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Abstract—The advent of cloud computing promises to pro-
vide computational resources to customers like public utili-
ties such as water and electricity. To deal with dynamically
fluctuating resource demands, market-driven resource alloca-
tion has been proposed and recently implemented by public
Infrastructure-as-a-Service (IaaS) providers like Amazon EC2.
In this environment, cloud resources are offered in distinct
types of virtual machines (VMs) and the cloud provider runs
an auction-based market for each VM type with the goal of
achieving maximum revenue over time. However, as demand
for each type of VMs can fluctuate over time, it is necessary
to adjust the capacity allocated to each VM type to match the
demand in order to maximize total revenue while minimizing
the energy cost. In this paper, we consider the case of a single
cloud provider and address the question how to best match
customer demand in terms of both supply and price in order
to maximize the providers revenue and customer satisfactions
while minimizing energy cost. In particular, we model this
problem as a constrained discrete-time optimal control problem
and use Model Predictive Control (MPC) to find its solution.
Simulation studies using real cloud workloads indicate that
under dynamic workload conditions, our proposed solution
achieves higher net income than static allocation strategies and
minimizes the average request waiting time.

Keywords-Cloud Computing; Resource Management; Model
Predictive Control

I. I NTRODUCTION

As a realization of utility computing, Cloud computing
aims to provide computing resources to customers like
public utilities such as water and electricity. In a cloud com-
puting environment, an Infrastructure-as-a-Service (IaaS)
provider packages its physical resources (e.g. CPU, memory
disk) into distinct types of virtual machines (VMs) in terms
of their sizes and features, and offer them as services to the
general public. For example, Amazon EC2 defines several
instance types (e.g. small, large and extra large) based on
their capacity in terms of CPU, memory and disk. A cloud
customer, on the other hand, intends to purchase VMs to run
his tasks, each of which has a specific resource requirement
in terms of CPU, memory and disk. Furthermore, the utility
associated with each task is captured by the price that the
customer is willing to pay. Given the finite capacity for
each type of resources in each data center, a fundamental
problem faced by IaaS provider is how to appropriately
select the price and allocate resources for each type of

VM services in order to best match the interests of the
customers. This problem is further complicated by the fact
that demand is time varying and often has large spikes [1].
A simple and naı̈ve solution currently adopted by most of
the IaaS providers today is to specify a fixed price for
each type of VM services that does not change over time.
However, recent literature [2] has suggested that this flat-
rate charging scheme can lead to inefficient outcomes. On
one hand, when total demand is much lower than data
center capacity, the data center becomes under-utilized, in
which case the cloud provider can potentially lower the
price to attract potential customers. On the other hand,
when total demand surpasses the data center capacity due
to demand spikes, it is desirable for the cloud provider
to raise the price to increase revenue, while suppressing
excessive demands. A common solution for this problem
is to adjust the price according to supply and demand. An
example of this approach has been seen in Amazon EC2 spot
instance service. Specifically, Amazon EC2 creates separate
resource pools and has separate capacities for each type of
VMs [3]. The market price (i.e. spot price) for each VM
type can fluctuate periodically to reflect the balance between
demand and supply. Even though so far Amazon is the only
company that offers such type of services, this issue has
already received considerable attention from both industry
and academia (e.g. [4], [5], [6]).

At the same time, another key issue faced by IaaS provider
is energy cost of data centers. It has been reported that
energy consumption constitutes more than20% of the annual
expense of a large data center [7]. A small reduction in
energy consumption can save an IaaS provider millions of
dollars. The most effective way of saving energy cost is to
shut down unused servers [8]. This, however, requires careful
capacity planning to ensure the data center does not run out
of resources when demands arrive.

Combining the above observations, an IaaS provider faces
the problem of dynamically adjusting the resource capacity
to match resource demand from customers, in order max-
imize total revenue while saving energy cost. Specifically,
when the total demand is low, it is desirable to reduce the
data center capacity to cut down energy consumption. When
the total demand exceeds data center capacity, it is desirable



to use market mechanism to ensure resources are allocated
to those customers who value them the most. We call this
problem thedynamic capacity control problem for spot mar-
kets in Cloud computing environments. We want to point out
our problem is a market-based resource allocation problem,
which has been studied extensively in the Grid computing
literature. However, energy consumption is often neglected
in the existing work. On the other hand, Our dynamic
capacity control problem bears many similarities with power
generator control problem in electricity spot markets [9].The
objective of the problem to control the power generation
in a market setting to maximize the total revenue over
time. However, there are several key differences between
these two problems: Unlike electricity markets which have a
single type of service (i.e. electricity), spot markets in Cloud
computing typically offer multiple types of services based
on multi-dimensional resource requirements. Furthermore,
these sport markets must operate on the same infrastructure
(i.e. the data center). These differences require an opera-
tional model different from the ones used in electricity spot
markets.

