
A Game-Theoretic Approach to Rule Sharing Mechanism in Networked Intrusion
Detection Systems: Robustness, Incentives and Security

Quanyan Zhu, Carol Fung, Raouf Boutaba and Tamer Başar

Abstract— Collaboration among IDSs allows users to benefit
from the collective knowledge and information from their
collaborators and achieve more accurate intrusion detection.
However, most existing collaborative intrusion detection net-
works rely on the exchange of intrusion data which raises the
privacy concern of participants. To overcome this problem,
we propose a knowledge-based intrusion detection network,
which provides a platform for IDS users to effectively share
their customized detection knowledge in an IDS community. An
automatic knowledge propagation mechanism is proposed based
on a decentralized two-level optimization problem formulation,
leading to a Nash equilibrium solution which is shown to be
scalable, incentive compatible, fair, efficient and robust.

I. I NTRODUCTION

To protect computer users from malicious intrusions, In-
trusion Detection Systems (IDSs) are designed to monitor
network traffic and computer activities by raising intrusion
alerts to network administrators or security officers. Tradi-
tional IDSs work independently from each other and rely
on downloading new signatures or detection rules from the
corresponding security vendor’s signature/rule base to remain
synchronized with new detection knowledge. However, the
increasing number and diversity of intrusions render it not
effective to rely on the detection knowledge from a single
vendor, since no single vendor can cover all the possible
intrusions due to limited labor and available technology. In-
deed, vendors usually choose to cover high priority intrusions
which may have large influence among their clients or have
high risk levels. Collaborative intrusion detection networks
(CIDNs) provide a platform for IDSs to take advantage of
the collective knowledge from collaborators to improve the
overall detection capability and accuracy. However, most
existing CIDNs, such as those in [1], [2], [3], [4], and [5],
rely on the sharing of intrusion data with others, which
raise privacy concerns from the participants. The other way,
sharing detection knowledge such as malware signatures and
intrusion detection rules, causes less privacy concern.

In reality, expert IDS users, including security analysts,
network administrators, and security system programmers,
create their own detection rules or customize existing ones
to improve detection accuracy specifically for their individual
environment [6]. A new detection rule created by one user
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may be adopted directly by another user if they have simi-
lar network/computer configurations. For example, detection
rules created for an academic computing environment may be
easily adopted by another similar institution; a new intrusion
detection rule created to minimize vulnerability of a software
can be adopted by others using the same software. An expert
user who creates new rules for newly revealed vulnerabilities
may share their rules with others who are subject to similar
vulnerabilities. Sharing rules among a large group of users
can be an effective way to improve the overall security
among all users.

In this paper, we leverage the benefit of intrusion detection
knowledge sharing and propose a knowledge sharing collab-
orative intrusion detection network, where intrusion detection
knowledge is shared among users who have similar interests
in the community. Accordingly, an automatic knowledge dis-
semination mechanism is proposed to allow users effectively
share detection rules with other users without overwhelming
their receiving capacities.

The major contributions of this paper are as follows: 1)
We develop a rule dissemination protocol based on a decen-
tralized two-level optimization framework, which determines
the information propagation rates to each recipient. We set
an optimal rule sharing policy for each node and show the
existence of a Nash equilibrium in the intrusion detection
network. 2) We employ Bayesian learning for each node
to estimate the compatibility ratio of others based on the
empirical data collected by the node. 3) We design distributed
dynamic algorithms to find the Nash equilibrium and perform
comprehensive simulations to demonstrate the efficiency,
incentive-compatibility, fairness, robustness and scalability
of the rule sharing mechanism.

The rest of the paper is organized as follows. In Section
II, we describe a knowledge sharing CIDN framework and
propose a two-level optimization model to analyze optimal
knowledge propagation in the network. In Section III, we
discuss Nash equilibrium of the distributed CIDN model
and propose practical algorithms to find it. We conduct
simulation-based study of the proposed system in Section
IV. Finally, we conclude the paper in Section V.

