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Abstract—Modern production clusters are often shared by
multiple types of jobs with different priorities in order to improve
resource utilization. Preemption is a common technique employed
by MapReduce schedulers to avoid delaying production jobs
while allowing the cluster to be shared by other non-production
jobs. In addition, it also prevents a large job from occupying too
many resources and starving others. Recent literature shows that
jobs in production MapReduce clusters have a mixture of lengths
and sizes spanning many orders of magnitude. In this type of
environments, the current preemption policy used by MapReduce
schedulers can significantly delay the completion time of long
running tasks, resulting in waste of resources. This paper firstly
discusses the heterogeneous nature of MapReduce jobs and
their arrival rates in several production clusters. Secondly, we
characterize the situations where the current preemption policy
causes significant preemption penalty. We then propose a simple
mechanism that works in conjunction with existing job schedulers
to address this problem. Finally, we evaluate our solution under
various types of workloads in Amazon EC2. Experiments show
our method can improve system normalized performance by
15% during busy periods by effectively avoiding unnecessary
preemption while preserving fairness.

Index Terms—Cloud Computing; Mapreduce; Hadoop

I. INTRODUCTION

Cloud computing frameworks like MapReduce [1] and

Dryad [2] have become the dominant programming model for

data-intensive computing in recent years. In these frameworks,

a job may spawn many small tasks that can be executed

concurrently on multiple machines, resulting in significant re-

duction in job completion time. In addition, these frameworks

provide fault tolerance features. Since software and hardware

exceptions are common in large-scale clusters, the scheduler

can automatically restart a task after the task fails due to run-

time exceptions. As a result, these models are very attractive

not only for running data-intensive jobs, but also for executing

computation-intensive applications.

Several studies have analyzed the workload characteristics

in production MapReduce clusters [3][4][5][6][7]. One im-

portant finding of these studies is that workloads are hetero-

geneous. First, the difference in job size can span several

orders of magnitude. A large job typically spawns many

small tasks in parallel to speed up the execution, although

doing so requires a large amount of computation slots during

a short period. Second, the length of the jobs can differ

significantly. Although most jobs have short running time,

some jobs can take a very long time to complete. Finally,

like many other service systems, the arrival of job requests is

not only non-uniform but also very spiky. In order to ensure

acceptable response time of jobs during peak workload time,

the capacity of a cluster is often much higher than what an

average workload needs. Therefore, most of the resources

will typically be idle if the cluster is only reserved for a

single type of jobs. In order to improve resource utilization,

modern clusters are often shared by a mixture of jobs with

different priorities, which further increases the heterogeneity

in workloads. For example, in Google’s compute clusters, on

the average around 30% jobs are production jobs, and the

others are for research and experimental purposes (Based on

internship experience at Google in 2010). Typically production

jobs (i.e. jobs that generate revenue) are given higher priorities

than non-production jobs (i.e. experiments and research jobs).

Although production jobs account for a small percentage of the

total job population, they are allowed to consume a significant

portion of the cluster resources.

For heterogeneous workloads, MapReduce job schedulers

typically rely on preemption to coordinate resource sharing,

to achieve fairness, and to improve system performance.

Specifically, preempting a task means terminating the task

immediately and using the resources to schedule a different

task. As a single task has very light weight compared to

the job, the scheduler typically does not need to save the

task progress. It simply restarts the task later. This simple

preemption policy is used by Apache Hadoop, an open source,

widely deployed implementation of MapReduce, and also in

Google’s data centers [5]. In the environment where workload

is heterogeneous, preemption can help to ensure fast response

of high priority jobs by allowing them to preempt low priority

ones, when there is no free capacity in the cluster. Generally

speaking, jobs of the same priority usually have the same fair

share, and job schedulers will always assign newly freed slots

to jobs that occupy fewer slots than their share. Because slots

are often freed up quickly in large clusters, this policy can

achieve Max-Min fairness [8]. Lastly, schedulers can also use

preemption to improve system performance, such as to kill a

non-local task and move it to a node with local data, or to

terminate outlier tasks and restart them again [3][9].

