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Introduction

- Cloud computing is becoming a key component of today’s
IT infrastructure

- Characteristics of Cloud computing
- Extremely large scale infrastructure and workloads

- Diversity in workload composition
- User facing vs. batch applications (e.g. MapReduce)

- Different performance objectives

- Workload management becomes a challenging problem
in cloud computing environments

- Need to understand the impact of management activities on
workload performance

- E.g. scheduler change and capacity upgrade



-
Motivation

- Using performance benchmarks to assess the impact of
management activities

- Existing approach: use historical traces as performance

benchmark

- Advantage: high accuracy
- Disadvantage: expensive; only simulates performance in the past
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-
Motivation

- Need to construct workload models

- In this work, we create a workload model of task usage
shapes that describes task resource consumption at run-
time

- The accuracy of our model is evaluated by its ability to
reproduce the performance characteristics of real
workloads

- Key performance metrics: Task wait time and Resource utilization

- Our Previous work
- Workload characterization at a medium-grained level’

- Not clear if the model is sufficient for predicting workload
performance

"Towards Characterizing Cloud Backend Workloads: Insights From Google Compute
Clusters," A. Misra et al., Sigmetrics Performance Evaluation Review, 2010.
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Dataset Description

Compute | No. of Type 1 Type 2 Type 3 Type 4
Cluster machines | (%) (%) (%) (%)

10000s 3.12 0.26 3.14 93.47
B 1000s 1.46 0.86 2.52 95.16
C 1000s 4.54 0.34 4.67 90.45
D 1000s 5.86 2.42 31.77 59.95
E 1000s 39.26 1.48 34.27 24.99
F 10s 1.23 0.2 72.93 25.64

- Workload traces from 6 clusters for 5 days
- 4 types of tasks

- Type 1: high priority user-facing tasks

- Type 4: low priority batch tasks

- Type 2 and 3 stand between Type 1 and Type 4
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Experiment Methodology
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Characteristics of Performance Metrics
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Workload Characteristics

- Most of the tasks have low coefficient of variation
- CPU has the highest CV, but mean is low

- This suggests that we can simply use the mean usage as a
model for capturing workload characteristics

- We call this model the mean usage model
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Evaluating the Mean Usage Model:
Resource Utilization
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The mean model accurately reproduces resource utilization in each
compute cluster.



Evaluating the Mean Usage Model: Task
Wait Time
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-
Analysis of Simulation Results

- The mean usage model

- Performs well for predicting resource utilization for all resource
types (5% error)

- Performs moderately well for predicting task wait time (10 - 20%
error on average)

- Interpreting model errors
1. Understand the impact of utilization on performance metrics

2. Correlate estimation error with theoretical model error (i.e., CV of
task usage shapes)



Analy5|s Result for Task Walt T|me

Task Wait Time [Seconds)

g 8 8

:

:

B
o

8

1

Difference in Task Wait Time [Seconds)

o

8

20

8

3

3

=]

+ Compute Cluster A

* B Compute Cluster B
4 Compute Cluster C
» > Compute Cluster D
. # Compute Cluster E
N ® Compute ClusterF
* o
|
A ]
*
m A
» . °
nf
0 2 4 +] 8 10 12 14
1/(1-utilization)
+ Compute Cluster A
m Compute Cluster B
4 Compute Cluster C
- « Compute Cluster D
A& # Compute Cluster E
b g * ® Compute Cluster F
A
X
[ ] [ ] L ]
<3 e
o 2 4 [ 8 10 12 14

1/(1-utilization)

o o
@ g

Ratop of the Slopes
o
o
N

® Cluster D
i Cluster E |
S S S S R o _!
@ Custer A @ Cluster B
______________________ ._ _ﬂusteI_E _________________
@ dusterC
0.3 0.4 0.5 0.6 0.7 0.8

Average CV of the Bottleneck Resource

- Both task wait time and

difference in task wait time
grow exponentially with
utilization

- The ratio of growth rate

positively correlate with
average CV



Analysis Result for Resource Utilization
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- Utilization has low impact on model error utilization

- Correlating model error with CV of sum weighted by time
- Using the fact that variance of the sum is the sum of variance
- Short task has less impact on model error than long tasks



Conclusion and Future Work

- We studied the problem of deriving characterization
models for task usage shapes in Google’s compute cloud.
- For performance forecasting and analysis in hypothetic scenarios

- We show that simply capturing the mean usage of each
task (i.e., the mean usage model) is sufficient for
capturing workload performance in terms of resource
utilization and task wait time

- Future (on-going) work
- Capture more fine-grained workload characteristics
- Using clustering algorithms to find more accurate clusters.
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