II. OPTIMAL KNOWLEDGE SHARING CIDNS

Defense against attackers is a challenging problem since a
defender needs to know all possible attacks to ensure network
security, whereas an attacker only needs to know a few attack
techniques to succeed. It is often impossible for one person
or a small group of defenders to know all attack techniques,
but it is common to have knowledge about some attacks.



As a result, the attackers have a significant advantage over
the defenders. This motivates defenders to share knowledge
with others to overcome their weaknesses. In fact, some
open source intrusion detection systems, such as Snort [7]
and OSSEC [8], allow users to create and edit detection
rules, which provides an opportunity for users to contribute
and exchange intrusion detection rules. The purpose of
knowledge sharing CIDN is to provide such a platform for
users to share their detection rules with others effectively. In
[9], an architecture called SMURFEN is proposed for users
to share detection rules with others in the community. The
system is built on a peer-to-peer communication overlay for
its scalability. In this section, a game-theoretical modelis
proposed for optimal knowledge sharing.

A. CIDN Knowledge Propagation Modeling

Knowledge propagation is an essential part of the CIDN
system. In this subsection, we describe a system model for
a collaborative network comprising a set ofn IDSs, denoted
by N . In the network, users are allowed to contribute and
share rules with others using peer-to-peer communication
substrate. A useri propagates new rules to its neighbors,
denoted byNi, with a probabilitypij , j ∈ Ni, to achieve
an optimal impact. We letni = |Ni| be the number of
neighbors of nodei. The communication in the collaboration
network is bi-directional, i.e., if nodei propagates rules to
nodej, then nodej also propagates rules to nodei. We use
a matrix r = [rij ]i,j∈N to represent the rule propagation
rate between nodes in the network andrij ∈ [0, r̄i], ∀i, j ∈
N , is the rule propagation rate from nodei to node j.
To make the design robust to DoS attacks, nodes specify
maximum sending rate from their neighbors. We denote by
R = [Rij ]i,j∈N the requested sending ratefrom i to j.
Note thatRij is controlled by nodej and informed to node
i. CIDNs require nodes to control their sending rate under
the requested rate, i.e.,rij ≤ Rij , ∀i, j ∈ N . To control the
communication overhead, an IDSi can set the upper-bound
Mi ∈ R++ on the total out-bound communication rate, i.e,∑

j∈Ni
rij ≤ Mi. Denote byr̄i the rule contribution rate

from nodei. The rule propagation rate from nodei to other
nodes can not exceed the rule contribution rater̄i of nodei.
Let pij ∈ [0, 1] denote the probability that nodei sends a rule
to nodej when such a new rule occurs. Then the probability
can be derived from the rule sending and contribution rates,
i.e., pij =

rij
r̄i

.
Propagated rules are not all equally useful to their recip-

ients. To capture the metric of relationship on helpfulness,
we use a matrixC = [Cij ]i,j∈N to denote thecompatibility
ratio between two nodes, whereCij ∈ [0, 1], ∀i, j ∈ N ,
representing the probability or likelihood that a rule useful
to nodei is also useful to nodej. Note that the compatibility
matrix can be asymmetric, i.e.,Cij 6= Cji.

Our goal is to devise a system-wide rule propagation
protocol so that the rules contributed by all contributors are
fairly distributed to other nodes so as to optimize their impact
on the system. To achieve this goal, we model our system
based on a two-level optimization problem formulation as

sketched in Figure 1. At the lower level, an IDSi solves the
optimization problem (PPi) where it chooses its propagation
rate ~ri to optimize its public utility function. At the upper
level, an IDSi determines the request rate to all neighbors
~Ri from a private optimization problem (Pi). The choice of
Rji at the upper level influences the decision-making at the
lower public optimization level.