However, we have found in a MapReduce cluster that ex-

ecutes heterogeneous workloads, the preemption policy men-

tioned above can greatly delay the completion of long running



jobs, resulting in a significant waste of resources. During our

research experiments and in particular our experience with

Google’s production clusters, from time to time we have

observed some tasks that have long running time are killed

repeatedly when large production jobs arrive. Specifically, the

arrival of a large production job can significantly cut down the

share of each non-production job, resulting in large number of

tasks being preempted. Since each production job usually has

short response time, after its completion the low-priority jobs

are allowed to launch more tasks again. But before a long

task can finish, it is often killed again when the next large

production job arrives. Consequently, jobs consisting of these

long tasks are heavily delayed and the resources allocated

for their execution are wasted. This may partly explain why

preemption is disabled in the default deployment of Apache

Hadoop fair scheduler [10]. However, simply disabling pre-

emption eliminates all the aforementioned benefits. Hence, we

believe it is necessary to carefully examine the negative impact

of preemption and mitigate it. Specifically, the contributions

of this paper are as follows:

1) We identify and analyze the situation where preemption

can significantly prolong the job completion time under

heterogeneous workloads. We also propose a simple so-

lution that can be combined with existing job schedulers

to address this problem.

2) We implement our solution on top of Hadoop fair

scheduler [10] and evaluate it in Amazon Elastic Com-

pute Cloud (EC2) [11] under data intensive and mixed

workloads that are consistent with the statistics shown

in recent publications. Experiments show by using our

method, system normalized performance improves by

15% on average during busy periods. Because system

capacity is designed based on service demands during

busy periods, even a few percent of improvement in the

efficiency of a cluster consisting of tens of thousands of

nodes can save millions of dollars a year [9].

The rest of this paper is as follows. Section II provides a

brief introduction to MapReduce and Hadoop Job Scheduler.

Section III discusses heterogeneous nature of MapReduce jobs

and their arrival rates in several production clusters. Section

IV analyzes the situations where preemption can significantly

increase job completion time of long-running jobs. We then

propose our solution in Section V. In Section VI we outline our

experimental design and results of evaluation. After reviewing

related work in Section VII, we conclude in section VIII.

II. MAPREDUCE AND HADOOP JOB SCHEDULING

This section presents a brief introduction to MapReduce

and Hadoop job scheduling mechanism. We will also describe

the terminologies that will be used throughout the paper.

Essentially, MapReduce and Dryad exploit a well-known de-

sign pattern: divide and conquer. A MapReduce or Dryad job

consists of two types of tasks: map and reduce tasks. Original

input is divided into multiple small blocks and are processed

by map tasks, resulting in a set of intermediate key/value

pairs. The reduce tasks then combine all intermediate values

Table I
CDF OF MAPREDUCE / DRYAD JOB RESPONSE TIME AT FACEBOOK, THE

INTERNET COMPANY AND MICROSOFT

(a) Execution Trace of a Hadoop Cluster at Facebook

% Jobs 40% 50% 60% 70% 80%

Running Time (s) 55 90 120 150 350

% Jobs 90% 95% 98% 99% 99.5%

Running Time (s) 650 1200 3000 5000 >10000

(b) Execution Trace of a Hadoop Cluster at the Internet Company

% Jobs 40% 50% 60% 70% 80% 90%

Running Time (s) 45 80 30 190 450 650

(c) Execution Trace of Microsoft Research Cluster

% Jobs 18.9% 28.0% 34.7% 51.3% 72.0% 95.7%

Running Time (min) 5 10 15 30 60 300

associated with the corresponding keys to produce the final

output. Tasks are executed in parallel on multiple machines,

and every single task can be killed and started independently.

Apache Hadoop [12] is the most popular open-source im-

plementation of MapReduce. It consists of one Job Tracker

that receive job submissions from users, and multiple Task

Trackers that actually execute tasks. At run-time, task trackers

report the status of tasks and computing resources to the Job

Tracker in heartbeats every few seconds, and the Job Tracker

uses a job scheduler to assign tasks to the Task Trackers.

III. HETEROGENEITY OF WORKLOADS IN PRODUCTION

MAPREDUCE CLUSTERS

Recent publications [3-7] have reported workload char-

acteristics in production clusters at Microsoft, Google and

Facebook. Combing these traces, this section analyzes the

heterogeneity in MapReduce jobs in terms of job length, size,

and arrival rate.

