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Abstract—The advent of cloud computing promises to pro-
vide computational resources to customers like public utit
ties such as water and electricity. To deal with dynamically
fluctuating resource demands, market-driven resource alloca-
tion has been proposed and recently implemented by public
Infrastructure-as-a-Service (laaS) providers like Amazam EC2.
In this environment, cloud resources are offered in distint
types of virtual machines (VMs) and the cloud provider runs
an auction-based market for each VM type with the goal of
achieving maximum revenue over time. However, as demand
for each type of VMs can fluctuate over time, it is necessary
to adjust the capacity allocated to each VM type to match the
demand in order to maximize total revenue while minimizing
the energy cost. In this paper, we consider the case of a simg|
cloud provider and address the question how to best match
customer demand in terms of both supply and price in order
to maximize the providers revenue and customer satisfactits
while minimizing energy cost. In particular, we model this
problem as a constrained discrete-time optimal control prdolem
and use Model Predictive Control (MPC) to find its solution.
Simulation studies using real cloud workloads indicate tha
under dynamic workload conditions, our proposed solution
achieves higher net income than static allocation strategs and
minimizes the average request waiting time.

Keywords-Cloud Computing; Resource Management; Model
Predictive Control

I. INTRODUCTION

VM services in order to best match the interests of the
customers. This problem is further complicated by the fact
that demand is time varying and often has large spikes [1].
A simple and naive solution currently adopted by most of
the laaS providers today is to specify a fixed price for
each type of VM services that does not change over time.
However, recent literature [2] has suggested that this flat-
rate charging scheme can lead to inefficient outcomes. On
one hand, when total demand is much lower than data
center capacity, the data center becomes under-utilired, i
which case the cloud provider can potentially lower the
price to attract potential customers. On the other hand,
when total demand surpasses the data center capacity due
to demand spikes, it is desirable for the cloud provider
to raise the price to increase revenue, while suppressing
excessive demands. A common solution for this problem
is to adjust the price according to supply and demand. An
example of this approach has been seen in Amazon EC2 spot
instance service. Specifically, Amazon EC2 creates separat
resource pools and has separate capacities for each type of
VMs [3]. The market price (i.e. spot price) for each VM
type can fluctuate periodically to reflect the balance betwee
demand and supply. Even though so far Amazon is the only
company that offers such type of services, this issue has

As a realization of utility computing, Cloud computing already received considerable attention from both ingustr
aims to provide computing resources to customers likeand academia (e.g. [4], [5], [6])-

public utilities such as water and electricity. In a cloudnco

At the same time, another key issue faced by laaS provider

puting environment, an Infrastructure-as-a-Service SJaa is energy cost of data centers. It has been reported that
provider packages its physical resources (e.g. CPU, memomgnergy consumption constitutes more tRaf% of the annual
disk) into distinct types of virtual machines (VMSs) in terms expense of a large data center [7]. A small reduction in
of their sizes and features, and offer them as services to thenergy consumption can save an laaS provider millions of
general public. For example, Amazon EC2 defines severalollars. The most effective way of saving energy cost is to
instance types (e.g. small, large and extra large) based @hut down unused servers [8]. This, however, requiresaaref
their capacity in terms of CPU, memory and disk. A cloud capacity planning to ensure the data center does not run out
customer, on the other hand, intends to purchase VMs to ruaf resources when demands arrive.

his tasks, each of which has a specific resource requirement Combining the above observations, an laaS provider faces
in terms of CPU, memory and disk. Furthermore, the utilitythe problem of dynamically adjusting the resource capacity
associated with each task is captured by the price that thi® match resource demand from customers, in order max-
customer is willing to pay. Given the finite capacity for imize total revenue while saving energy cost. Specifically,
each type of resources in each data center, a fundamentahen the total demand is low, it is desirable to reduce the
problem faced by laaS provider is how to appropriatelydata center capacity to cut down energy consumption. When
select the price and allocate resources for each type dhe total demand exceeds data center capacity, it is désirab



to use market mechanism to ensure resources are allocated T Sep 4. D144 - Sep 3. 0544
to those customers who value them the most. We call this 0042

problem thedynamic capacity control problem for spot mar-
kets in Cloud computing environments. We want to point out
our problem is a market-based resource allocation problem, ojoho
which has been studied extensively in the Grid computing

