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ABSTRACT
Intrusion Detection Systems (IDSs) are designed to monitor
network traffic and computer activities in order to alert users
about suspicious intrusions. Collaboration among IDSs al-
lows users to benefit from the collective knowledge and infor-
mation from their collaborators and achieve more accurate
intrusion detection. However, most existing collaborative in-
trusion detection networks rely on the exchange of intrusion
data which raises privacy concerns. To overcome this prob-
lem, we propose SMURFEN: a knowledge-based intrusion
detection network, which provides a platform for IDS users
to effectively share their customized detection knowledge in
an IDS community. An automatic knowledge propagation
mechanism is proposed based on a decentralized two-level
optimization problem formulation, leading to a Nash equi-
librium solution which is proved to be scalable, incentive
compatible, fair, efficient and robust.

1. INTRODUCTION
Internet intrusions have become more sophisticated and

difficult to detect. With the increasing complexity of soft-
ware and systems, hackers can easily explore exposed soft-
ware vulnerabilities and compromise the host computers.
Not only private data and identify information are harvested
from the compromised computers, hackers can also launch
attacks to other computers such as Distributed Denial of
Service (DDoS) attacks using the compromised computers.
As a counter measurement, Intrusion Detection Systems

(IDSs) are designed to monitor network traffic and computer
activities by raising intrusion alerts to network administra-
tors or security officers. Traditional IDSs work indepen-
dently from each other and rely on downloading new sig-
natures or detection rules from the corresponding security
vendor’s signature/rule base to remain synchronized with
new detection knowledge, such as Snort [1]. However, the
increasing number and diversity of intrusions render it not
effective to rely on the detection knowledge from a single
vendor, since not a single vendor can cover all the possible
intrusions due to limited human resource and available tech-
nology. Collaborative intrusion detection networks (CIDNs)
provide a platform for IDSs to take advantage of the col-
lective knowledge from collaborators to improve the overall
detection capability and accuracy. However, most existing
CIDNs rely on the sharing of intrusion data with others,
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which raises privacy concerns. Instead, sharing detection
knowledge such as malware signatures and intrusion detec-
tion rules, causes less privacy concern.

In reality, expert IDS users, including security analysts,
network administrators, and security system programmers,
create their own detection rules or customize existing ones to
improve detection accuracy specifically for their individual
environment [3]. A new detection rule created by one user
may be adopted directly by another user if they have similar
network/computer configurations. Sharing rules among a
large group of users can be an effective way to improve the
overall security among all users.

In this work, we leverage the benefit of intrusion detection
knowledge sharing and propose SMURFEN, a knowledge-
based collaborative intrusion detection network, where in-
trusion detection knowledge is shared among users who share
similar interests in the community. The system is built upon
a peer-to-peer overlay network for its scalability. An auto-
matic knowledge dissemination mechanism is used to allow
peers effectively share detection rules with others without
overwhelming their receiving capacities. We demonstrate
using simulation that the proposed rule sharing mechanism
can effectively improve the overall security of the community
and provides incentive-compatibility and fairness to the col-
laborators.

2. THE SMURFEN FRAMEWORK
The SMURFEN framework is built upon a Chord [4] peer-

to-peer (p2p) communication overlay as illustrated in Fig.
1. Each node also maintains a list of neighbors to commu-
nicate and exchange intrusion detection rules with. We call
such a list the acquaintance list. Note that the acquain-
tance relationship is symmetric, i.e., if node i is in node j’s
acquaintance list, then node j is in node i’s acquaintance
list.

A user on the receiver side evaluates rules sent from its
neighbors and may choose to “accept” or “reject” the rule.
The decision is then recorded by a Bayesian learning algo-
rithm [5] to update the trust value of the sender. False
positives revealed afterwards will be treated as double re-
jections in the trust calculation. The trust from i to j is
the probability that the rules from the sender i are useful to
the receiver j. The higher a collaborator’s trust, the more
helpful it is in collaboration. The decision of accepting a
rule or not is also sent to a corresponding rule feedback col-
lector. The feedback collector is a random node in the p2p
network, determined by a hashed key of the rule ID. The
corresponding hosting node holds the feedback of the rule.



Figure 1: SMURFEN design of 8 nodes on a Chord
ring: nodes 3 and 7 receive a rule from node 1. The
feedbacks are collected by node 6.