(Pi) max Ui
b

(PPi) max Ui
r

(Pi) max Uj
b

(PPi) max Uj
r

Rij=qij rjiRji=qji rij

IDS i IDS j

rij

rji

Fig. 1. An illustration of the rule propagation protocol between IDS i
and IDSj. Each IDS has a two-level decision process. IDSi optimizes the
propagation raterij based on an altruistic or public optimization (PPi) and
uses a private optimization problem (Pi) to determine the requested sending
rateRji which will be passed on to IDSj for its propagation decisions.
It can be seen that the (PPj) decision of IDSj depends on the decision
from (Pi) of IDS i. The interdependence of the agents leads to a Nash
equilibrium.

B. Lower Level – Public Utility Optimization

In this subsection, we formulate an optimization frame-
work for each node to decide on the propagation rate to
all its neighbors to maximize its utility. The utility of each
nodeUi has two components: a public utility functionUr

i

and a private utility functionU b
i . The utility Ur

i measures
the aggregated satisfaction level experienced by nodei’s
neighbors weighted by their compatibility ratios. It allows
a node to propagate its rules more toward those with whom
it is more compatible. On the other hand,U b

i measures the
satisfaction level of a node with respect to the amount of
help it receives from its neighbors.

An IDS i can control two sets of variables,~ri = [rij ]j∈Ni

and ~Ri = [Rji]j∈Ni
. We call qji =

Rji

rij
the greed factor,

which reflects the greediness of the request from node
j. qji > 1 indicates that nodej requests a higher rule
propagation rate from nodei than the rate it propagates to
node i. The introduction of greed factor serves two major
purposes: 1) it sets an expectation of return ratio so that
a node i can determine its rule propagation raterij and
Rij/rji can reachqij to achieve maximum satisfaction from
nodej; 2) it serves as an upper bound for communications
between nodesi and j, i.e., rij ≤ qijrji, or equivalently,
rij ≤ Rij . It circumvents potential denial-of-service attacks
from a malicious node who sends an excessive volume of
traffic to nodej.

The public optimization problem (PPi) seen by each node
i, i ∈ N , is given by

(PPi) max
~ri∈Rni

Ur
i (~ri) :=

∑

j∈Ni

CjiSij(rij) (1)

∑

j∈Ni

rij ≤ Mi, (2)



rij ≤ Rij , (3)

0 ≤ rij ≤ r̄i, (4)

whereSij : R → R is the satisfaction level of nodej in
response to the propagation raterij of node i. We let Sij

take the following form

Sij(rij) := Cij log

(
1 +

rij
Rij

)
. (5)

The concavity and monotonicity of the satisfaction level indi-
cate that a recipient becomes increasingly pleased when more
rules are received but the marginal satisfaction decreases
as the number of received rules increases. The parameter
Cij in (5) suggests that a nodej is more content when the
compatibility or usefulness of rules sent from nodei is high.

The objective functionUr
i : Rni → R in (1) aggregates

the satisfaction levelSij of nodej by the compatibility factor
Cji. The utilityUr

i can be viewed as a public altruistic utility
in that a nodei seeks to satisfy its collaborators by choosing
propagation rates~ri. The problem (PPi) is constrained by (2)
in that the total sending rate of a nodei is upper bounded
by its communication capacity. The additional constraint (4)
ensures that the propagation rate does not exceed its rule
contribution ratēri. Note that the constraint (3) is imposed
by its recipient while constraint (4) is set by nodei itself.

Define the setsF1
i := {~ri ∈ R

ni :
∑

j∈Ni
rij ≤ Mi,Mi ∈

R++} and F2
i := ∩j∈Ni

F2
ij , whereF2

ij := {rij ∈ R+ :
rij ≤ min(Rij , r̄i)}. The optimization problem is feasible if
and only ifFi := F1

i ∩F2
i is not empty. The feasible set is a

convex polytope and it can be represented by the convex hull
of its finite set ofKi extreme pointsKi = {k1, k2, · · · , kKi

},
whereKi = |Ki|. Since the utility function (1) is strictly
convex in~ri and the feasible set is convex, the optimization
problem (PPi) is in a form of convex programming and
admits a unique solution.