literature. However, energy consumption is often negtécte

in the existing work. On the other hand, Our dynamic 0038

capacity control problem bears many similarities with powe
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generator control problem in electricity spot markets T9je Sep25  Sep  Sep2l  SepZ  Sep2
pbjective of the problem to _co_ntrol the power generation 2010 o - L -
in a market setting to maximize the total revenue over 2an [l 1 [

time. However, there are several key differences between
these two problems: Unlike electricity markets which have aFigure 1.  Price of a ml.small Linux spot instance in US-Westom
single type of service (i.e. electricity), spot markets ipu@  SePt 24-Sept. 30, 2010
computing typically offer multiple types of services based
on multi-dimensional resource requirements. F_urthermoreSection VIl is dedicated to the evaluation of the proposed
these sport markets must operate on the same infrastructure, . . . .
. . : SoOlution algorithm, using realistic workload traces from
(i.e. the data center). These differences require an OPergs | le’s compute clusters. Finally. we draw our conclusion
tional model different from the ones used in electricity tspo . ge P ' Y.
in Section VIII.

markets.

In this paper, we study the dynamic capacity control
problem in a single provider scenario, with the goal of There has been several recent studies on the performance
dynamic adjusting the capacity of VM services to maximizeof Amazon spot instance services. For instance, Andrzejak
the total income based on time-varying aggregate demanet. al. [10] studied the price and resource availabilityreha
from customers. In our previous work [6], we have presente@cteristics of each VM service. Yi et. al. [4] studied the
a solution to this problem by periodically solving a static problem of finding optimal checkpoint strategies to minieniz
optimization problem. However, it is known that such my- the work loss due to market dynamics. These studies focus
opic solution (i.e. without consideration of the future)}edo on helping end users to better use spot instance services,
not necessarily lead to an optimal solution over time. Furwhich is different from our objective of improving the
thermore, reconfiguration cost for supply adjustment haverovider's operation of spot instance services.
not been considered in our previous work. To address these Using market economy to manage resource allocation
limitations, in this paper, we present a solution using techhas been studied extensively in the past, primarily in grid
nigues from optimal control theory. Optimal control theory computing environments [11], [12]. The objective is to ef-
is a research field that specifically deals with optimizationfectively provision Grid resources among a set of potelgtial
problems in dynamic settings. The standard techniques farompetitive users. Various approaches, including comtyodi
solving this type of problems have been widely studied andnarket (e.g. [13]) and auction mechanisms (e.g. [11]), have
used in many industries, including electricity spot masket been proposed in the literature. Auction based solutioms ai
Specifically, we adopt the Model Predictive Control (MPC) at achieving fair and efficient outcomes while being restlie
approach to provide an online adaptive control mechanisno strategic bidding. The commodity market based approach,
that takes into account capacity constraints. In our aghroa on the other hand, sets resource price according to supply
we first formulate the dynamic resource allocation problemand demand. In addition to pricing mechanisms, many
as an optimal control problem. We then present an efficientarket-based resource allocation systems must also addres
solution for this problem using control theoretic techrdqu  the issue of scheduling and admission control. Given lichite
Using simulations based on real cloud workloads, we showesources, the goal of admission control is to determing wha
that our solution achieves high performance compared toequests that should be allowed to run. The scheduling algo-
existing solutions for this problem. rithms are then used to perform resource allocation to ffulfil

The rest of the paper is organized as follows. We firsteach request. Unfortunately, optimal profit-aware schiadul
survey related research topics and results in Section lis generally NP-hard, and only heuristics are considered
An overview of Amazon EC2 spot instance mechanism ispractical [14]. The authors of [14] has studied the perfor-
provided in Section Ill. In Section IV, we present our systemmance of various scheduling policies for high-performance
model and the assumptions. After describing our model fomworkloads. In the context of cloud computing, Stokely et. al
demand response in Section V, we present our solutiofil5] studied market-based resource provisioning in Gaogle
for the dynamic capacity control problem in Section VI. compute clusters, and presented a solution using ascending

Il. RELATED WORK



clock auction. However, the focus of these studies is to
find appropriate mechanisms to achieve desired fairness 3