A. Bimodal Behavior of Job Lengths

Table I shows the distribution of MapReduce and Dryad

job response time. The data are collected from a 600 node

dedicated Hadoop cluster at Facebook [7], a 40 node Hadoop

at an anonymous Internet Company (hereon referred to as IC)

[4], and a production cluster used inside Microsoft’s search

division [3]. Specifically, Table I(a) indicates that at Facebook

the median job length is 84s and the average length of jobs

is between 300-450s. Table I(b) shows that the median as

well as average job response times at IC are similar to those

at Facebook. In the Microsoft’s research cluster, the median

job is approximately 30 minutes, as shown in Table I(c). The

average job lengths at both Facebook and IC are similar to

Google’s statistic of 395s [1], while significantly shorter than

the average length of jobs in Microsoft’s research cluster. From

Table I, it is evident that most jobs in current cloud computing



Table II
CDF OF NUMBER OF MAP TASKS IN A HADOOP CLUSTER AT FACEBOOK

% Jobs 39% 55% 69% 78% 84% 90%

Num. of Maps 1 2 20 60 150 350

% Jobs 94% 97% 98% 99% 99.5% Largest

Num. of Maps 500 1500 3065 3846 6232 >25000

clusters are short. However, in all three clusters there are long

jobs with running time at least 2 to 3 orders of magnitude

longer than running time of the short ones. Moreover, the

distributions of job response time show bimodal behavior, with

the transition region between 200 and 400 seconds at Facebook

and IC, and between 60 and 100 minutes at Microsoft.

Similar observations have been reported more recently by

Mishra et. al [5], who studied the workload characteristics in

Google’s cloud backend. Even though their dataset contains

non-MapReduce jobs, the workload characteristics reported

in [5] are still similar to what we can see in Table I.

Specifically, the duration of task executions follows a bimodal

distribution as tasks either have short or long running time.

Even though most tasks are short, long tasks are multiple

orders of magnitude longer than short ones.

B. Bimodal Behavior of Jobs Sizes

Now we turn our attention to the distribution of job size.

Table II describes the job size in terms of number of map

and reduces tasks at Facebook [7]. The number of map tasks

reflects the input file size, because in Hadoop clusters, the

number of map tasks is equal to the input file size divided

by the size of a block, which is normally 64MB or 128MB.

From Table II, it can be observed that most jobs have a small

number of map tasks. On the other hand, a small fraction

of large jobs have very large number of map tasks. In the

experimental workload used in [7], which is designed based

on the metrics of real workloads at Facebook, among 100 jobs

the 4 largest jobs accounts for 73% of total 26410 map tasks.

Figure 1 shows the number of map and reduce tasks per job

at IC. Around 40% jobs contain less than 10 map or reduce

tasks, but another 40% jobs have more than 100 map or reduce

tasks. Also, at both Facebook and IC, the smallest job only

contains one task, but a single large job can have up to tens

of thousands of tasks. Similar to job length, the distribution

of job sizes has a bimodal behavior [4].

Based on the above discussion, we know the difference

in job length and size can range across multiple orders of

magnitude. Statistically, if we add the running time of all the

jobs together, a few long jobs constitute a large faction of

total running time; and if we add up the number of all the

tasks, a few large jobs take a large proportion of the total

number of tasks. These characteristics also match what have

been observed at Google [5]: most resources are consumed

by a few jobs with long duration that have large demands for

CPU and memory.

Figure 1. CDF of number of map and reduce tasks in a Hadoop cluster at
Internet Company [4]

The aforementioned characteristics of MapReduce work-

loads share many similarities with what is already known

in traditional distributed computing systems. Harchol-Balter

[13] observed the workload in many real environments has

a mixture of job lengths and sizes spanning many orders of

magnitude. Typically there are many small jobs and a few

large ones. As another example, measurements have shown

that running time of Unix processes, sizes of files transferred

through the Web and stored in Unix file systems are with

heavy-tailed distributions [13][14][15].

C. Fluctuating Job Arrival Rates

Similar to the job size and length, the arrival rate of

MapReduce jobs is also highly variable from time to time.

In October 2009, the distribution of job inter-arrival times at

Facebook was first reported in [7]. Chen et al. [4] also studied

job inter-arrival times at Facebook and IC. For both companies,

inter-arrival time exhibits an on-off pattern according to the

time of the day. During day time the job arrival can be quite

intense, as around 40% of the time inter-job arrival time is

less than 10s. Consequently, the system is often very busy.

However, at nighttime, job arrival intervals can be very long.

In this case, most of the resources in the clusters become idle.

Combined with job characteristics discussed above, we can

further see that slot requests in clusters are even spikier than

job arrival rates. This is because the distribution of job size has

bimodal behavior, and therefore a large amount of requests of

computation slots will happen at the same time with the arrival

of large-sized jobs.

Fluctuating job arrival rate is also commonly seen in other

service systems like telecommunication networks and public

transport systems. For example, in VoIP networks, the traffic

during the busiest hour accounts for approximately 15 to 20

percent of the traffic for that day [16]. Similar measurements

have been reported for Telecommunications networks [17][18].

