trigger adaptation to current
conditions. Their work is similar to ours in that it measures
the expected service time of different IDS configuration sets
to determine the optimal one. However, defining the cost and
benefit metrics precisely is not an easy task and it varies
from one environment to another. Furthermore, considering
the preventive capability of an IDPS, the analysis presented
by Lee et al. seems inadequate. This is due to violation of the
strict QoS requirement in terms of end-to-end delay caused by
the prevention services.

A study measuring the impact of the IPS operation on net-
work performance is described in [14]. The authors explain the
network performance degradation when intrusion prevention
services are applied. Accordingly, they suggest distributing the
IPS services on programable routers to mitigate this issue. In
fact, adding a deep packet inspection operation to routers will
certainly cause longer delay since they are not designed for
this purpose.

The authors of [15] seek to transform an IDS system into
an IPS by proposing a policy management for firewall devices
integrated with intrusion prevention capabilities. They propose
an attack response matrix model which maps intrusion types
to traffic enforcement actions. Their proposal is, however, only
at the design level and no concrete implementation or policy
specifications have been provided. In addition, they do not
consider the performance aspect but only how to transform an
IDS into an IPS using policies.

Fig. 1. Analysis Tasks for Intrusion Detection and Prevention Systems

III. BACKGROUND AND PROBLEM DESCRIPTION

In this section, we describe the operation of existing in-
trusion detection and prevention systems and some of the
weaknesses inherent in them. Generally, IDPSs perform a
number of analysis tasks to identify malicious traffic. SNORT,
for example, carries out the following tasks (Fig. 1):
• Data decoding: decodes the header information of the

packet and translates specific protocol elements into a
data structure, for the use of the following tasks.

• Preprocessing: examines the packet for malicious activity
that can not be captured by signature matching or per-
forms a number of preliminary steps in the packet, i.e.,
normalization, fragmentation reassembly, stream recon-
struction, etc.

• Rule checking: examines the packet to determine if it
is associated with an intrusion. There are two types of
rules an IDPS can handle: content-based and non-content-
based. The former is divided into three main sections:
1) action to be taken, 2) header specifying protocol,
IP addresses, and ports information, and 3) an option
stating which parts of the packet should be inspected
for determining the presence of a particular pattern, or
a collection of patterns. The non-content-based rule is
similar to the content-based one except that there is no
pattern to look for.

• Action execution: the action describes what response an
IDPS can perform when a packet matches a specified rule.
The main actions include (but are not limited to): logging
a packet (log), generating an alert (alert), dropping a
packet (drop), terminating a connection (reject), and
ignoring a packet (pass).

Our analysis will be limited to the rule-checking process
along with the action associated with each rule. Once rules
are selected and initialized, they are grouped by protocol
type (i.e., tcp, udp, icmp, ect.), and then by ports, then by
those with content and those without. For each content-based
group, a multi-pattern matcher is constructed for all rules
by choosing a single pattern from all patterns in each rule
option (e.g., SNORT uses longest pattern). Clearly, there is no
pattern matcher for non-content-based rules. When a packet
arrives at the rule-checking engine, the corresponding multi-
pattern matcher will be called on to filter out (for further
evaluation) the rules whose single pattern are matched. The
filtered rules can be large depending on the chosen patterns
for the multi-pattern matcher and on the number of rules within
a group(i.e., http). The evaluation of these filtered rules and



TABLE I
SUMMARY OF NOTATIONS

Symbol Meaning
R Set of Detection and Prevention rules in IDPS.
N Number of rules contained by IDPS.
E An arriving event.
G Binary vector indicating whether a rule is a detective or preventive rule
A Set of attacks covered by IDPS
PM Prior probability of attack occurrence
FP False positive probability for the detection and prevention of IDPS
FN False negative probability for the detection and prevention of IDPS
T(ri) Processing time for rule ri
H(k) Vector indicating the proportion of malicious event of type i.
B(i) The blocking probability of a preventing rule ri

the non-content-based rules are applied sequentially. Once a
rule matches a packet the corresponding action will be taken.