Resource Controller

. . . . . Demand :
and efficiency objectives, rather than allocating resairce J (dy) CO(”SO' PO')'CY SY(S"emXSt)E“e
. . . Tk X
from suppliers perspective. Furthermore, their experisien -~ wOR Pk
are conducted in testbeds or private environments that do Resource Service

not involve real currency. Furthermore, energy cost is not -

considered in these stugies. ¥ 6
Another directly related research area is electricity spot ~ ~  Market

markets. In these environments, the fluctuating markegpric ﬁ M

is used to incentivize users to reduce their usage during pea  End

periods in order cut-down production cost while maintagnin Users
efficient utilization of the existing infrastructure. Gadtey

et. al. [16] studied the problem of determining optimal
production rate of electricity generators in order to maxan

immediate profits while minimize lifetime consumption of
equipment. Li et. al. [17] recently proposed a solution
to determine optimal market prices and demand schedul
using a game-theoretic approach. Although similar in gpiri
these solutions are not readily applicable to spot market i

Figure 2. System Model

region desired and the biding price per instance-hour.df th

bidding price exceeds the current spot price, the request is
Ifilled and each spot instance will run until it finishes the

request or spot price exceeds the current bid. In the former

) . ase, the customer is charged for the partial-hour usage
cloud computing environments as cloud resources usuaIIB

h ltinle d di ) Th ) lit efore it finishes. In the latter case, the VM is terminated
ave muitiple types and dimensions. The service qualB(Nithoutnotice, and the customer is not charged for his usage
model is also different in the cloud computing context.

Einallv. there is a | bodv of literat . N IA common strategy for handling spot instance termination
Inafly, there IS a large body of iterature on using control;s periodically save the work using progress checkpoints

theo:y tlc; manage rlesoKurcg alltoce}tloilén data cc;,\nctjer enw;or!l:]. Notice that if a user submits a request that asks for a
ments. For example, Kusic et. al. [18] presented a contrg ultitude of instances of the same type, it is possible that

framework for reducing energy consumption while satisgyin only a fraction of them are serviced. Hence, it is helpful

SfL'g‘ cons_tra\llnts.d_Dla:_o et. al. [19] stlud!ed t?e proll?_lelm to think of a multi-instance request as a set of independent
ol dynamically adjusting memory pool sizes for multiple single-instance requests. In addition, Amazon provides th

agents in a database server with the goal of mInImIZIn?rice history to help customers decide their bids. Figure 1

worst-case response t|me_. The problem is formulated a hows an example of historical prices obtained from [21].
a linear quadratic regulation problem that can be solve

: tandard irol techni o Ui hi Generally speaking, spot instances are ideal for batch
using standard control technigques. Lur solution approsic Ijobs that have a flexible completion time and tolerance for

sim_ilar to the ones described in these studies, but ad(kesspa”ures (e.g. MapReduce jobs [5]). For this type of jobs, th
f"‘d'ﬁe“?”t problem. To th? best of our knowlefjge,. our Workquality of service is determined by task wait time, which
|s_the first one t_hat stu_dles resource allocation in market(—:an be estimated using queueing analysis by modeling the
oriented computing environments. computing system as a multi-server queue with preempt-
I1l. OVERVIEW OF AMAZON SPOT INSTANCE resume priority, assuming progress checkpoints are used.
MECHANISM As for implementation, the spot instance pools are created
In response to the low resource utilization of computingfrom the resources which are not currently used by dedicated
infrastructure, Amazon EC2 has introduced the spot instancinstances. There is a separate spot instance pool for each
mechanism to allow customers to bid for unused Amazon’M type [3]. As claimed by Amazon EC2, the spot prices
EC2 capacity [20]. Currently, Amazon EC2 spot services ardluctuate independently based their respective supply and
available for 8 types of VMs, each of which has differentdemand. This raises the question of how to dynamically
resource capacities for CPU, memory and disk. Amazorgdjust resource allocaton for each VM type in order to best
EC2 runs one spot market for each VM type in eachmatch the supply and the demand, given a shared resource
availability zone. All spot markets share the free data@ent capacity. This is the problem we address in this paper.
capacity, which is the remaining capacity after serving all IV. SYSTEM MODEL AND ASSUMPTIONS