In these systems, the traffic intensity during the busiest periods

is 3 to 4 times higher than the average workload intensity.

IV. PROBLEM DESCRIPTION

Heterogeneity in MapReduce workloads raises new chal-

lenges for designing effective scheduling policies. As de-

scribed previously, although production MapReduce jobs only



account for a small percentage of total job population, they

are allowed to occupy a significant portion of resources in the

cluster. As resource requests of production jobs are very spiky

and they typically finish much faster than non-production jobs,

the amount of remaining resources not used by production

jobs (which will be evenly distributed to non-production jobs)

can change greatly according to their arrival and departure

rates. In this case, when a production job with large resource

requirements arrives, the scheduler will evenly preempt a

fraction of tasks from each non-production job. However, since

a production job usually has a short response time, many

resources will be freed upon its completion, allowing low

priority jobs to launch more tasks again. If this process repeats,

long running tasks of non-production jobs can potentially be

killed repeatedly. This problem is aggravated during busy

hours when large production jobs arrive regularly. Therefore,

the existing preemption policy used by MapReduce schedulers

can significantly delay the completion of long running jobs.

Consequently, the resources used by these jobs are wasted.

Let us use Facebook’s dataset (described in Section III) as

an example to illustrate the severity of this problem. In a 600
nodes cluster with 3100 map slots, the amount of map tasks of

3% of the jobs is larger than 50% capacity of the cluster, and

the amount of map tasks of 2% of the jobs is even larger than

the capacity of the whole cluster. According to Section III.C, if

the job inter-arrival time during busy periods is 5s (two times

the reported average speed), on average a large job will come

every 170s. If we assume 1/3 are production jobs, roughly

once every 500s a large production job will arrive. From Table

I(a) we can see that around 2% map tasks are longer than 500s
in Facebook’s dataset, and these map tasks will most likely be

killed repeatedly during busy periods. Although the percentage

of these tasks is small, as we have discussed, most resources

are consumed by a few jobs with long duration [5]. If we can

cut down wastage, the system performance will be improved.

V. MITIGATING THE NEGATIVE IMPACT OF PREEMPTION

To deal with the issue mentioned in Section IV, we propose

a technique called Global Preemption (GP) that is responsible

for selecting tasks to be preempted by job schedulers in

order to reduce the cost of preemption. The architecture

of GP is illustrated in Figure 2. The key idea behind GP

is to trade short-term fairness for better efficiency. In the

existing implementations of MapReduce schedulers, when a

large production job arrives, the scheduler will first calculate

the share of each job, and then kill overflowing tasks to release

slots when there is a shortage of slots to accommodate this

job. Here overflowing tasks refer to tasks of a job beyond the

share of this job. Usually a certain number of most recently

launched tasks of each job will be killed. With the GP policy,

instead of killing newly launched tasks of each individual job,

GP globally selects the most recently launched from all the

running tasks rather than from an individual job to minimize

the cost of preemption. When slots are freed up later, the job

scheduler will ensure jobs with the biggest deficiency to get

slots first. Here deficiency equals share of a job minus the

number of running tasks of this job. Even though GP prefers

Figure 2. The architecture of the Global Preemption based Scheduler

to keep long tasks running and normally selects short tasks

to be killed first, in our experiments we have observed that

the negative impact on fairness is very small, and in fact

most of the time short jobs will not be starved but instead

finish faster. By cutting down wastage due to running jobs that

will be repeatedly preempted, the resources available for non-

production jobs are increased and as a result jobs are speeded

up on average.

However, although GP does not hurt fairness for typical

MapReduce jobs, there are cases where long jobs can starve

short ones. There are two possible causes: (1) Production jobs

monopolize a large portion of slots and do not release them

for a long time; or (2) Long jobs are also large and take up

many slots. In both cases, we preempt long jobs when they

start to starve short jobs by monitoring the length of waiting

queue and busy status of clusters.

We define the following conditions for preempting over-

flowing tasks of a long running job: (1) the job must occupy

more slots than its fair share, and (2) the cluster is busy, for

example, > t% time of a period (e.g. 3 minutes) more than

p% slots are occupied; and (3) there are a lot of tasks to be

scheduled during this period, namely, the total number of slots

requested by the jobs in the queue is larger than ntask.