Inexperienced users can check feedback from others before
they make their decisions whether to accept the rule or not.
To prevent the man-in-the-middle attack, the communi-

cation between each pair of nodes is signed by the private
key of the sender. When a new node joins the network, it
creates a public/private key pair (Ke,Kd), and registers a
new ID into the p2p network by sending a join request to
any node in the network. After that, the new node sends
connection requests to random nodes in the network and ac-
quaintance relationships are established when the requests
are accepted. When a node leaves a network, it is not re-
quired to send a notification to other nodes. When a node
does not receive response from an acquaintance, it automat-
ically sets the acquaintance status to be inactive and seeks
new replacement.
A SMURFEN system feedback collectors is shown in Fig.

2, where rule author “A” propagates a new rule i to its ac-
quaintances R1 and R2. Both rule receivers can retrieve and
send feedback from/to the feedback collector C. Replicas
collectors can be used to improve the availability of feedback
collector service. All feedbacks are signed by their authors
to prevent from malicious tampering.

Figure 2: Feedback Collection in SMURFEN. The
malicious node M attempts to leave fraudulent feed-
back but was blocked since it does not match the
Bloom filter on the feedback collector.

Moreover, to avoid feedback fraudulence, each feedback
collector maintains a Bloom filter [2] of the authorized nodes
list. The rule author hashes all of its acquaintances into a
Bloom filter and passes it to the feedback collector. Only
nodes with hashed IDs matching the Bloom filter are allowed
to leave feedback on the collector. The use of Bloom filter
not only reduces the communication overhead to transfer
long acquaintance lists, it also avoids unnecessary informa-
tion leaking from the rule author.

3. KNOWLEDGE SHARING AND PROPA-
GATION MODEL

Intrusion detection knowledge propagation mechanism is
an essential part of the SMURFEN system, where IDSs de-
cide the propagation rates to their neighbors. An appro-
priate propagation design will not only provide incentive-
compatibility which discourages free-riders and rewards con-
tributors, it will also provide fairness to all participants and
be robust to malicious insiders. In this work, we use a game-
theoretical approach for each IDS to decide its rule propa-
gation rates and we prove that the system yields to a Nash
equilibrium.

We model our system based on a two-level optimization
problem, i.e., a public utility optimization together with a
private utility optimization. Each IDS i controls two deci-
sion variables, namely, r⃗i and R⃗i. r⃗i is the rule propagation
rate from node i to its neighbors. To prevent from denial of
service attacks from malicious neighbors, a node i also sets
a requested sending rate R⃗i, which sets the upper bound of
the sending rates from all neighbors. At the lower level, a
node i solves the public optimization problem (PPi) where
it chooses r⃗i to maximize the aggregated satisfaction levels
of its neighbors. At the upper level, a node i determines R⃗i

to solve a private optimization problem (Pi) to maximize
the total return benefit from all neighbors. The choice of
R⃗i at the upper level influences the decision-making at the
lower public optimization level.

The public optimization problem (PPi) seen by each node
i, i ∈ N , is given by

(PPi) max
r⃗i∈Rni

Ur
i (r⃗i) :=

∑
j∈Ni

TjiSij(rij) (1)

∑
j∈Ni

rij ≤ Mi, (2)

rij ≤ Rij , (3)

0 ≤ rij ≤ r̂i, (4)

where Sij : R → R is the satisfaction level of node j in
response to the propagation rate rij of node i. We let Sij

take the following form

Sij(rij) := Tij log

(
1 +

rij
Rij

)
. (5)

The concavity and monotonicity of the satisfaction level in-
dicate that a recipient becomes increasingly pleased when
more rules are received but the marginal satisfaction de-
creases as number of received rules increases. The parame-
ter Tij in (5) suggests that a node j is more content when
the trust or usefulness of rules sent from node i is high.

The objective function Ur
i : Rni → R in (1) aggregates

the satisfaction level Sij of node j by the trust factor Tji.
The utility Ur

i can be viewed as a public altruistic utility in
that a node i seeks to satisfy its neighbors by choosing rule
propagation rates r⃗i. The problem (PPi) is constrained by
(2) in that the total sending rate of a node i is upper bounded
by its communication capacity. The additional constraint
(4) ensures that the propagation rate does not exceed its
rule contribution rate r̂i. Note that the constraint (3) is
imposed by its recipient j while constraint (4) is set by node
i itself.