In this paper, we study the dynamic capacity control
problem in a single provider scenario, with the goal of
dynamic adjusting the capacity of VM services to maximize
the total income based on time-varying aggregate demand
from customers. In our previous work [6], we have presented
a solution to this problem by periodically solving a static
optimization problem. However, it is known that such my-
opic solution (i.e. without consideration of the future) does
not necessarily lead to an optimal solution over time. Fur-
thermore, reconfiguration cost for supply adjustment have
not been considered in our previous work. To address these
limitations, in this paper, we present a solution using tech-
niques from optimal control theory. Optimal control theory
is a research field that specifically deals with optimization
problems in dynamic settings. The standard techniques for
solving this type of problems have been widely studied and
used in many industries, including electricity spot markets.
Specifically, we adopt the Model Predictive Control (MPC)
approach to provide an online adaptive control mechanism
that takes into account capacity constraints. In our approach,
we first formulate the dynamic resource allocation problem
as an optimal control problem. We then present an efficient
solution for this problem using control theoretic techniques.
Using simulations based on real cloud workloads, we show
that our solution achieves high performance compared to
existing solutions for this problem.

The rest of the paper is organized as follows. We first
survey related research topics and results in Section II.
An overview of Amazon EC2 spot instance mechanism is
provided in Section III. In Section IV, we present our system
model and the assumptions. After describing our model for
demand response in Section V, we present our solution
for the dynamic capacity control problem in Section VI.

Figure 1. Price of a m1.small Linux spot instance in US-West-1 from
Sept. 24-Sept. 30, 2010

Section VII is dedicated to the evaluation of the proposed
solution algorithm, using realistic workload traces from
Google’s compute clusters. Finally, we draw our conclusions
in Section VIII.

II. RELATED WORK

There has been several recent studies on the performance
of Amazon spot instance services. For instance, Andrzejak
et. al. [10] studied the price and resource availability char-
acteristics of each VM service. Yi et. al. [4] studied the
problem of finding optimal checkpoint strategies to minimize
the work loss due to market dynamics. These studies focus
on helping end users to better use spot instance services,
which is different from our objective of improving the
provider’s operation of spot instance services.

Using market economy to manage resource allocation
has been studied extensively in the past, primarily in grid
computing environments [11], [12]. The objective is to ef-
fectively provision Grid resources among a set of potentially
competitive users. Various approaches, including commodity
market (e.g. [13]) and auction mechanisms (e.g. [11]), have
been proposed in the literature. Auction based solutions aim
at achieving fair and efficient outcomes while being resilient
to strategic bidding. The commodity market based approach,
on the other hand, sets resource price according to supply
and demand. In addition to pricing mechanisms, many
market-based resource allocation systems must also address
the issue of scheduling and admission control. Given limited
resources, the goal of admission control is to determine what
requests that should be allowed to run. The scheduling algo-
rithms are then used to perform resource allocation to fulfill
each request. Unfortunately, optimal profit-aware scheduling
is generally NP-hard, and only heuristics are considered
practical [14]. The authors of [14] has studied the perfor-
mance of various scheduling policies for high-performance
workloads. In the context of cloud computing, Stokely et. al.
[15] studied market-based resource provisioning in Googles
compute clusters, and presented a solution using ascending



clock auction. However, the focus of these studies is to
find appropriate mechanisms to achieve desired fairness
and efficiency objectives, rather than allocating resources
from suppliers perspective. Furthermore, their experiments
are conducted in testbeds or private environments that do
not involve real currency. Furthermore, energy cost is not
considered in these studies.