Regarding parameter t and p, we selected some intuitive

values such as 80% and 90% in our experiments, as it generally

is not difficult to judge the load degree of a cluster. More

sophisticated methods can be used to compute more precise

values in the future. The ntask changes with the actual size of

available resources. We present the following method to help

decide its value. Let T be a job’s response time which is the

sum of waiting time and actual service time, i.e:

T = Tqueueing + Tservice

Let W = E(T ), and in an ideal condition where waiting time

is zero, we have

Wideal = E(Tservice)

The ANP (Application Normalized Performance) [3] of a

job j is the ratio of j’s execution time under ideal conditions

to j’s execution time in the situation of interest. ANP is

an important metric because other metrics are dependent on



Algorithm 1 GP: Global Preemption

Input k: Number of tasks to be preempted

Output taskToPreempt: The set of tasks to be preempted

1: if now - lastPreemptCheckTime > preemptInterval then

2: lastPreemptCheckTime = now

3: if long jobs starve other jobs then

4: add tasks of long jobs to be killed into taskToPreempt

5: if |taskToPreempt| >= k then

6: return taskToPreempt

7: k = k-|taskToPreempt|

8: reverse order running tasks by start time

9: add most recent k tasks into taskToPreempt

10: return taskToPreempt

ANP (Please refer to Table IV). If we want to maintain

the quality of service above a certain level, say, ensuring the

average ANP > π(0 ≤ π ≤ 1) during busy hours, i.e.:

E(ANP ) =
Wideal

W
> π

According to Little’s formula [19], for any G/G/c queues,

we have L = λW , and

Lqueuing = λWqueuing = λ(W −Wideal) (1)

Here L is the mean number of jobs in the system, Lqueuing is

the mean number of jobs in the queue and λ is the job arrival

rate. By (1), we have:

E(ANP ) =
L− Lqueuing

L
(2)

From (2) we can see that in order to get an average ANP

larger than π, the mean length of the queue must be less than

L(1−π). For example, if we require during idle times π = 0.5,

the mean length of the queue must be less than the size of

available resources, in this case, the number of slots available

for non-production jobs.

When starvation occurs, a simple solution is to kill all

the overflowing tasks. However, this naïve approach can

cause excessive preemptions. A better method is to perform

preemption according to the busy degree of the cluster. In

our experiments, we use a simple heuristic timeout parameter

Ttimeout that corresponds to the load degree of the cluster. If

during this period we continually observe tasks being starved,

we can then kill all the overflowing tasks. Before that, only a

proportion (e.g. 50%) of them is killed. Finally, one may ask

how to determine which tasks are long. Previous work has

investigated this problem and proposed a good solution. See

[9] for example.

Finally, Algorithm 1 summarizes the GP policy. The pre-

empt interval is usually short, e.g. 10s, to ensure production

jobs acquire slots quickly. GP is designed to work with any

job scheduler that supports preemption.

VI. EVALUATION

We have implemented GP on top of Hadoop Fair Scheduler

(HFS) [10], specifically on the version with delay scheduling

[7]. We evaluated GP plus HFS (with preemption disabled),

and compared it with HFS (with preemption enabled) in

Amazon EC2. This section describes our experiment setup as

well as the evaluation results.

A. Experiment Cluster

We use 101 standard large Linux instances, in which one is

configured as Hadoop master, and the other 100 are configured

as Hadoop slaves. Each instance has 7.5GB of RAM and 4

EC2 Compute Units, running 64-bit Fedora. We configure each

Hadoop slave to have 4 map slots and 2 reduce slots, which

means the test cluster has 400 map slots and 200 reduce slots

in total. We first create an Amazon EBS-backed AMI (Amazon

Machine Image) that contains all the information necessary

to boot instances of our software and configuration. We then

launch 101 instances of this AMI. Each instance has a 15GB

EBS (Elastic Block Store) volume as its boot device, and 2

disks with total capacity of 850 GB as local instance storage.

The input data files are striped across both local storages. The

instances are able to send 1 Gbps data to each other. To support

deployment of Hadoop, we then ran a Python script to enable

the master node to have all the necessary information about

the slave nodes, and any node can SSH to any other node

without a passphrase.

B. Experiment Applications and Workloads

We adapted the experiment workloads and settings from

that of [7], which is designed based on the metrics of real

workloads at Facebook. However, we also modified their

setup in several ways to better emulate the heterogeneity of

workloads, and to make it compatible with Hadoop 0.21.

Specifically, the applications used in our experiments were:

1) Grep. This program scans through a huge number of

records searching for a relatively rare pattern. It redis-

tributes its input data between nodes and is inherently

I/O intensive.