A rule can be either a detective or a preventive rule. A
detective rule’s action is alert and a preventive rule’s action
is drop. The detective rule aims to inspect a copy of a
packet transmitted over the network and generate an alert
when a malicious pattern exists in the packet content. Clearly,
this passive inspection mode has no impact on the network
performance in terms of delay, as it checks only a copy of
traffic for malicious activity, while the actual traffic is delivered
successfully. However, this inspection mode exhibits a poor
protection as it does not prevent an attack from succeeding.
Unlike the detective rule, the preventive rule is configured to
be in-line mode so that traffic will be dropped if it carries
a malicious pattern that matches the rule. This preventive
mode can meet the security requirement but it can have a
negative impact on the network performance, especially when
the attacking patterns increase.

A. Definitions and Preliminaries

IDPS rules (or signatures) are classified into libraries. Each
library contains a number of rules that are related to a known
attack type. For example, the FTP library contains all rules
related to attacks on FTP servers (i.e., SNORT (v 2.8.6) has a
set of 58 libraries). Let L = {l1, l2, . . . , lM} be the set of all
available libraries. We let R(li) = {r1, r2, . . . , rNi

} denote
the set of a finite number of rules included in a library li.
The total number of rules included in an IDPS is N = |R| =∑

Ni,where i = 1, 2, . . . ,M .
IDPSs are shipped with a large number of rules. The security

administrator is responsible for including and excluding rules
according to the specific needs of the protected network envi-
ronment. For instance, SNORT allows the enabling/disabling of
rule libraries or individual rules through a set of configuration
files. Furthermore, the security administrator can specify the
mode of the rules as either in a detective or a preventive
mode. To classify the rule as to which group it belongs
to, we define a binary vector G = {g1, g2, . . . , gN} that
indicates whether a rule is a detective or preventive rule (i.e.,
detection mode if G(k) = 0, prevention mode if G(k) = 1,
where k = 1, 2,. . . , N ). This binary vector is defined as
corresponding to rules vector R with N rules.

Each rule rk has a processing time Tk. We consider only the
time that it takes a rule to process an actual packet. Clearly,
a detective rule that simply examines a copy of traffic is
assumed to require no processing time on the actual traffic.
The processing time tk will be considered only if the rule rk
is in a preventive mode (G(k) = 1).

Each rule rk ∈ R is responsible for only one type of
malicious event. We let A = {a1, a2, . . . aN} be the set
of different attacks covered by the IDPS, assuming that the
occurrence of each attack is independent of the others.

We denote E as an arriving event or flow. The event E is
malicious with attack of type k where k ∈ {0, 1, . . . , N} and
is denoted as E← ak. Note that an event contains at most only
one type of maliciousness. We denote by E ← a0 a benign
event which does not contain any malicious content with
regards to the different rules’ restrictions Ri (i = 1, 2, . . . , N ).

A rule ri announces event E as malicious with regards to
attack type ai is defined as E

ri← ai. Similarly, we define
E

ri← a0 to indicate that the event E is announced as normal
when no rule ri reports the presence of attack ai in it for
all i = 1, 2, . . . , N . The probability that rule rk triggers an
arriving event E as malicious, given that it is malicious with
regards to attack type ak is defined by: Prob{E ri← ak | E←
ak} which is equal to the true positive probability TPk =1-
FNk. FNk represents the false negative rate of rule rk when
miss-announcing a malicious event that contains an attack of
type ak. We let FPk=Prob{E ri← ak | E ← a0} be the false
positive rate of rule rk, that is, the probability that rule rk
triggers an arriving event E as malicious, given that it is not
malicious with regards to rule rk.

B. Characterization of Traffic

A site-specific risk analysis provides information about the
malicious activities that were encountered in the past. We
believe that the risk analysis process is an important step
to quantitatively measure the network security. However, our
focus is not on developing a risk analysis model rather we
are trying to benefit from information gathered by security
administrators during the site-specific risk analysis process
which includes the proportion of malicious events among
all detected events, prior probability of maliciousness, false
positive rate, and false negative rate. We mentioned the risk
analysis model here for the sake of showing the feasibility of
obtaining such parameters.

We denote PM as the probability of maliciousness that
categorizes an arriving event E to be malicious. This prior
probability can be used to estimate future attacks. We denote
by H(k) the vector indicating the proportion of malicious event
of type i among all the malicious events for all i=1,. . . ,N.
Clearly, the sum of this vector is equal 1 (

∑
H(i)=1, i =

1, . . . , N ).