Another directly related research area is electricity spot
markets. In these environments, the fluctuating market price
is used to incentivize users to reduce their usage during peak
periods in order cut-down production cost while maintaining
efficient utilization of the existing infrastructure. Gallestey
et. al. [16] studied the problem of determining optimal
production rate of electricity generators in order to maximize
immediate profits while minimize lifetime consumption of
equipment. Li et. al. [17] recently proposed a solution
to determine optimal market prices and demand schedules
using a game-theoretic approach. Although similar in spirit,
these solutions are not readily applicable to spot market in
cloud computing environments as cloud resources usually
have multiple types and dimensions. The service quality
model is also different in the cloud computing context.

Finally, there is a large body of literature on using control
theory to manage resource allocation in data center environ-
ments. For example, Kusic et. al. [18] presented a control
framework for reducing energy consumption while satisfying
SLA constraints. Diao et. al. [19] studied the problem
of dynamically adjusting memory pool sizes for multiple
agents in a database server with the goal of minimizing
worst-case response time. The problem is formulated as
a linear quadratic regulation problem that can be solved
using standard control techniques. Our solution approach is
similar to the ones described in these studies, but addresses
a different problem. To the best of our knowledge, our work
is the first one that studies resource allocation in market-
oriented computing environments.

III. OVERVIEW OF AMAZON SPOT INSTANCE

MECHANISM

In response to the low resource utilization of computing
infrastructure, Amazon EC2 has introduced the spot instance
mechanism to allow customers to bid for unused Amazon
EC2 capacity [20]. Currently, Amazon EC2 spot services are
available for 8 types of VMs, each of which has different
resource capacities for CPU, memory and disk. Amazon
EC2 runs one spot market for each VM type in each
availability zone. All spot markets share the free data center
capacity, which is the remaining capacity after serving all
the guaranteed instances1.

To use the spot instance service, a customer submits a
request that specifies the type, the number of instances, the

1Amazon currently provides 3 instance types: reserved, on-demand and
spot. In this paper, the termguaranteed instances refer to both reserved
and on-demand instances, which have guaranteed resource availability.

Figure 2. System Model

region desired and the biding price per instance-hour. If the
bidding price exceeds the current spot price, the request is
fulfilled and each spot instance will run until it finishes the
request or spot price exceeds the current bid. In the former
case, the customer is charged for the partial-hour usage
before it finishes. In the latter case, the VM is terminated
without notice, and the customer is not charged for his usage.
A common strategy for handling spot instance termination
is to periodically save the work using progress checkpoints
[4]. Notice that if a user submits a request that asks for a
multitude of instances of the same type, it is possible that
only a fraction of them are serviced. Hence, it is helpful
to think of a multi-instance request as a set of independent
single-instance requests. In addition, Amazon provides the
price history to help customers decide their bids. Figure 1
shows an example of historical prices obtained from [21].

Generally speaking, spot instances are ideal for batch
jobs that have a flexible completion time and tolerance for
failures (e.g. MapReduce jobs [5]). For this type of jobs, the
quality of service is determined by task wait time, which
can be estimated using queueing analysis by modeling the
computing system as a multi-server queue with preempt-
resume priority, assuming progress checkpoints are used.

As for implementation, the spot instance pools are created
from the resources which are not currently used by dedicated
instances. There is a separate spot instance pool for each
VM type [3]. As claimed by Amazon EC2, the spot prices
fluctuate independently based their respective supply and
demand. This raises the question of how to dynamically
adjust resource allocaton for each VM type in order to best
match the supply and the demand, given a shared resource
capacity. This is the problem we address in this paper.

IV. SYSTEM MODEL AND ASSUMPTIONS

The system model for dynamic capacity control problem
is depicted in Figure 2. We assume there is aResource
Controller which is responsible for controlling both the
price and and capacity allocated to each VM type. Hence
the dynamic capacity control problem can be modeled as
a discrete-time optimal control problem. Note that even



though both price and capacity can change over time, it
is desirable that minimum number of changes made in the
system. The reason is that changing price can potentially
cause scheduled tasks to be de-scheduled when the market
price rises over customer’s bidding price. It will also reduce
customer dissatisfaction due to the uncertainty and frequent
oscillations in the price. On the other hand, changing ca-
pacity can potentially require migrating VMs from one to
another, which will incur penalty cost. In Section VI, we
will describe our cost model in details.