A node i has another degree of freedom to choose its level
of requested sending rate Rji of its neighbors. Rji states the
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maximum rule propagation rate from node j to i that node
i can accept. In contrast to the public utility optimization,
the optimization at this level is inherently non-altruistic or
private. The objective of a node i is to choose R⃗i so that its
private utility Ub

i : Rni
+ → R is maximized, i.e.,

(Pi) max
R⃗i∈Rni

+

Ub
i (R⃗i) :=

∑
j∈Ni

Tji log(1 + r⋆ji), (6)

subject to
∑

j∈Ni
Rji ≤ Qi, where Qi is the total receiving

capacity; r⋆ji is the optimal solution attained at (PPi). The
log function indicates that a node intends to maximize its
own level of satisfaction by choosing an appropriate level of
request. The request capacity is imposed to prevent exces-
sive incoming traffic as a result of high level of requests.
In a collaboration network, each node i responds to other

nodes by choosing optimal propagation rates r⃗i and request
rates R⃗i. The two-level optimization problem leads to a
game-theoretic frameworkG := ⟨N , {r⃗i, R⃗i}i∈N , {Ur

i , U
b
i }i∈N ⟩.

In [5], we have shown the existence of Nash equilibrium that
satisfies the property that r∗ij = R∗

ij , ∀i, j ∈ N .

4. EVALUATION
We simulate a network of n nodes. Each node i ∈ {1, 2, · · · , n}

is labeled with an expertise level ei ∈ [0, 1], ∀j ∈ N , which
is the probability that a rule propagated by node i is ef-
fective for intrusion detection. Note that the higher the
expertise level, the higher the trust value. Each node i con-
tributes detection rules to the network following a Poisson
distribution with an average arrival rate r̂i. Tij is learned
by j through past experiences using the Bayesian learning
method described in [5]. The rule propagation follows the
two-level game design described in Section 3. In this section,
we show some selected results on propagation efficiency, in-
centive compatibility, fairness, and robustness of the system.
Fig. 3 shows the propagation efficiency for both the mail-

ing list and SMURFEN system. We define the propagation
efficiency to be the percentage of useful rules that nodes
receive. We see that when using the SMURFEN system,
the information qualities received by both the low-expertise
and the high-expertise nodes are significantly improved com-
pared to the mailing list method. The high-expertise nodes
receive higher quality rules than low-expertise nodes, which
reflects the incentive-compatibility of the system.
Fig. 4 shows that uniform gossiping provides no incentive

to nodes with higher trust values. On the other hand, the
best neighbor propagation scheme provides incentive but no
fairness. Nodes of the same trust values may have very dif-
ferent return benefit. This is because under the best neigh-
bor mechanism, nodes form collaboration groups. Nodes of

the same trust value may join different groups. Since the re-
turn benefit largely depends on which group a node belongs
to, nodes with the same trust values may have significantly
different return benefit. On the contrary, SMURFEN has a
continuous concave utility on the return benefit over trust
values. It ensures incentive compatibility as well as fairness.

Fig. 5 is to demonstrate the robustness of the system in
the face of insider denial-of-service attacks. We can see that
the influence of a node is bounded in the system. This is
because the SMURFEN system enforces propagation agree-
ments between each pair of nodes. Each node sets a rule
propagation limit to all its neighbors using the two-level
game (see Section 3). Therefore, when a node intends to
launch a DoS attack, the amount of rules it is allowed to
send to others is bounded by the limits set by its neighbors.
Nodes sending excessive traffic to neighbors will be revealed
as potential malicious nodes, and thus removed from the
neighbor list of others.

5. CONCLUSION
We have introduced a peer-to-peer rule sharing framework

called SMURFEN for collaborative intrusion detection and
used a game-theoretic model for its protocol design. We have
shown that our system effectively improves the system-wide
intrusion detection accuracy, and has the properties of in-
centive compatibility, fairness, scalability, and robustness to
denial-of-service attacks. By simulation, we have corrobo-
rated these important CIDN properties. As future work, we
intend to show system robustness to different insider attacks.
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