It can be seen that whenMi is sufficiently large and (2) is
an inactive constraint, the solution to (PPi) becomes trivial
andrij = min(Rij , r̄i) for all j ∈ Ni. The situation becomes
more interesting when (2) is an active constraint. Assuming
thatqij and henceRij have been appropriately set by nodej,
we form the Lagrangian functionalLi : Rni ×R×R

ni → R

Li(~ri, µi, δij) :=
∑

j∈Ni

CjiCij log

(
1 +

rij
Rij

)

−µi


∑

j∈Ni

rij −Mi


−

∑

j∈Ni

δij(rij − r̄i), (6)

whereµi, δij ∈ R+ satisfy the complementarity conditions

µi

(∑
j∈Ni

rij −Mi

)
= 0, andδij(rij − r̄ij) = 0, ∀j ∈ Ni,

where r̄ij := min(Rij , r̄ij). We minimize the Lagrangian
(by differentiating it) with respect to~ri ∈ R

ni

+ and obtain the
first-order Kuhn-Tucker condition:CijCji

rij+Rij
= µi+δij , ∀j ∈

Ni. When (2) is active but (3) and (4) are inactive, we can
find an explicit solution supplied with the equality condition

∑

j∈Ni

rij = Mi (7)

and consequently, we obtain the optimal solution

r⋆ij = r∗ij :=
CijCji∑

u∈Ni
CiuCui

(
Mi +

∑

v∈Ni

Riv

)
−Rij . (8)

When either one of the constraints (3) and (4) is active, the
optimal solution is attained at one of the extreme points of
the polytope. Since thelog function has the fairness property,
the optimal solutionr⋆ij has non-zero entries when the
resource budget is positive,Mi > 0. In addition, due to the
monotonicity of the objective function, the optimal solution
r⋆ij is attained when all resource budgets are allocated, i.e.,
constraint (2) is active. Hence, the optimal solutionr⋆ij to
(PPi) is always on the face of the polytope where (7) holds.

Remark 1: We can interpret (8) as follows. The solution
r∗ij is composed of two components. The first part is a
proportional division of the resource capacityMi among
|Ni| neighbors by their compatibilities. The second part is
a linear correction on the proportional division by balancing
the requested sending rateRij . It is also important to notice
that by differentiatingr∗ij with respect toRij , we obtain
∂r∗ij
∂Rij

=
CijCji∑

u∈Ni
CiuCui

−1 < 0, suggesting that at the optimal

solution, the propagation rate decreases as the recipient
sets a higher requested sending rate. If a node wishes to
receive higher propagation rate from its neighbors, it has no
incentive to overstate its level of request. Rather, a nodej
has the incentive to understate its request level to increase
r∗ij . However, the optimal solution is upper bounded by
min(r̄i, Rij). Hence, by understating its requestRij , the
optimal propagation rate is achieved at its boundary point
min(r̄i, Rij).

C. Upper Level – Private Utility Optimization

An IDS i has another degree of freedom to choose its level
of requested sending rateRji of its neighbors.Rji states the
maximum rule propagation rate from nodej to i that node
i can accept. In contrast to the public utility optimization,
the optimization at this level is inherently non-altruistic or
private. The objective of an IDSi is to choose~Ri so that its
private utility U b

i : Rni

+ → R is maximized, i.e.,

(Pi) max
~Ri∈R

ni
+

U b
i (~Ri), (9)

subject to the following constraint from the total receiving
capacity R̄i, i.e.,

∑
j∈Ni

Rji ≤ R̄i. Let U b
i take the form

of U b
i :=

∑
j∈Ni

Cji log(1 + r⋆ji), wherer⋆ji is the optimal
solution attained at (PPi). The log function indicates that
an IDS intends to maximize its own level of satisfaction
by choosing an appropriate level of request. The request
capacity is imposed to prevent excessive incoming traffic
as a result of high level of requests. We assume that the
capacity is sufficiently large so that the constraint is inactive.
Therefore, the decision variableRji is uncoupled and the
problem (Pi) can be equivalently separated into|Ni| op-
timization problems with respect to eachj, i.e., for every
j ∈ Ni,

(Pij) max
Rji∈R+

log(1 + r⋆ji). (10)



The following proposition characterizes the optimal choice
of Rji or qji of nodei.