IV. ANALYTICAL MODEL

In this section, we develop an analytical model to study
the impact of the vector G on the resulting security of an
enterprise information system and on the average service time



to inspect an event. We assume that the IDPS processes one
event at a time. Once an event arrives, it goes through a
sequence of detection and/or prevention rules according to the
current configuration of the IDPS represented by vector G. The
process terminates if the event is dropped by a preventive rule
or reported by a detective rule as a malicious event. In case an
event is normal, the process ends when all rules are checked.

A. Average Processing Time

In this section, we evaluate the average service time of
an IDPS. It is the time required by the IDPS with a rule
configuration G to successfully determine whether an arriving
event is accepted as a normal event or reported/rejected with
the presence of an attack in it. In the rule analysis process,
preventive rules have a great impact on the service time of an
IDPS. For example, a significant improvement in processing
time can be achieved if a frequently triggered preventive rule
is checked as early as possible because unnecessary analysis
is avoided. We define B(i) as the blocking probability of rule
ri. It is the probability of announcing an event as malicious by
a preventing rule ri, ∀ i = 1,. . . , N . The blocking probability
of rule ri is defined by:

B(i) = Prob{E ri← ai,G(i)} (1)

where an event E is announced as malicious with an attack
of type ai by a rule ri and the rule is a preventive rule, G(i)=1.

In order for rule ri to announce an event as malicious, all
previous rules have to announce it as safe. In other words, an
event should arrive at rule ri before any decision is taken on
it. This can be expressed as follows:

B(i) = Prob{E rj← a0(∀j < i),E
ri← ai}G(i) (2)

Given that the event space consists of a malicious event of
attack type k (E← ak) and benign event E← a0, we rewrite
B(i) as follow:

B(i) = Prob{E← ak,E
rj← a0(∀j < i),E

ri← ai}G(i)

+ Prob{E← a0,E
rj← a0(∀j < i),E

ri← ai}G(i)
(3)

Let us consider the situation when the event is malicious.
Clearly, the probability of announcing an event as malicious by
rule ri depends on the probability that the event is malicious
and on the probability of accepting the event as normal by all
the rules previously checked. We let the first term of Equation
3 be Bmal(i) and using the theorem of total and conditional
probability, Bmal(i) can be written as:

Bmal(i)=

N∑
k=1

Prob{E ri← ai | E
rj← a0(∀j < i),E← ak}

× Prob{E rj← a0(∀j < i),E← ak}

(4)

The first term in Equation 4 represents the case when the
IDPS announces the event as malicious by rule rk given that
the event arrives to rule ri and it is malicious. In this case,
the probability that the IDPS correctly announces the event as

malicious or mistakenly classifies it as malicious is defined as
PBmal. This can be calculated as follows:

PBmal(k, i) =

{
1− FNi if k = i
FPi if k 6= i

(5)

We let PEmal stand for the second term of Equation 4, which
represents the probability that the IDPS accepts the event as
normal by all rules rj , j=1,. . . ,i-1, earlier than the current
evaluated rule ri where the event E is malicious. We have two
cases in this situation. In the first case, the current evaluated
rule ri is the first one (i=1), where no rule has been checked
so far. PEmal can be calculated as:

PEmal(k, i) = H(k)PM where i = 1. (6)

The second case of PEmal may be encountered when there
is at least one rule rj that has been checked before rule ri;
that is, ri is not the first rule to be evaluated (i.e., i > 1).
Accordingly, PEmal can be calculated by:

PEmal(k, i) =


i−1∏
j=1

(
1− (1− FNj)G(j)

)
H(k)PM if k 6= j

i−1∏
j=1

(
1− FPjG(j)

)
H(k)PM if k = j

(7)
Now let us consider the situation when the event is normal.

We are interested in the probability of announcing an event
as malicious by rule ri given that the event is safe and all
previously evaluated rules rj (i.e., j < i) mark the event as
safe. This can be written as:

Bsafe(i) = Prob{E ri← ai | E
rj← a0(∀j < i),E← a0}

× Prob{E rj← a0(∀j < i),E← a0}
(8)

Applying the same steps used for the malicious case yields
the following equation in a safe case:

Bsafe(i) =FPi ×


1− PM if i = 1
i−1∏
j=1

(
1− FPjG(j)

)
(1− PM ) if i > 1


(9)

Given the Equations 3, 4, and 9, we can calculate the
blocking probability B(i) of rule i as follows:

B(i) = Bmal(i)× G(i) +Bsafe(i)× G(i) (10)

where

Bmal(i) =

N∑
k=1

PBmal(k, i)× PEmal(i) (11)

Finally, we measure the average service time of an IDPS as
follows:

Avg =

[
N∑
i=1

B(i)

N∑
k=1

T (k)G(k)

]
+
(
1−

N∑
i=1

B(i)
)

×
N∑
i=1

T (i)G(i)

(12)



B. Level of Security
The main objective of deploying any security tool is to

protect the network from any malicious activities. Measuring
the impact of security configurations can help security admin-
istrators in making optimal decisions about how to strengthen
network security. In IDPSs, rules in preventive mode have the
capability of blocking attacks once they have been matched.
However, this induces a negative impact on network perfor-
mance (i.e., E2E delay, throughput, service usability, jitter,
etc.) especially when the number of preventive rules increases.
Therefore, the main concern is to find the appropriate balance
between security enforcement levels and the performance
and usability of an enterprise information system. Here, we
evaluate the impact of a chosen IDPS configuration on the
resulting security of the system. In particular, we are interested
in measuring the probability of blocking an event given that
it is malicious.

S = Prob{E rj← ai | E←ai}

=
Prob{E ri← ai,E←ai}

Prob{E←ai}

=

N∑
i=1

Prob{E ri← ai,E
ri← ai} × G(i)

Prob{E←ai}

(13)

Using Equation 3 in Equation 13 yields:

S =

N∑
i=1

N∑
k=1

PBmal(i)× PEmal(i)× G(i)

PM
(14)

C. Accuracy of Action
The capability of an IDPS to apply different rule modes

(i.e., alert or block) motivated the need for measuring action
accuracy. Therefore, we study the action that is taken by the
IDPS against an arriving event. The action of the IDPS could
be either accepting or blocking an event. The accuracy of
action is defined as taking the right action with regards to
an arriving event. That is, the action of the IDPS is accurate
if it accepts an event that is normal and/or blocks a malicious
event. We define the accuracy of action Aacc as the probability
of either accepting a benign event or blocking a malicious one.
Aacc can be written as follows:

Aacc = Prob{E←ai,E
ri← ai}+ Prob{E←a0,E

ri← a0}
(15)

Using the conditional probability theorem yields:

Aacc = Prob{E ri← ai | E←ai}Prob{E←ai}
+ Prob{E ri← a0 | E←a0}Prob{E←a0}

(16)

By substituting 14 in 16, the action accuracy taken by the
IDPS for an arriving event is as follows:

Aacc = S × PM +

N∏
i=1

(
1− FPiG(i)

)
× (1− PM ) (17)

D. Accuracy of Decision

In this section, we analyze the decision accuracy made by
the IDPS. This refers to the decision to announce an arriving
event as malicious or not, regardless of the action taken as
a result of the announcement. The decision is accurate when
announcing an arriving malicious event as malicious while not
doing so with the benign one. Therefore, the accuracy of the
decision is defined as the probability of either triggering an
event as malicious while it is malicious or not triggering the
event when it is normal. This is equivalent to the complement
of making a wrong decision with regards to an arriving event.
That is, the decision accuracy of the IDPS is the complement
of announcing an event as malicious where it is not malicious
or announcing a benign event as malicious. The inaccuracy of
the decision can be written as follows:

Dacc = Prob{E←ai,E
ri← a0}+ Prob{E←a0,E

ri← ai}
(18)

Solving this equation results in:

Dacc =
(
1−

N∏
i=1

(
1− FPi

))
× (1− PM )

+

N∑
k=1

FNk

N∏
i=1
i 6=k

(
1− FPi

)
×H(k)PM .

(19)

The difference between the action and decision accuracy is
that the former concerns the response taken by a triggered
rule to either block an arriving event or to accept it. The
latter concerns the decision of announcing an arriving event as
malicious or benign. Clearly, the rule’s mode of an IDPS has
no impact on the decision accuracy but it affects the action
accuracy. For instance, the action of an IDPS is considered to
be inaccurate if a malicious event matches a specified rule
which is in a detective mode (alert). This is because the
malicious traffic has not been blocked by the detective rule.
The action accuracy can be identical to the decision accuracy
when the IDPS is configured to operate entirely in IDS mode
(i.e., the action of all the rules is alert) or entirely in IPS mode
(see Table II when IPS=100%).