For the purpose of analysis, we make the following
assumptions and simplifications in this paper: (1) All the ma-
chines are dedicated to spot markets, (12 the machines in the
data center are identical, and (3) each machine is dedicated
to a single VM type. The first assumption is made to simplify
the model while capturing the essence of the problem. The
second assumption is reasonable as cloud providers typically
purchase large quantities of identical machines when they
upgrade their data center capacities. As a result, real data
centers usually consist of limited types of identical machines
in terms of their hardware configurations [22]. Therefore,
even if machines are not all identical in the data center, we
can each type of machines separately, and have different
variables for each type of machines in our formulation. The
third assumption is a reasonable simplification of the real
world scenario. LetN = {1, 2, · · · , N} denote the types
of VMs offered by the cloud provider. Even if there are
machines that host multiple type of VMs, given a limited
number of VM typesN , the total number of possible VM
hosting configurationsC (i.e. ways to allocate VMs on a
physical machine) is limited. More precisely, this number
is upper bounded by by|C| = n1 × n2 × ... × nk, where
ni, i = 1, · · · , N, denote the number of VMs of typei that
can be hosted on a single machine. Therefore, the capacity
allocated to each type of VMs in this case can be controlled
by specifying the number of machines with each hosting
configurationc ∈ C. Our solution can be easily extended to
handle this case.

Finally, in our formulation, we assume that the number of
dedicated machines can take continuous values rather than
discrete values. This assumption is reasonable as modern
data centers typically contain between thousands and tens
of thousands of machines [23]. Hence the weight of each
individual machine in the overall solution is small. This
means that given a solution of the dynamic capacity control
problem consisting of continuous values, we can always
round the continuous values to their nearest integer values
without significantly affecting the quality of the solution.

V. DEMAND MODELING

An effective solution to the dynamic capacity control
problem requires an accurate model of customer demand. In
our case, as the resource controller adjusts price and capacity
for future use, the demand model must have the capability of

forecasting the behavior of future demand. Since we study
the cloud provider side of the market, in this section, we will
develop a model for aggregate demand rather than individual
demand from each customer.

In micro-economics, demand is generally described by a
demand curve that decreases monotonically with respect to
the market price. In our case, for each VM typei ∈ N at
time k ∈ Z, we define a general functionli(k, pik) : Z+ ×
R+ → R+ to capture this demand curve at timek. More
precisely,li(k, pik) is the number of requests of typei arrived
at timek:

dik = li(k, pik) + vik (1)

wherevik is a noise function that represents the uncertainty
in the demand. We assumevik is zero-mean, Gaussian and
mutually independent for allk ∈ Z. We assumedik is
modeled by the provider and can be forecasted, for example,
using auto-regressive (AR) functions [6].

The key challenge of using (1) to control the resource is
that li(·) can be non-linear. To address this issue, we use
the fact that our controller minimizes the change in price
pik−pik−1, as mentioned in Section IV. Given a small change
in price, we can approximate function locallydik as a linear
function of pik as follows.

dik = d̄ik − αi(pik − p̄ik) + vik (2)

where αk is the negative slope of the demand curve at
price pik−1 at time k − 1, d̄ik is the total demand outside
the linear region, and̄pik is price at which the linear region
of the demand curve starts. In our simulation, we find this
simple prediction model works effectively for estimating the
demand for the purpose of dynamic resource allocation.

Define dk = [d1k, ..., d
N
k ]⊤, d̄k = [d̄1k + α1p̄1k, ..., d̄

N
k +

αN p̄Nk ]⊤ andΨk = diag{α1
k, ..., α

N
k }, pk = [p1k, ..., p

N
k ]⊤

and vk = [v1k, ..., v
N
k ] we can write the linear demand

function in the following form

dk = d̄k −Ψkpk + vk (3)

Equation 3 will be used for forecasting the future demand in
the design of the resource controller in the following Section.

VI. D ESIGNING A RESOURCECONTROLLER FOR THE

DYNAMIC CAPACITY CONTROL PROBLEM

At the supplier side, the cloud provider configures its
resources to maximize its profits. We define a capacity
constraint C ∈ Z that represents the total number of
machines owned by the provider. Letxi

k ∈ Q ∪ [0, 1] be
the fraction of total resources dedicated to VM typei at
time k by the provider with the constraint