the guaranteed instances The system model for dynamic capacity control problem

To use the spot instance service, a customer submits ;@ depicted in Figure 2. We assume there iResource
request that specifies the type, the number of instances, th€ntroller which is responsible for controlling both the

rice and and capacity allocated to each VM type. Hence
1Amazon currently provides 3 instance types: reserved,emnamd and P P y yp

spot. In this paper, the termuaranteed instances refer to both reserved the _dynam“? capaC|_ty control prObIem can be modeled as
and on-demand instances, which have guaranteed resoaitabiity. a discrete-time optimal control problem. Note that even



though both price and capacity can change over time, iforecasting the behavior of future demand. Since we study
is desirable that minimum number of changes made in théhe cloud provider side of the market, in this section, we wil
system. The reason is that changing price can potentiallgevelop a model for aggregate demand rather than individual
cause scheduled tasks to be de-scheduled when the markktmand from each customer.
price rises over customer’s bidding price. It will also redu In micro-economics, demand is generally described by a
customer dissatisfaction due to the uncertainty and freique demand curve that decreases monotonically with respect to
oscillations in the price. On the other hand, changing cathe market price. In our case, for each VM type N at
pacity can potentially require migrating VMs from one to time k € Z, we define a general functidi(k, ) : Z4 x
another, which will incur penalty cost. In Section VI, we R, — R, to capture this demand curve at tinke More
will describe our cost model in details. precisely]’(k, p.) is the number of requests of typarrived

For the purpose of analysis, we make the followingat timek:
assumptions and simplifications in this paper: (1) All the ma T i 1
chines are dedicated to spot markets, (12 the machines in the k=L pi) + v (1)
data center are identical, and (3) each machine is dedicatetherev} is a noise function that represents the uncertainty
to a single VM type. The first assumption is made to simplifyin the demand. We assumg is zero-mean, Gaussian and
the model while capturing the essence of the problem. Thenutually independent for alk € Z. We assumed; is
second assumption is reasonable as cloud providers thpicalmodeled by the provider and can be forecasted, for example,
purchase large quantities of identical machines when theysing auto-regressive (AR) functions [6].
upgrade their data center capacities. As a result, real data The key challenge of using (1) to control the resource is
centers usually consist of limited types of identical maesi  that /?(-) can be non-linear. To address this issue, we use
in terms of their hardware configurations [22]. Therefore,the fact that our controller minimizes the change in price
even if machines are not all identical in the data center, we: —pi |, as mentioned in Section IV. Given a small change
can each type of machines separately, and have differeiti price, we can approximate function locatly as a linear
variables for each type of machines in our formulation. Thefunction of p;, as follows.
third assumption is a reasonable simplification of the real i il i i
world scenario. Let\V' = {1,2,---, N} denote the types k= di = a' (P = Pi) + v, 2
of VMs offered by the cloud provider. Even if there are where o, is the negative slope of the demand curve at
machines that host multiple type of VMs, given a limited price p,_, at timek — 1, JZ is the total demand outside
number of VM typesV, the total number of possible VM the linear region, ang? is price at which the linear region
hosting configurationg (i.e. ways to allocate VMs on a of the demand curve starts. In our simulation, we find this
physical machine) is limited. More precisely, this numbersimple prediction model works effectively for estimatirgt
is upper bounded by byC| = n; x ng x ... x ng, where  demand for the purpose of dynamic resource allocation.
ng,i=1,---, N, denote the number of VMs of typethat Definedy, = [di,...,dY ", di, = [d} + a'pp,...,dN +
can be hosted on a single machine. Therefore, the capacigyl\f@g]T and ¥, = diag{a},...,al }, px = [ph, __.7in]T
allocated to each type of VMs in this case can be controllegynd v, = [v1, ..., v,iv] we can write the linear demand
by specifying the number of machines with each hostingunction in the following form

configuratione € C. Our solution can be easily extended to _
handle this case. di =di — ¥rpr + vi )