V. PERFORMANCE EVALUATION AND RESULTS

In this section, we study the impact of the IDPS configura-
tion on the average service time. We also measure the security
level of the system when choosing different configuration
parameters. The results are derived using both analytical and
simulation approaches. The simulations are performed using
a new discrete-event simulation tool developed under Matlab
[16]. In order to test the validity of our work while keeping
the case simple, we assign equal processing time for all the
rules (one unit of time), we let the proportion of maliciousness
be equally distributed H(i)/N , i = 1, . . . , N , and we set the
probability of maliciousness to be PM=0.5. For simplicity, we
assume that the false detection rates, FP and FN, are measured
for the entire rule-checking engine of an IDPS.



(a) (PM ,IPS)=(0.5,75%) (b) (PM ,IPS)=(0.5,50%) (c) (PM ,IPS)=(0.5,10%)

Fig. 2. Selected Results of Average Service Time for Number of Rules with Different Preventive Percentage

A. Average Service Time

The average service time is calculated as the time required
for an event to be completely served. An event is served
once a detective/preventive rule finds a match and triggers
its action or once the event is identified as normal. Figure 2
shows the impact of the increasing number of rules N on the
average service time when processing an event using different
preventive rule percentages. For each preventive percentage,
we plot the average service time using different detection rates.
Figures 2(a), 2(b) and 2(c) show the results when selecting
the percentage of preventive rules to be 75%, 50%, and 10%
respectively.

Figure 2(a) illustrates the impact of increasing the number
of rules on the average service time when 75% of the rules
are in preventive mode. Figure 2(a) shows that the larger
N is, the longer service time becomes. When we reach
approximately 100 rules, the system reaches the saturation
state and additional rules result in very little further impact.
Prior to the saturation region, a reduction in the number of
rules results in an improvement in average service time. In
this situation, a malicious event is likely to be missed by
the rule accountable for it and accordingly is examined by
other rules that are not responsible for it. Thus, a reduction
in the false negative rate yields no appreciable improvement
in average service time. The false negative rate has little
impact on the average service time. However, this is not
the case when the value of FP increases. Rather, there is a
notable reduction in average service time when the rate of false
positives increases. This occurs because of an early decision
made as a result of a wrong diagnosis. In this case, an increase
in the number of rules has only a slight impact on average
service time. When the percentage of preventive rules is 50%,
Figure 2(b) appears quite similar to Figure 2(a). Increasing the
number of rules, false positives, and false negatives impacts the
average service time in a way very similar to that illustrated in
Figure 2(a). However, the average service time approaches the
saturation state more slowly than in the previous case when
75% of the rules are preventive. That is, the improvement in

average service time is limited once the saturation point of
approximately 130 rules is reached (out of 200 rules).

In Figure 2(c), when 10% of the rules are in preventive
mode, we observe a somewhat different impact on the average
service time. Figure 2(c) shows that the average service time
increases linearly with the number of rules. Improvement
in average service time in this case is obviously the most
advantageous of the three scenarios, because the saturation
point is not reached until approximately 180 rules.

To conclude, the potential for improvement in average ser-
vice time increases as we reduce the percentage of preventive
rules. Of course, the price one has to pay for reduction in
the number of preventive rules is a corresponding decrease in
enterprise network security.

Figure 3 plots the average service time as a function of
increasing both the false positive and false negative rates. We
are interested in understanding the impact of the detection
rates on the average time required to completely inspect an
arriving event. The number of rules in this case is chosen to
be 100. Figures 3(a), 3(b), and 3(c) show the impact of varying
the false positive rate while fixing the false negative rate and
using different preventive rule percentages.

Figure 3(a) presents the results when 75% of the rules
are preventive. We can see that the average service time
decreases with an increase in the false positive rate for all
false negative rate values. We can see that the average service
time is longer when the IDPS becomes accurate in terms of the
false positive rate, no matter what the false negative rates are.
Indeed, the IDPS consumes more time to correctly distinguish
the malicious events from the benign ones rather than just
mistakenly identifying a malicious event at an early stage.