Proposition 1: Assume that̄ri is sufficiently large so that
the constraint (4) is inactive. The optimization problem (Pi)
admits an optimal solution given by

R∗
ji = q∗jirij =

1

2

CijCji∑
u∈Nj

CjuCuj


Mj +

∑

v∈Nj

Rjv


 . (11)

Proof: The proof of Proposition 1 is in Appendix A.

Combining the solutions to optimization problems (PPi) and
(Pi) with the above result, we arrive at

r⋆ij = R∗
ij =

1

2

CijCji∑
u∈Ni

CiuCui

(
Mi +

∑

v∈Ni

Riv

)
. (12)

Equation (12) suggests that an optimal response of node
i to node j is to propagate rules at the same rate as the
requested rate, which is proportional to the propagation rate
sent by nodej by the optimal greed factorq∗ij sinceR∗

ij =
q∗ijrji.

Mi

(0,0)

ri1

Mi

ri2

ri1

ri2

Ri1 Ri1

Ri1

Ri2

*

Fig. 2. An illustrative example of a 3-person system involving the set of
nodes{i, 1, 2}. Node i solves (PPi) while nodes 1 and 2 solve (P1i) and
(P2i), respectively.

The properties of the solutions to (Pi) and (PPi) are
illustrated in Figure 2 for an IDSi and its two neighboring
peers. In this illustrative example, we look at the optimal
propagation rule for nodei to communicate with nodes 1 and
2. Nodei solves (PPi) with constraints (1)ri1 + ri2 ≤ Mi,
(2) ri1 ≤ Ri1, and (3) ri2 ≤ Ri2. The shaded region is
the feasible set of the optimization problem. The optimal
allocation can be points on the face ofri1 + ri2 = Mi

of the feasible set. Given the request ratesRi1 and Ri2,
suppose the optimal allocation is found at the red point. At
the higher level, nodes1 and2 need to solve the optimization
problems (P1i) and (P2i), respectively. They have incentives
to understate their requests. For example, node1 can request
a lower rate until it hitsR∗

i1 and the optimal allocation will
increase until it reachesR∗

i1. This fact leads to the green
point which is the optimal solution to (PPi) found on the
vertex of its feasible set given thatri1 ≤ R∗

i1. Node2 makes
a similar decision and results inR∗

i2.

III. N ASH EQUILIBRIUM AND ALGORITHMS

In a collaboration network, each node responds to other
nodes by choosing optimal propagation rates and request
rates. The two-level optimization problem leads to two game

structures of interest. LetG1 := 〈N , {~ri}i∈N , {Ur
i }i∈N 〉 be

the game that corresponds to optimization problem (PPi) in
which each node chooses its propagation rates given the re-
quested sending rates from its neighbors. Hence, the utilities
of the users in Equation (5) reduce to mere functions of
rij . Denote byG2 := 〈N , {~ri, ~Ri}i∈N , {Ur

i , U
b
i }i∈N 〉 the

game that corresponds to the two-level optimization problem
(PPi) together with (Pi). In G2, each nodei chooses its
propagation rates as well as its request rates. We next study
the existence and uniqueness properties of Nash equilibria
(NE) of these two games:

Proposition 2: There exists a NE forG1 andG2.
The proof of Proposition 2 is in Appendix B.
Theorem 1: There exists a NE such thatrij = Rij ,

∀i, j ∈ N in G2. We call such NE a prime NE.
The proof of Theorem 1 is provided in Appendix C. In

the following, we state two results on the uniqueness of NE
in G1 and G2. Their proofs are in Appendices D and E,
respectively.