2) Aggregate. This program calculates the total ad-

vertisement revenue generated for each IP address in

the user visits records. Since there are many datasets

containing a particular IP address, the reduce tasks are

communication intensive.

3) Join. This program consists of two sub-applications

that perform a complex calculation on two data sets.

It is used to identify the user who generated the most

advertisement revenue and the average PageRank of

their pages. This program is rather mixed.

To create CPU-heavy jobs, like [7] we modified the Grep

job to run a compute-intensive function on input data and still

output only a few records. Moreover, because we can only use

a limited number of applications in the experiments, in order

to make the task lengths span across the entire distribution, we

add compute-intensive or I/O intensive user defined function

(UDF) into these applications to simulate tasks of different

lengths and thus make the generated workloads closer to the

statistics discussed in Section III.



Regarding the workload, we extend the 100 jobs used in [7]

to 130 so that we can differentiate jobs in the long-tailed area

of distribution. The experimental workload is shown in Table

III. Each row represents jobs that have the same size of input

in terms of number of map tasks. For example, in the first

row there are 49 jobs and each contains one map task whose

service time ranges from 100s to 600s.

We use each one of the three experimental applications with

a variety of inputs. In our experiments, an application instance

refers to a particular application with a particular data set

as its input. We run two types of workloads and each has

a list of application instances. The I/O intensive workload

contains 130 application instances, and the mix workload

contains 160 application instances because a Join application

instance will spawn three consecutive jobs. Among each of the

workloads, we select a medium size job that has 250 maps as

a heavy-tailed long job. The submission schedule is generated

randomly, and experiments that compare schedulers running

jobs in the same order. Specifically, the two types of workloads

are:

1) I/O intensive: This type of workloads are presented by

Sort and Grep jobs. These jobs are typically data-

intensive, and a single map of such a job needs less

than 6s for processing a 128MB block in our experi-

ment. Similar to [7], we use different Grep instances to

represent our I/O intensive workload.

2) Mixed: The mixed workload consists of: 25 jobs contain-

ing 15554 maps which are I/O bound Grep instances;

56 jobs containing 1589 maps which are CPU bound

Grep instances; 34 jobs containing 10608 maps which

are Aggregate instances; and 15 jobs which are Join

instances. The heavy-tailed long job is an application

instance of the CPU bound Grep program.

C. Evaluation Metrics

We use the metrics described in Table IV to evaluate the

performance of our proposed GP policy. These metrics are

originally described in [3]. However, different from [3], we

use the average response time instead of makespan (i.e. the

total time taken by an experiment until the last job completes)

as the evaluation metric, because the average response time is

more appropriate for capturing the system throughput in our

experiments.

D. Experiment Settings

Since the computing the metrics in Table IV requires

determining the ideal running time of each job, we start by

estimating it by giving each job exclusive access to the cluster.

Once the ideal running time of each job is determined, the

next step is to evaluate the performance of current preemption

policy (HFS) and our proposed GP policy (HFS+GP, or GP

for short) during busy and idle hours under I/O intensive

and mixed workloads. We conduct six groups of experiments

during busy periods and four during idle times. In these

experiments, we select 30% jobs as production jobs whose

Table III
DESIGN OF EXPERIMENTAL WORKLOAD

No. of
Jobs

Job input size in ter-
ms of no. of Maps

Job length in terms of average service time of
tasks

49 1 100 seconds (16 jobs), 160 seconds (16 jobs),
300 seconds (11 jobs), 600 seconds (6 jobs)

21 2 100 seconds (7 jobs), 160 seconds (7 jobs),
300 seconds (4 jobs), 600 seconds (3 jobs)

18 10 100 seconds (7 jobs), 160 seconds (6 jobs),
300 seconds (3 jobs), 600 seconds (2 jobs)

11 50 100 seconds (4 jobs), 160 seconds (4 jobs),
300 seconds (2 jobs), 600 seconds (1 jobs)

8 100 100 seconds (4 jobs), 160 seconds (3 jobs),
300 seconds (1 jobs)

8 250 30 seconds (3 jobs), 60 seconds (2 jobs),
100 seconds (2 jobs), 2500 seconds (1 jobs)

5 400 30 seconds (2 jobs), 60 seconds (2 jobs),
100 seconds (1 jobs)

5 800 12 seconds (1 jobs), 30 seconds (2 jobs),
60 seconds (2 jobs)

2 1500 8 seconds (1 jobs), 12 seconds (1 jobs),

1 3000 20 seconds

1 5000 6 seconds

1 8000 5 seconds

Table IV
EVALUATION METRICS

Metric Definition

System Normalized
Performance (SNP)

SNP is the geometric mean of all the ANP
values. Larger values of ANP and hence SNP
are better, where a value of 1 is ideal.