Figures 3(b) and 3(c) show similar results, except that a
dramatic decrease in average service time results from the
reduction of the percentage of preventive mode services. How-
ever, with the use of different preventive mode percentages,
the average service time approaches saturation differently. That
is, when the IPS percentage is large, the average service time
reaches saturation quickly. In contrast, the saturation state is
reached more slowly as the IPS percentage decreases. Clearly,



(a) IPS=75% (b) IPS=50% (c) IPS=10%

(d) IPS=75% (e) IPS=50% (f) IPS=10%

Fig. 3. Selected Results for Impact of Detection Rates on Average Service Time

the impact on average service time will be no more than 10
units of time when 10% of the rules are in IPS mode (see
Figure 3(c)).

Figures 3(d), 3(e), and 3(f) plot the impact of changing the
false negative detection rate (FN) for different false positive
rates and with the use of different preventive rule percentages.
Clearly, a reduction in the percentage of preventive rules
results in a significant reduction in average service time.
Furthermore, an increase in the rate of false negatives produces
very little change in average service time.

B. Level of Security and Accuracy
In this section, we intend to study the impact of choosing

different configuration parameters on the security of the system
and on the action and decision accuracy. The results are
achieved using both the analytical and the simulation models
that we have developed. For all results in this section, we
based our study on a total of 100 rules. Table II presents the
impact of varying four configuration parameters, including FP,
FN, PM , and IPS% on security and accuracy of the system.
Clearly, an increase in the preventive rule percentage yields a
corresponding improvement in system security. Nevertheless,
a system still has a good level of security even though the
percentage of preventive rules is relatively low. For example,
when FP is 0.5, FN is 0.1, and IPS is 10%, the security result
reach 79%. However, the accuracy of action and decision for
this case are not satisfactory.

VI. DISCUSSION

The challenge involved in performance analysis of a security
system so as to reduce resource utilization while preserving

TABLE II
SELECTED RESULTS OF SECURITY LEVEL, DECISION ACCURACY, AND

ACTION ACCURACY WITH DIFFERENT CONFIGURATION SETS

Configuration
Parameters Analytical Results Simulation Results

FP FN PM Security Action
Accuracy

Decision
Accuracy Security Action

Accuracy
Decision
Accuracy

10% IPS
0.1 0.1 0.1 0.3340 0.7624 0.4099 0.3263 0.7611 0.4104
0.1 0.1 0.5 0.3340 0.5720 0.6550 0.3310 0.5687 0.6565
0.5 0.1 0.1 0.7900 0.3040 0.1009 0.7939 0.3056 0.1007
0.1 0.5 0.1 0.2620 0.7552 0.3944 0.2654 0.7548 0.3942
0.1 0.5 0.5 0.2620 0.5360 0.5775 0.2597 0.5354 0.5778
0.5 0.5 0.1 0.7500 0.3000 0.1008 0.7493 0.2991 0.1003

50% IPS
0.1 0.1 0.1 0.6720 0.5986 0.4099 0.6650 0.5956 0.4094
0.1 0.1 0.5 0.6720 0.6312 0.6550 0.6723 0.6315 0.6555
0.5 0.1 0.1 0.9813 0.1263 0.1009 0.9790 0.1272 0.1028
0.1 0.5 0.1 0.5407 0.5855 0.3944 0.5461 0.5862 0.3959
0.1 0.5 0.5 0.5407 0.5656 0.5775 0.5373 0.5631 0.5774
0.5 0.5 0.1 0.9688 0.1250 0.1008 0.9662 0.1233 0.0995

100% IPS
0.1 0.1 0.1 0.9613 0.4099 0.4099 0.9578 0.4113 0.4113
0.1 0.1 0.5 0.9613 0.6550 0.6550 0.9616 0.6559 0.6559
0.5 0.1 0.1 0.9998 0.1009 0.1009 0.9998 0.0993 0.0993
0.1 0.5 0.1 0.8063 0.3944 0.3944 0.8068 0.3952 0.3952
0.1 0.5 0.5 0.8063 0.5775 0.5775 0.8081 0.5771 0.5771
0.5 0.5 0.1 0.9990 0.1008 0.1008 0.9991 0.1006 0.1006

a good level of security enforcement is the need to obtain
estimates for the various parameters used in the analysis.
Finding the false positive (FP) and false negative (FN) rates
can be accomplished by either using proper training data sets
or by analyzing the past behavior of the system [17]. The rule
processing time T can be measured experimentally. SNORT,
for instance, provides statistics on rule performance through



a simple configuration option (i.e., profile rules). For
each rule, SNORT provides an estimate of how much it takes
to process a packet. The prior probability of attack occurrence
(PM ) and the proportion of attacks (H) can be initially
estimated using a site-specific risk analysis approaches and
updated with new attacks accordingly. Although dealing with
a prior probability is a challenging task, our target is rather
measuring the performance of the security system.