Finally, in our formulation, we assume that the number ofgquation 3 will be used for forecasting the future demand in

dedicated machines can take continuous values rather thaRe design of the resource controller in the following Smtti
discrete values. This assumption is reasonable as modern

data centers typically contain between thousands and tensV!- DESIGNING ARESOURCECONTROLLER FOR THE

of thousands of machines [23]. Hence the weight of each DYNAMIC CAPACITY CONTROL PROBLEM

individual machine in the overall solution is small. This At the supplier side, the cloud provider configures its

means that given a solution of the dynamic capacity controtesources to maximize its profits. We define a capacity

problem consisting of continuous values, we can alwaysonstraintC € Z that represents the total number of

round the continuous values to their nearest integer valuemachines owned by the provider. Lef € Q U [0,1] be

without significantly affecting the quality of the solution  the fraction of total resources dedicated to VM typeat

time k by the provider with the constrai@f\ilxi =1,

for everyk € K. As mentioned previously, we assume that
An effective solution to the dynamic capacity control the number of machines available is relatively large and

problem requires an accurate model of customer demand. e, can be viewed as taking real numbers. Hence, the total

our case, as the resource controller adjusts price anditapacnumber of machines dedicated to VM typat time £ can

for future use, the demand model must have the capability ofe approximately by the real valug¢ = Cz}. Furthermore,

V. DEMAND MODELING



we assume that each dedicated machine for typen host

b* VMs of type i. In other words, the total capacity for

type i given zi dedicated machines ig, = Cb'zi. The

provider can configure his resources by transferring thenutilization asci, = di/(u'p'T

among different VM types. Let: € [0,1] be the fraction
of total resources added to or removed from VM tyipat

p' can be computed by solving queueing delay equation
for M/G/c queue [24]. Given an arrival ratd’ and .,

we can compute the capacity for achieving the desired
). Hence, the provider has
a second objective that is to track the desirable capagity
for reducing request waiting time.

time k. Hence, it results in the dynamics

ieN,kek 4)

Finally, there is a cost for adjusting the price and the
capacities of all VM types. As mentioned before, price ad-
justment can reduce revenue and hurt customer satisfaction
while capacity adjustment incurs the cost of turning on and
off machines and migrating running VMs to other machines.

P i
Tpp1 = T + Uy,

which can be written into a compact form

Xjp1 = Xp + Ug (5)  Inour system, we define a fixed penalty cosandry, € R,
associated with changes in capacity and price, respegtivel
where x; = [zpaf,oap]loand we o =gl 1/( Z"Z'T)gas a kn(r))wn Zonstaflt the ob?ee)gtive
[u},u?, -+ ,uN]" with the capacity constrairt’ - x; < 1 ro ’

of the capacity control problem (CC) is to minimize the cost

<u< i
and0 <u<1. up to a horizonk.

Similarly, definer; € R, as change in price at time

for type i, and denote byr, = [r},72,---,7]". Hence, N K D i . N i
we also have o * E ZZ—RJH‘Q (b'Cay, — o'dj,)? + 7y (uj,)? + 75 (p},)?
i=1 k=1
Pi+1 = Pk + Tk (6) @)
Given a provisioned capacity, for VM type i and the Formally, defineQ = diag{q', ..., ¢}, R, = diag{r],
length of control periodl” the spot instance service can ... rN} R, = diag{r},...,r}},B = diag{ﬁ,..., ﬁ}’

be modeled as a//G/c queue with mean arrival rate E —
E(\,) = +E(d}) and mean service timg’ € R,.. In other CeNgN], T = diag{TCb?, ..., TCbN } andS = diag{C'S* -
words, the mean service rate i$ = 2;. Since customers p! . CSNpV1, we can rewrite CC in the following matrix
are charged base resource usage, the total revenue can fogm:

expressed as the product of system utilization, price and K

time. On the other hand, it is also important to capture theminimize E Z —Upr + (xx — Bdy) " Q(xx — Bdy)
cost of allocating capacities in our model. we assume thatp; .. p; k=1

there is a fixed cost’ € R, for each machine allocated +u/ Riuy + 7] Ry — Exk}

subject to di =dy — ¥ipr + Vi,

[Cel,...,CeN], Uy = [Ri(cr) + Celal, ..., Ri(ed ) +

to types. In our caseg’ is the energy cost for running a
machine. Therefore, the total revenue can be computed a

follows:
E(R:) = min <1, (_Aj)> piT — e'al
uey,
. E(AZ) 7 1,1
= min <1, c}c/g”) piT — e'ay,