Slowdown norms The two norms used as evaluation metrics are:

l1 =
1

N

∑

j

σj and l2 =

√

√

√

√

1

N

∑

j

σ2

j

where σj = 1/ANPj and N is the number
of jobs in the experiment. Smaller values of
slowdown norms are better, where a value of
1 is ideal.

Unfairness Unfairness is coefficient of variation of the
ANPs. Smaller value is better, where a value
of 0 is ideal.

Average Response
Time

The total response time of all the jobs divided
by the number of jobs

share is 80% of total capacity and the others as non-production

jobs whose minimum share is 20% capacity of the test cluster.

We assume jobs of the same type have the same priority. Jobs

of the same priority have the same resource share.

The job inter-arrival time is exponential with a mean of

λ = 30s and λ = 80s during busy and idle periods

respectively. Generally, the job arrival rate will not drop

to zero instantly after busy periods, hence after we have

submitted 130 jobs, we continuously submit 25 jobs but the



Figure 3. Performance metrics during busy hours under I/O and mixed workload. Here p = x% means the long job arrives after x% of other jobs. The
system normalized performance is improved by 15% by using GP.

average job arrival rate drops to λ = 80s. The evaluate

results do not include the performance of the last 25 jobs.

According to Hadoop’s manual and our custom settings, we

set the preemption interval to be 20s to check for tasks to

preempt. Because our test cluster is small compared to size of

experimental jobs, therefore sometimes the long waiting queue

is only caused by arrival of a single large-sized job. For this

reason, if more than 90% of the waiting queue is attributed

by a single job, we don’t kill tasks of the long job to release

slots. Finally, we control the long job arrive in the 1st, 66th,

and 92nd place and other jobs arrive randomly. The later the

long job arrives, the less impact it has on other jobs.

E. Experiment Results

During busy periods: Because only 30% are production

jobs and the guaranteed share is high, we observe that pro-

duction jobs come and go quickly in our experiments. Further-

more, non-production jobs occupy almost 90% of the cluster

capacity most of the time. When a long job arrives, because the

number of jobs in the system fluctuates, it gradually occupies

180-250 slots in less than 150s after its arrival under I/O

intensive workload, even during busy periods. But we also

observe that it takes longer to launch this number of tasks

under mixed workload when the speed of releasing slots is

lower.

When a large-size production job (above 250 tasks in this

case) arrives, the total share of non-production jobs shrinks

to its minimum value of 20%. Because the remaining slots

are equally shared by all the running jobs, a number of tasks

of the long job are killed when using the current preemption

policy (HFS). Since production jobs complete quickly, several

minutes later many long tasks are launched again when slots

become available. But with the arrival of the next large produc-

tion job, a large fraction of these long tasks are killed again.

This really wastes resources especially when the workload is

high and competition for resources is rather intense. But when

using GP, short tasks are killed first and this makes the number

of killed long tasks reduces to a minimum level.

In all the experiments, we observe only once the long

job starving other jobs and the system throughput is greatly

reduced because of this. In this scenario, two large non-

production jobs, with 800 and 250 map tasks respectively,

arrive shortly after a large production job has been launched.

As a result, there is a huge number of requests for time slots.

After 2 periods (6 minutes in our test) the overflowing tasks

of the long job are preempted to make room for other jobs by

GP. However, the tasks of the long job are not preempted any

more before they finish.

The detailed results are shown in Figure 3. It can be

observed that the System Normalized Performance (SNP) im-

proves by around 15% on average. The SNP is generally better

under I/O intensive workloads because the mixed workload

contains more jobs. From this we can see that the improvement

of SNP by using GP is greater when the system is under higher

workload. With respect to fairness, we found that GP slightly

outperforms HFS. We believe the reason is that the system

load varies even during a short period, and GP speeds up

jobs at the busiest times. As a result, the variations in job

completion time become smaller. The average response time

and slowdown norms reflect the average system performance

and are consistent with SNP as we expected.

During idle periods: Among the four groups of experi-

ments for idle periods, we observe that both policies deliver

similar performance. This is because the job arrival rate is low

in these experiments, as most of the time there are less than 5

jobs in the system. Most jobs finish quickly and therefore there



are many idle slots in the cluster except when large jobs arrive.