∑N

i=1 x
i
k = 1,

for everyk ∈ K. As mentioned previously, we assume that
the number of machines available is relatively large and
xi
k can be viewed as taking real numbers. Hence, the total

number of machines dedicated to VM typei at timek can
be approximately by the real valueaik = Cxi

k. Furthermore,



we assume that each dedicated machine for typei can host
bi VMs of type i. In other words, the total capacity for
type i given xi

k dedicated machines iscik = Cbixi
k. The

provider can configure his resources by transferring them
among different VM types. Letui

k ∈ [0, 1] be the fraction
of total resources added to or removed from VM typei at
time k. Hence, it results in the dynamics

xi
k+1 = xi

k + ui
k, i ∈ N , k ∈ K (4)

which can be written into a compact form

xk+1 = xk + uk (5)

where xk = [x1
k, x

2
k, · · · , x

N
k ]⊤ and uk =

[u1
k, u

2
k, · · · , u

N
k ]⊤ with the capacity constraint1⊤ · xk ≤ 1

and0 ≤ u ≤ 1.
Similarly, defineπi

k ∈ R+ as change in price at timek
for type i, and denote byπk = [π1

k, π
2
k, · · · , π

N
k ]′. Hence,

we also have
pk+1 = pk + πk (6)

Given a provisioned capacitycik for VM type i and the
length of control periodT the spot instance service can
be modeled as aM/G/c queue with mean arrival rate
E(λi

k) =
1
T
E(dik) and mean service timeSi ∈ R+. In other

words, the mean service rate isµi = 1
Si . Since customers

are charged base resource usage, the total revenue can be
expressed as the product of system utilization, price and
time. On the other hand, it is also important to capture the
cost of allocating capacities in our model. we assume that
there is a fixed costei ∈ R+ for each machine allocated
to type i. In our case,ei is the energy cost for running a
machine. Therefore, the total revenue can be computed as
follows:

E(Ri
k) = min

(

1,
E(λi

t)

µicik

)

pikT − eiaik

= min

(

1,
E(λi

k)

cik/S
i

)

pikT − eiaik

= min
(

Tcik,E(d
i
k)S

i
)

pik − eiaik

where min
(

1,
E(λi

t
)

µici
k

)

is the utilization of the dedicated
machines for VM typei. It is easy to see that the revenue
Ri

k is limited by the minimum of supply over time (i.e.
Tcik) and demand over time (i.e.E(dik)S

i). The optimal
revenue is achieved when supply matches demand (i.e.
Tcik = E(dik)S

i).
However, even though it is desirable for the provider to

achieve maximum utilization by exactly matching supply
and demand, high utilization is generally bad for customers
as it can cause significant wait time (i.e. queueing delay)
for using the service To address this issue, we allow the
cloud provider to maintain a desirable average request wait
time φ̄i

k ∈ R+. We assume that this wait time translates
into a desired utilization level̄ρi ∈ [0, 1]. Specifically,

ρ̄i can be computed by solving queueing delay equation
for M/G/c queue [24]. Given an arrival rateλi and µi,
we can compute the capacity for achieving the desired
utilization as c̄ik = dik/(µ

iρ̄iT ). Hence, the provider has
a second objective that is to track the desirable capacityc̄ik
for reducing request waiting time.

Finally, there is a cost for adjusting the price and the
capacities of all VM types. As mentioned before, price ad-
justment can reduce revenue and hurt customer satisfaction,
while capacity adjustment incurs the cost of turning on and
off machines and migrating running VMs to other machines.
In our system, we define a fixed penalty costri1 andri2 ∈ R+

associated with changes in capacity and price, respectively.
Defineσi = 1/(µiρ̄iT ) as a known constant, the objective
of the capacity control problem (CC) is to minimize the cost
up to a horizonK.

E

[

N
∑

i=1

K
∑

k=1

−Ri
k + qi(biCxi

k − σidik)
2 + ri1(u

i
k)

2 + ri2(p
i
k)

2

]

(7)

Formally, defineQ = diag{q1, ..., qN},R1 = diag{r11,
..., rN1 },R2 = diag{r12, ..., r

N
2 },B = diag{ 1

b1C
, ..., 1

bNC
},

E = [Ce1, ..., CeN ],Uk = [Rk(c
1
k)+Ce1x1

k, ..., Rk(c
N
k )+

CeNxN
k ],T = diag{TCb1, ..., TCbN} andS = diag{CS1 ·

b1, ..., CSNbN}, we can rewrite CC in the following matrix
form:

minimize
u1,...,uk

p1,...,pk

E

[

K
∑

k=1

−Ukpk + (xk −Bdk)
⊤Q(xk −Bdk)