An additional concern which affects the performance anal-
ysis is the selection of categories (sets of rules) for each
preventive level. The selection of categories may vary form
one environment to another. For instance, the maximum pre-
ventive level for protecting the web server of a company
should include not only all the rules which prevent web-server-
specific attacks, but also those related to potential preliminary
steps of these attacks, such as scanning. A possible solution
for choosing the categories for each detection level can be
based on common attack graphs [18] where the early steps of
the attacks are included in the minimum prevention level.

VII. CONCLUSION

In this paper we studied how choosing which rules are
preventive or detective has an impact on the security of the
system, on the average service time, and on the decision and
action accuracy of an IDPS. We developed a new analytical
model to investigate the relationship between IDPS perfor-
mance and its configuration. Simulation was conducted to
validate our performance analysis study. Our results show that
applying different sets of rules categories and configuration
parameters impacts average service time and affects system
security. The results demonstrate that it is desirable to strike a
balance between system security and network performance in
terms of delay. Ongoing work is considering the investigation
of attack graphs, attack statistical relationships, as well as
learning mechanisms. The intent is to determine an appropriate
IDPS configuration that will balance network security and
performance. We also plan to validate our analysis using real
IDPS systems such as SNORT and BRO.

ACKNOWLEDGMENT

This work was supported in part by the Natural Science and
Engineering Council of Canada (NSERC) under its Discovery
program, and in part by the WCU (World Class University)
program through the Korea Science and Engineering Foun-
dation funded by the Ministry of Education, Science and
Technology (Project No. R31-2008-000-10100-0).

REFERENCES

[1] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention
systems(idps),” National Institute of Standards and Technology (NIST),
no. CSRC special publication SP 800-94, Feb 2007.

[2] M. Roesch, “Snort - lightweight intrusion detection for networks,” in
LISA ’99: Proceedings of the 13th USENIX conference on System
administration. Berkeley, CA, USA: USENIX Association, 1999.

[3] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
in SSYM’98: Proceedings of the 7th conference on USENIX Security
Symposium, 1998. Berkeley, CA, USA: USENIX Association, 1998.

[4] K. Alsubhi, I. Aib, J. François, and R. Boutaba, “Policy-based security
configuration management application to intrusion detection and pre-
vention,” in Proceedings of the 2009 IEEE international conference on
Communications, ser. ICC’09, 2009.

[5] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion-
detection systems,” COMPUTER NETWORKS, vol. 31, no. 8, 1999.

[6] S. Bellovin and R. Bush, “Configuration management and security,”
IEEE Journal on Selected Areas in Communications JSAC, vol. 27, no. 3,
2009.

[7] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland, “Characteriz-
ing the Performance of Network Intrusion Detection Sensors,” Recent
Advances in Intrusion Detection: 6th International Symposium, RAID
2003, Pittsburgh, PA, Usa, September 8-10, 2003.

[8] J. Cabrera, J. Gosar, W. Lee, and R. Mehra, “On the statistical dis-
tribution of processing times in network intrusion detection,” in 43rd
IEEE Conference on Decision and Control, Atlantis, Paradise Island,
Bahamas, 2004.

[9] D. Schuff and V. Pai, “Design alternatives for a high-performance self-
securing ethernet network interface,” in IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2007.

[10] C. Wu, J. Yin, Z. Cai, E. Zhu, and J. Chen, “A hybrid parallel signature
matching model for network security applications using simd GPU.”
Springer, 2009, pp. 191–204.

[11] H. Dreger, A. Feldmann, V. Paxson, and R. a. Sommer, “Predicting the
resource consumption of network intrusion detection systems,” in Recent
Advances in Intrusion Detection. Springer, 2008.

[12] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Operational expe-
riences with high-volume network intrusion detection,” in Proceedings
of the 11th ACM conference on Computer and communications security.
ACM, 2004.

[13] W. Lee, J. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and Y. Zhang,
“Performance adaptation in real-time intrusion detection systems,” in
Recent Advances in Intrusion Detection. Springer, RAID, 2002.

[14] A. Hess, H. Geerdes, and R. Wessäly, “Intelligent distribution of
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