Xg+1 = X + Uk, Pk+1 = Pk + Tk,
U, <x/T,U, <d;S,

17 -x, < 1,

0<u,<1l,kek

The above optimal control problem is a constrained linear
= min (Tc}, E(d},)S") p, — €'aj, quadratic problem (LQP) which can be solved analytically
backward using dynamic programming [25]. To make the
where min (1, 22 2)) is the utilization of the dedicated system operate in a dynamic, online setting, the resource
machines for VM type. It is easy to see that the revenue controller can implement a MPC algorithm described by
R! is limited by the minimum of supply over time (i.e. Algorithm 1. Specifically, letd(k + i|k), u(k + i|k) and
Tci) and demand over time (ilB(d:)S?). The optimal «(k + i|k) denote the values ofly ;, ux.; and 7y,
revenue is achieved when supply matches demand (i.g@redicted at time: respectively, based on the system model
Tci = E(d)S). and information at timé:. When the control period starts,
However, even though it is desirable for the provider tothe controller first predicts the values df(k + i|k) for
achieve maximum utilization by exactly matching supplythe next: = 1,--- | K horizons using equation (3), and
and demand, high utilization is generally bad for customerghen solves CC to obtain the sequence of control actions
as it can cause significant wait time (i.e. queueing delayh(k+i|k) andn(k+i|k) fori =0,--- , K—1. According to
for using the service To address this issue, we allow thehe standard MPC procedure, the controller will only apply
cloud provider to maintain a desirable average request wathe first stepu(k) = u(k|k) and n(k) = =(k|k) in the
time ¢ € R,. We assume that this wait time translatessequence of control actions. This process will repeat when
into a desired utilization levep’ € [0,1]. Specifically, the next control period + 1 starts.
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Algorithm 1 MPC Algorithm for Dynamic Capacity Control
Problem

5000 ; : J
1: Provide initial statexo andpo, k < 0 2500 \/\/\J\/\/J/\,/\»/\/\/\/\/\,-/\,-/\,/\Af\&

2: loop o . 0 1 2 3 4 5 6
3: At beginning of control period:: Time (hours)

4:  Predictd(k + i|k) for horizonsi = 1,--- , K using (3) (a) Small VMs
5.  Solve CC to obtainr(k + ¢|k) andu(k + i|k) for horizons
i=0---,K—-1

6: Change the market prices accordingnttc) = = (k|k)

7:  Change resource allocation accordinguit) = u(k|k)

8 k<« k+1

9: end |00p Time (hours)
(b) Medium VMs
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VIl. EXPERIMENTS 75

To evaluate the quality of our proposed solutions, we have ¢ 25

implemented a prototype of spot instance system in MAT- 0 1 ] 4 5 6
LAB. Specifically, we have developed a discrete event-basea ime (hours)
VM scheduler that is controlled by our proposed Resource

No. of Requests

o ol

% ‘
I

(c) Large VMs

controller in Figure 2. To generate realistic resource estgl Figure 3. Task Arrival Rate in Google’s Workload Traces
from customers, we use the publicly available workload Table |
traces from Google's Compute Clusters [26], which describe TYPES OFVM'S USED IN THE EXPERIMENTS

the resource consumptions for CPU and memoryh80
tasks? for a duration of over 6 hours. However, as Google’s VM Tvpe
cloud is still largely private, the computer cluster trades yﬁ (Colfes) ("gfl‘) (Sicsf;’;ds) pgcg3§3$)
not contain the details of resource requests in terms of VM o T s i R
types and price. We artificially construct the VM types by Targe 1 356 14049 0.041
examining the maximum resource usage of CPU and mem-
ory and match them with the available VM types offered by
SpotCloud [27], a cloud computing company that providesobserve more transient behaviors of our solution algorithm

a commodity-based market for trading computing resourcesve change control period to 30 minutes. We also assume
The price information is also obtained based on the existinghe provider would like to keep the cluster utilization andu
market price in SpotCloud for VM types in the European70% in order to achieve a good balance between utilization
region. Specifically, we generate bidding prices accortiing and task wait time.