Thus, when large-sized production jobs arrive the number of

tasks to be killed is small. The long job completes faster by

using GP, but generally no matter what policy we use, the

average values of performance metrics show little difference.

We omit the corresponding figures due to space constraints.

VII. RELATED WORK

Heterogeneity is a common characteristic in production

MapReduce clusters, and ignoring it can lead to severe degra-

dation of system performance. As a result, there have been

many recent studies that attempt to deal with this issue. In

this section we survey some of the representative works in

this area.

In the original MapReduce paper, Dean et. al. noted that

speculative execution can improve job response time by 44%
[1]. Hadoop job schedulers speculatively re-execute tasks that

appear to be stragglers, tasks lagging behind other tasks of

a particular job. However, Hadoop job scheduler implicitly

assumes cluster machines are homogeneous and tasks make

progress linearly, and decides when to speculatively re-execute

tasks that appear to be stragglers based on these assumptions.

Zaharia et. al. [20] demonstrated that Hadoop’s scheduler

can cause severe performance degradation in heterogeneous

clusters. They designed a new scheduling algorithm, Longest

Approximate Time to End (LATE), that is robust to het-

erogeneity in cluster machines. The LATE scheduler uses a

simple heuristic to estimate the progress of each task and

launch speculative copy of tasks that have longest time to end

compared to other tasks of the job on fast machines. LATE has

been incorporated into Hadoop and indeed we have observed

speculative tasks when there are free slots in the cluster during

our experiments.

Heterogeneous machines and data skew can cause stragglers

that significantly prolong job completion in an operational

Microsoft MapReduce cluster. Ananthanarayanan et. al. [9]

presented Mantri, a system that monitors tasks and selectively

kills outliers using cause- and resource-aware techniques. One

of the root causes for outliers is contention for resources,

including machines and network bandwidth. Mantri preempts

and restarts a task elsewhere if its remaining time is so large

that there is a more than even chance that a restart would finish

sooner. The "kill and restart" scheme drastically improves the

job completion time without requiring extra slots. Compared

to LATE, Mantri considered the impact of network congestion

on tasks progress, which makes it achieve better performance

since most jobs are data intensive in MapReduce clusters. We

also observed in our experiments that the network bandwidth

between nodes could be as low as 40 − 50Kbps in Amazon

EC2, although the network bandwidth can be up to 10Mbps

when the cluster is not busy. Considering this, we plan in

the future to integrate Mantri’s method into GP and test it in

Hadoop.

In traditional distributed and parallel systems, specially

designed methods have also been proposed to deal with het-

erogeneity in workloads. Harchol-Balter et. al. [13] discovered

that all workloads had a tail of long-lived jobs, i.e., the dis-

tributions have high variance, but an exponential distribution,

which was used before, with the same mean would have lower

variance. In [21], the authors proposed an algorithm that tries

to assign jobs with similar length (for example, between 10

and 30 minutes) to selected hosts, achieving load balancing

and significant reduction in job completion time. Through

experiments, they showed that their algorithm is at least two

orders of magnitude faster than other algorithms. However,

the length of each job is assumed to be known in advance

in their work. Later, in [15] Harchol-Balter presented a new

method for situations where lengths of jobs are not known

in advance. This method first assigned new jobs to hosts that

were reserved for shortest jobs. If a job did not finish within a

certain amount of time, it was killed and moved to a host for

longer jobs. If the running time of this job continues to exceed

time limit of that host, this job was killed again and assigned to

another host until it finally reached the host that was supposed

to accommodate jobs of its size. Provided the system load is

not high (< 0.5), the algorithm in [15] is several orders of

magnitude better than all the other techniques with respect to

both mean response time and mean slowdown. However, these

traditional systems are different from MapReduce clusters

as jobs running on these traditional systems do not spawn

multiple tasks to speed up their execution. Consequently, these

solutions do not apply to MapReduce scheduling.

VIII. CONCLUSION

Modern MapReduce clusters are often shared by multiple

types of jobs in order to improve resource utilization. Moti-

vated by the problem caused by heterogeneity in workloads,

we have analyzed the limitation of the preemption policy in

MapReduce schedulers. This limitation can incur significant

performance penalty when the load of the cluster is not high.

To address this problem, we proposed a simple solution that

can be combined with existing job schedulers. Experiments

carried out in Amazon’s Elastic Compute Cloud show our

method can improve system normalized performance by 15%
during busy periods by effectively avoiding costly preemption

while preserving fairness.
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