+u⊤

k R1uk + π⊤

k R2πk −Exk

]

subject to dk = d̄k −Ψkpk + vk,

xk+1 = xk + uk,pk+1 = pk + πk,

Uk ≤ x⊤

k T,Uk ≤ d⊤

k S,

1⊤ · xk ≤ 1,

0 ≤ uk ≤ 1, k ∈ K

The above optimal control problem is a constrained linear
quadratic problem (LQP) which can be solved analytically
backward using dynamic programming [25]. To make the
system operate in a dynamic, online setting, the resource
controller can implement a MPC algorithm described by
Algorithm 1. Specifically, letd̄(k + i|k), u(k + i|k) and
π(k + i|k) denote the values of̄dk+i, uk+i and πk+i

predicted at timek respectively, based on the system model
and information at timek. When the control periodk starts,
the controller first predicts the values of̄d(k + i|k) for
the next i = 1, · · · ,K horizons using equation (3), and
then solves CC to obtain the sequence of control actions
u(k+i|k) andπ(k+i|k) for i = 0, · · · ,K−1. According to
the standard MPC procedure, the controller will only apply
the first stepu(k) = u(k|k) and π(k) = π(k|k) in the
sequence of control actions. This process will repeat when
the next control periodk + 1 starts.



Algorithm 1 MPC Algorithm for Dynamic Capacity Control
Problem

1: Provide initial statex0 andp0, k ← 0
2: loop
3: At beginning of control periodk:
4: Predictd̄(k + i|k) for horizonsi = 1, · · · ,K using (3)
5: Solve CC to obtainπ(k+ i|k) andu(k+ i|k) for horizons

i = 0, · · · , K − 1
6: Change the market prices according toπ(k) = π(k|k)
7: Change resource allocation according tou(k) = u(k|k)
8: k ← k + 1
9: end loop

VII. E XPERIMENTS

To evaluate the quality of our proposed solutions, we have
implemented a prototype of spot instance system in MAT-
LAB. Specifically, we have developed a discrete event-based
VM scheduler that is controlled by our proposed Resource
controller in Figure 2. To generate realistic resource requests
from customers, we use the publicly available workload
traces from Google’s Compute Clusters [26], which describe
the resource consumptions for CPU and memory of176580
tasks2 for a duration of over 6 hours. However, as Google’s
cloud is still largely private, the computer cluster tracesdo
not contain the details of resource requests in terms of VM
types and price. We artificially construct the VM types by
examining the maximum resource usage of CPU and mem-
ory and match them with the available VM types offered by
SpotCloud [27], a cloud computing company that provides
a commodity-based market for trading computing resources.
The price information is also obtained based on the existing
market price in SpotCloud for VM types in the European
region. Specifically, we generate bidding prices accordingto
normal distributions with the mean values equal to the ones
given by SpotCloud. By doing so, we have classified the
workload into 3 types of VMs. The average bidding price,
resource capacity and average running time for each VM
type are summarized in Table 1. We also observed there are
a few long-running tasks that persist through out the 6 hours
period. For the purpose of demonstration, we focus on the
tasks that arrive during the 6 hours period. The arrival rate
of the tasks are illustrated in Figure 3, which is rather spiky.
Furthermore, a majority of the resource requests are for
small VMs. Finally, most of VMs have short running time.
This observation is consistent with numerous reports on
workload characterization in Cloud computing environments
[23], [1].

In our simulation, we construct a medium size cluster
with 7000 machines. All the machines are identical with
4 CPUs and 4 GB of memory. The control period used
by the resource controller is originally set to once per
hour. However, since we only have 6 hours of workload, to

2A task in Google compute clusters is equivalent to a standardvirtual
machine.
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Figure 3. Task Arrival Rate in Google’s Workload Traces

Table I
TYPES OFVM S USED IN THE EXPERIMENTS

VM Type CPU Capacity Memory Size average durationAvg. bidding
(Cores) (MB) (seconds) price ($)

small 1 64 1694 0.038
medium 1 128 4862 0.039

large 1 256 14049 0.041

observe more transient behaviors of our solution algorithm,
we change control period to 30 minutes. We also assume
the provider would like to keep the cluster utilization around
70% in order to achieve a good balance between utilization
and task wait time.