normal distributions with the mean values equal to the ones Even though all 3 VM types share the same data center
given by SpotCloud. By doing so, we have classified thecapacity, we decide to show the result for each VM type
workload into 3 types of VMs. The average bidding price, separately due to the difference in numerical scales. The
resource capacity and average running time for each VMapacity provisioned by the controller as well as the number
type are summarized in Table 1. We also observed there agf VMs running for each VM type are shown in Figures

a few long-running tasks that persist through out the 6 hourg, 5 and 6 respectively. It can be seen that our proposed
period. For the purpose of demonstration, we focus on theontrol policy gradually adjust the capacity for each VM
tasks that arrive during the 6 hours period. The arrival rateype to best match the desired utilization level without
of the tasks are illustrated in Figure 3, which is rather gpik causing severe penalties. Despite the high variability in
Furthermore, a majority of the resource requests are foarrival rate, the change in capacity over time seem modest,
small VMs. Finally, most of VMs have short running time. except in the beginning where there is large discrepancy
This observation is consistent with numerous reports orbetween capacities and resource demands. Figure 7 shows
workload characterization in Cloud computing environmsent the change in price in response to the dynamics of the arrival

23], [1]. . . . . i
[ ﬂ [)Jr simulation, we construct a medium size clusterfroce\?a It can be Sﬁen thﬁt It:hethprlce Chan”gtehs for 6?” 3
with 7000 machines. All the machines are identical withYP® S aré generally small. Furthermore, a ree price

4 CPUs and 4 GB of memory. The control period usedcurves show decreasing trends over time, which matches
by the resource controller is 6riginally set to once perthe increase in resource utilizations shown in Figures 4, 5,

hour. However, since we only have 6 hours of workload, to8 and 8. This is because controller tries to lower the price
to accommodate more demands over time. It can be also

2A task in Google compute clusters is equivalent to a standatdal Observe_d that the price _for Iarge_ VMs ShOWS the IargeSt
machine. fluctuation. One explanation for this observation is tha th

CPU Capacity Memory Sizel average duratiopAvg. bidding
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Figure 4. Number of small VMs running in the cluster
Figure 7. Prices of each type of VMs
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- — — Capacity allocated for large VMs| | result with our proposed solution. Note that in practice,

this optimal allocation strategy is not achievable due to

1 the requirement for future knowledge. The results using
unmodified workload traces are shown in Table 2. The
revenue achieved by our dynamic solution is comparable
1 to the one obtained by the optimal allocation strategy. To

make the comparison more thorough, we also modified the
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Time (hours) original workload traces and increased the arrival rate of
_ o small VMs by a factor of 3 for the period between 2 hours
Figure 6. Number of large VMs running in the cluster and 4 hours since the start time. Due to space constraint, we

only summarize the revenue and average task waiting time

number of large VMs in the workload is rather small, hencefor the modified workload traces in Table 2. It can be seen
the controller can perform fine-grained control on the mice that our approach out performs the static strategy in terms
in order to match their bidding prices. of revenue and task wait time by at le28t%. This shows

Figure 8 shows the utilizations of allocated capacities forthat our solution is most effective under highly dynamic
each VM type in each of the hours we simulated. Theconditions (such as flash-crowd effects) where demand may
average utilization over 6 hours for small, medium andchange significantly over time.
large VM types arer4.9%, 66.7% and 69.8% respectively.
These numbers match our objective of keeping the cluster
utilization aroundr0% for all 3 VM types. Lastly, we omit Using market economy to allocate resources in laaS
the diagram showing task wait time because ®&8 of the  environments has recently received much attention, mainly
tasks are scheduled immediately upon arrival. The remgininbecause of its ability to match supply and demand and
2% of tasks are scheduled within the next 10 minutes. incentivize desired customer behavior. However, sincactlo

Finally, we compare our approach with an simple strategycomputing resources are offered in distinct types of virtua
where there is a fixed number of dedicated machines for eaamachines (VMs) that share the same resource capacity, it
VM type. The performance metrics we wish to comparebecomes a challenging problem to determine the optimal
are the total revenue and the average task waiting timavay to allocate resources to optimize total revenue while
To make the simple strategy competitive, we computed theninimizing energy cost. In this paper, we study this prob-
optimal allocation strategy in terms of number of dedicatedem in a single provider scenario motivated by the spot
machines for each VM type, and compare the simulatiorinstance service offered by Amazon EC2. We present the

VIII. CONCLUSION
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