Proposition 3: Assume that only (2) is an active con-
straint in optimization problem (Pi) of each nodei in G1.
Let λij =

CijCji∑
u∈Ni

CiuCui
. Then, there exists a unique NE

for G1 if qijqji 6=
1

(1−λij)(1−λji)
for each pair of neighbor

nodesi, j.

Proposition 4: Assume that̄ri is sufficiently large and the
response of each node follows (12). There exists a unique
NE for G2 if niλij < 2 for every pair of neighbor nodesi
and j.

A. Dynamic Algorithm to Find the Prime NE

Algorithm 1 Distributed Dynamic Algorithm to Find the Prime
NE at nodei

1: Initialization :
2: ~Rin ⇐ {ǫ, ǫ, ..., ǫ} // Small request rates for new neighbors.
3: ~Rout ⇐ SendReceive(~Rin) // Exchange requested sending rates with

all neighbors.
4: set new timer event(tu, “SpUpdate”) // Update sending rates and

request rates periodically.
5: Periodic update:
6: at timer event ev of type “SpUpdate” do
7: // Update the sending rate to all neighbors and then updatethe

requested sending rates from all neighbors.
8: for k = 0 to B do
9: ~rout ⇐ OptimizeSending(C, ~Rout,M, r̄) // (PPi) optimization.

10: ~rin ⇐ SendReceive(~rout) // Exchange sending rate with all
neighbors.

11: ~Rin ⇐ OptimizeRequest(C, ~rin, R̄) // (Pi) optimization.
12: ~Rout ⇐ SendReceive(~Rin) // Exchange requested sending rate

with all neighbors.
13: end for
14: set new timer event(tu, “SpUpdate”)

15: end timer event

In this subsection, we describe a distributed algorithm
(Algorithm 1) for each node to decide on its rule propagation
rates. The subscripti is removed for the convenience of
presentation. The goal of the algorithm is to lead the system
to converge to a prime NE which we defined earlier. In
the beginning, nodes set a small requested sending rate for
all new neighbors (line 2). An update process is triggered



periodically where functionOptimizeSending is used for
the nodes to find their optimal sending rates~rout based
on the compatibility matrixC and requested sending rate
~Rout, which is informed by the acquaintances in process
SendReceive (line 3). M and r̄ are the sending capac-
ity and rule contribution rate ofi, respectively. Function
OptimizeRequest is used for the nodes to find optimal
~Rin (G2) which gives the maximal private utility, given
the C, the incoming sending rate~rin, and the receiving
capacityR̄. The update process is repeatedB rounds to yield
a converged result.

IV. EVALUATION

We simulate a network ofn nodes. Each nodei ∈
{1, 2, · · · , n} is labeled with an expertise levelei ∈
[0, 1], ∀j ∈ N , which is the probability that a rule propagated
by node i is effective for intrusion detection. Note that
the higher the expertise level, the higher the compatibility
value. Each nodei contributes detection rules to the network
following a Poisson distribution with an average arrival
rate r̂i. Cij is learned byj through past experiences using
the Bayesian learning method described in [9]. The rule
propagation follows the two-level game design described in
Section II. In this section, we show some selected results on
propagation efficiency, incentive compatibility, fairness, and
robustness of the system.

Fig. 3 shows the propagation efficiency for both the mail-
ing list and our system. We define the propagation efficiency
to be the percentage of useful rules that nodes receive. We
see that when using the our system, the information qualities
received by both the low-expertise and the high-expertise
nodes are significantly improved compared to the mailing
list method. The high-expertise nodes receive higher quality
rules than low-expertise nodes, which reflects the incentive-
compatibility of the system.