Even though all 3 VM types share the same data center
capacity, we decide to show the result for each VM type
separately due to the difference in numerical scales. The
capacity provisioned by the controller as well as the number
of VMs running for each VM type are shown in Figures
4, 5 and 6 respectively. It can be seen that our proposed
control policy gradually adjust the capacity for each VM
type to best match the desired utilization level without
causing severe penalties. Despite the high variability in
arrival rate, the change in capacity over time seem modest,
except in the beginning where there is large discrepancy
between capacities and resource demands. Figure 7 shows
the change in price in response to the dynamics of the arrival
process. It can be seen that the price changes for all 3
type VMs are generally small. Furthermore, all three price
curves show decreasing trends over time, which matches
the increase in resource utilizations shown in Figures 4, 5,
6 and 8. This is because controller tries to lower the price
to accommodate more demands over time. It can be also
observed that the price for large VMs shows the largest
fluctuation. One explanation for this observation is that the
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Figure 4. Number of small VMs running in the cluster
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Figure 6. Number of large VMs running in the cluster

number of large VMs in the workload is rather small, hence
the controller can perform fine-grained control on the prices
in order to match their bidding prices.

Figure 8 shows the utilizations of allocated capacities for
each VM type in each of the hours we simulated. The
average utilization over 6 hours for small, medium and
large VM types are74.9%, 66.7% and69.8% respectively.
These numbers match our objective of keeping the cluster
utilization around70% for all 3 VM types. Lastly, we omit
the diagram showing task wait time because over98% of the
tasks are scheduled immediately upon arrival. The remaining
2% of tasks are scheduled within the next 10 minutes.

Finally, we compare our approach with an simple strategy
where there is a fixed number of dedicated machines for each
VM type. The performance metrics we wish to compare
are the total revenue and the average task waiting time.
To make the simple strategy competitive, we computed the
optimal allocation strategy in terms of number of dedicated
machines for each VM type, and compare the simulation
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result with our proposed solution. Note that in practice,
this optimal allocation strategy is not achievable due to
the requirement for future knowledge. The results using
unmodified workload traces are shown in Table 2. The
revenue achieved by our dynamic solution is comparable
to the one obtained by the optimal allocation strategy. To
make the comparison more thorough, we also modified the
original workload traces and increased the arrival rate of
small VMs by a factor of 3 for the period between 2 hours
and 4 hours since the start time. Due to space constraint, we
only summarize the revenue and average task waiting time
for the modified workload traces in Table 2. It can be seen
that our approach out performs the static strategy in terms
of revenue and task wait time by at least20%. This shows
that our solution is most effective under highly dynamic
conditions (such as flash-crowd effects) where demand may
change significantly over time.

VIII. C ONCLUSION

Using market economy to allocate resources in IaaS
environments has recently received much attention, mainly
because of its ability to match supply and demand and
incentivize desired customer behavior. However, since cloud
computing resources are offered in distinct types of virtual
machines (VMs) that share the same resource capacity, it
becomes a challenging problem to determine the optimal
way to allocate resources to optimize total revenue while
minimizing energy cost. In this paper, we study this prob-
lem in a single provider scenario motivated by the spot
instance service offered by Amazon EC2. We present the



Table II
REVENUE AND TASK WAITING T IME ACHIEVED USING STATIC AND

DYNAMIC ALLOCATION STRATEGIES

Workload Strategy Revenue ($) Avg. task
wait time (min)

Original Static 1819.2 0.1407
Dynamic 1808.5 0.0980

Modified Static 2129.3 50.6450
Dynamic 2522.8 9.5021

design of a resource management mechanism in which
we can dynamically adjust both supply and price to meet
customers demands, while optimizing the revenue, energy
cost and request wait times. The mechanism is based on
a constrained discrete-time finite-horizon optimal control
formulation and we adopt MPC techniques for designing our
dynamic algorithm. Our proposed solution is evaluated using
realistic workload traces obtained from production clusters
at Google.

There are several directions of interest to pursue in the
future. First, in this paper we have exclusively studied a
monopoly market scenario from a IaaS provider’s perspec-
tive. It is also important to analyze the system from cus-
tomer’s perspective in terms of bidding behavior and service
quality. Second, we would like to derive a more accurate
model for demand response in public cloud environment. We
are also interested in conducting more extensive experiments
using workload data sets that contain price information.
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