Fig. 4 shows that uniform gossiping provides no incentive
to nodes with higher compatibility. On the other hand, the
best neighbor propagation scheme provides incentive but no
fairness. Nodes of the same compatibility may have very
different return benefits. This is because under the best neigh-
bor mechanism, nodes form collaboration groups. Nodes of
the same compatibility may join different groups. Since the
return benefit largely depends on which group a node belongs
to, nodes with the same compatibility values may have
significantly different return benefit. On the contrary, our
system has a continuous concave utility on the return benefit
over compatibility values. It ensures incentive compatibility
as well as fairness.

Fig. 5 is to demonstrate the robustness of the system in the
face of insider denial-of-service attacks. We can see that the
influence of a node is bounded in the system. This is because
the system enforces propagation agreements between each
pair of nodes. Each node sets a rule propagation limit to
all its neighbors using the two-level game (see Section II).
Therefore, when a node intends to launch a DoS attack, the
amount of rules it is allowed to send to others is bounded
by the limits set by its neighbors. Nodes sending excessive

traffic to neighbors will be revealed as potential malicious
nodes, and thus removed from the neighbor list of others.

V. CONCLUSION

In this paper, we have studied a rule-sharing collabora-
tive intrusion detection network and used a game-theoretic
framework for its protocol design. We have shown that
at equilibrium the system has the properties of incentive
compatibility, and robustness to denial-of-service attacks.
Moreover, the system has also been proved to be fair, efficient
and scalable. Through simulations, we have corroborated
these important CIDN properties. As future work, we intend
to show system robustness to different insider attacks.

APPENDIX

A. Proof of Proposition 1

From Remark 1, we learn thatr∗ij is a monotonic de-
creasing function with respect toRij or qij . Since the
utility function in (Pij) is monotonically increasing with
r∗ji, increasingRji will decrease the utility. Hence, an IDS
seeks to lowerRji until the optimal utility is achieved to be
U b⋆
i = log(1+ r̄ji). In other words, an optimal solutionR∗

ji

achieves atr∗ji = r̄ji. Assume that̄ri is sufficiently large,
we haver̄ji = Rji. ThenR∗

ji solves

R∗
ji =

CijCji∑
u∈Nj

CjuCuj


Mj +

∑

v∈Nj

Rjv


−R∗

ji, (13)

which yields (11). It is easy to see that any requests0 <
Rji < R∗

ji will lower the optimal allocationr⋆ij and hence
its utility.

�

B. Proof of Proposition 2

In G1, for eachi ∈ N , the feasible setFi is a closed,
bounded and convex subset ofR

ni . The public utility func-
tion Ur

i is jointly continuous in its arguments and strictly
convex in~ri. Hence, using Theorem 4.3 in [10], it follows
thatG1 admits a Nash equilibrium in pure strategies.

In G2, without relaxation, the convex program (PPi)
admits a solutioñrij , which is continuous in~Ri [11]. The
feasible set of (Pi) is compact and convex and theU b

i is
jointly continuous in its arguments and strictly convex in~Ri.
Hence,G2 has a Nash equilibrium at the level of private op-
timization. We can determiner⋆ij which yields an equilibrium
at the level of public optimization. Therefore,G2 admits a
Nash equilibrium in pure strategies of{(~ri, ~Ri), i ∈ N}. �

C. Proof of Theorem 1

We first introduce a few definitions and then prove Propo-
sition 5, which will be used in the proof of Theorem 1.

Definition 1: Let ~R∗
i , ~ri, i ∈ N , be a NE. The non-prime

degreeD of an equilibrium is the number of distinct pairs
{i, j}, j ∈ Ni, such thatR∗

ij 6= r∗ij . Note that a prime NE
has non-prime degree0.

In this proof, we show that any non-prime NE can be
reduced to a prime NE withD = 0. From Proposition
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2, we know that there exists at least one NE forG2. Let
R

∗ = [~R∗
i ]i∈N andr∗ = [~r∗i ]i∈N be a NE. Suppose it is not

a prime NE. Hence, there must exist at least one pair that
satisfiesr∗uv < R∗

uv for some pair{u, v}. Construct a feasible
solution (R′, r∗) from (R∗, r∗) such thatR

′

ij = R∗
ij , for

every {i, j} ∈
⋃

i6=j,j∈Ni,i∈N {i, j}\{u, v}, andR
′

ij = r∗ij ,
for {i, j} = {u, v}. From Proposition 5, it follows that
(R′, r∗) also constitutes a NE, whose non-prime degree
becomesD̄i − 1. By an iterative process, a non-prime NE
(R∗, r∗) can be reduced to a prime NE. Hence, there exists
a prime NE inG2. �

Proposition 5: Let (R∗, r∗) be a NE withD̄ 6= 0 and
{u, v} be a pair of nodes such thatr∗uv < R∗

uv. Let (R′, r′)
be a constructed feasible solution such thatr

′ = r
∗, R

′

ij =
R∗

ij , for every {i, j} ∈
⋃

i6=j,j∈Ni,i∈N {i, j}\{u, v}, and
R

′

ij = r∗ij , for {i, j} = {u, v}. Then (R′, r∗) is a NE of
G2.

We need to show thatr∗ is an optimal response toR
′

and then nodes have no incentive to deviate fromR
′

. For
a feasible solution(R, r), we say thatrij is a boundary
allocation if rij = min(r̄i, Rij); otherwise, we say thatrij
is an internal allocation. At a NE solution, the marginal gains
∂Ur

i

∂rij
, j ∈ Ni, are equal for internal allocation points. In

addition, the marginal gain ofi at boundary allocations is
no less than the marginal gains ofi at internal allocations.

SinceR∗ is a G2 NE, nodev has no incentive to move
by changingRuv. If a nodev decreases its request tou from
valueR∗

uv to valuer∗uv, then the allocation from nodeu will
not increase. This can be easily shown by contradiction as
follows.

Suppose the reverse is true, then there must exist an
internal allocationrum to m whose marginal gain is higher
than the marginal gain atR

′

uv. However, from (2) and (5),
we can see that by understating the requests, nodes can
increase their marginal gains. Hence, the marginal gain at
r∗um is larger than the marginal gain atr∗uv. Therefore, we can
conclude thatr∗ is not an optimal solution of configuration
R

∗, which contradicts with the property of NE.
We also observe that nodev can not gain fromu by either

decreasing or increasing its request atR
′

uv. Decreasing the
request results in decreasing the allocation fromu, since
the resource is bounded by the request. On the other hand,
increasing the request atR

′

uv shall not increase the allocation
from u, since it will otherwise contradict with the properties
of NE R

∗ that nodesv can not gain better utility by changing
its request at a NE.

Therefore, after the nodev decreasesR∗
uv to R

′

uv = r∗uv,
we arrive atr

′

= r
∗. The constructed solutionR

′

andr
′

is
another NE ofG2. �

D. Proof of Proposition 3

For each pair of collaborative nodesi, j, we haverij =
Aijrij + bij , where rij = [rij , rji]

T , bij = [λij(Mi +∑
v 6=j,v∈Ni

qivrvi), λji(Mj +
∑

v 6=i,v∈Nj
qjvrvj)]

T , and

Aij =

[
0 (λij − 1)qij

(λji − 1)qji 0

]
. Given the existence

of Nash equilibrium and the assumptions onqij andqji, the
uniqueness of the Nash equilibrium is ensured only when
Aij is non-singular. �

E. Proof of Proposition 4
From (12), we can conclude that the optimal response

R∗
ij to other nodes is given byR∗

ij =
λij

2−λij
(Mi +∑

v 6=j,v∈Ni
Riv). SinceR∗

ij is linear in Riu, u ∈ Ni, we
can build the above set of equations into a linear system
of equations with the variablesRij , i, j ∈ N stacked into
one vector. The linear system has a unique solution if
the condition of diagonal dominance holds, leading to the
condition. �
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