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Abstract— Collaboration among IDSs allows users to benefit may be adopted directly by another user if they have simi-
from the collective knowledge and information from their |gr network/computer configurations. For example, detecti
collaborators and achieve more accurate intrusion detection. 1a5 created for an academic computing environment may be
However, most existing collaborative intrusion detection net- ilv adopted b th imilar institution: irity
works rely on the exchange of intrusion data which raises the easl y.a opted by another .S'.m'.ar Institu 'On.’_a new inoas
privacy concern of participants_ To overcome this prob|em' detection rule created to minimize Vu|nerabl|lty of a saftey
we propose a knowledge-based intrusion detection network, can be adopted by others using the same software. An expert
which provides a platform for IDS users to effectively share yser who creates new rules for newly revealed vulneradsliti
their customized detection knowledge in an IDS community. An may share their rules with others who are subject to similar

automatic knowledge propagation mechanism is proposed based | biliti Shari | | f
on a decentralized two-level optimization problem formulation, vuinerabilities. aring rules among a large group or users

leading to a Nash equilibrium solution which is shown to be C€an be an effective way to improve the overall security

scalable, incentive compatible, fair, efficient and robust. among all users.
In this paper, we leverage the benefit of intrusion detection
. INTRODUCTION knowledge sharing and propose a knowledge sharing collab-

To protect computer users from malicious intrusions, Inerative intrusion detection network, where intrusion déten
trusion Detection Systems (IDSs) are designed to moniténowledge is shared among users who have similar interests
network traffic and computer activities by raising intrusio in the community. Accordingly, an automatic knowledge dis-
alerts to network administrators or security officers. Trad semination mechanism is proposed to allow users effegtivel
tional IDSs work independently from each other and relghare detection rules with other users without overwhedmin
on downloading new signatures or detection rules from thigaeir receiving capacities.
corresponding security vendor’s signature/rule basertane The major contributions of this paper are as follows: 1)
synchronized with new detection knowledge. However, thé/e develop a rule dissemination protocol based on a decen-
increasing number and diversity of intrusions render it ndralized two-level optimization framework, which determag
effective to rely on the detection knowledge from a singléhe information propagation rates to each recipient. We set
vendor, since no single vendor can cover all the possibkn optimal rule sharing policy for each node and show the
intrusions due to limited labor and available technology. | existence of a Nash equilibrium in the intrusion detection
deed, vendors usually choose to cover high priority inbmsi  network. 2) We employ Bayesian learning for each node
which may have large influence among their clients or ha® estimate the compatibility ratio of others based on the
high risk levels. Collaborative intrusion detection netised empirical data collected by the node. 3) We design disteitbut
(CIDNSs) provide a platform for IDSs to take advantage oflynamic algorithms to find the Nash equilibrium and perform
the collective knowledge from collaborators to improve the&omprehensive simulations to demonstrate the efficiency,
overall detection capability and accuracy. However, moshcentive-compatibility, fairness, robustness and duibig
existing CIDNs, such as those in [1], [2], [3], [4], and [5], of the rule sharing mechanism.
rely on the sharing of intrusion data with others, which The rest of the paper is organized as follows. In Section
raise privacy concerns from the participants. The other, wall, we describe a knowledge sharing CIDN framework and
sharing detection knowledge such as malware signatures gumpose a two-level optimization model to analyze optimal
intrusion detection rules, causes less privacy concern.  knowledge propagation in the network. In Section I, we

In reality, expert IDS users, including security analystsgiscuss Nash equilibrium of the distributed CIDN model
network administrators, and security system programmerand propose practical algorithms to find it. We conduct
create their own detection rules or customize existing onesmulation-based study of the proposed system in Section
to improve detection accuracy specifically for their indival  1V. Finally, we conclude the paper in Section V.
environment [6]. A new detection rule created by one user

1. OPTIMAL KNOWLEDGE SHARING CIDNS
Ve%tyzr;‘]f Iallri]r?oi; ?gggr V?/;itwmir‘]hes t?Cﬁ'bgﬁg,arrmegiS%nﬁsg.SIE- Uni- Defense against attackers is a challenging problem since a
mail:{zhu31, basarl@illinois.edu; C. Fung and R. Boutaba are with thedefender needs to know all possible attacks to ensure rietwor
Cheriton School of Computer Science at University of Watgri@ntario, ~Security, whereas an attacker only needs to know a few attack

Canada; E-mail{j22fung, rboutabh@uwaterloo.ca; The research at thetechniques to succeed. It is often impossible for one person
University of lllinois was supported in part by an AFOSR MURFant I f defend K I K hni
numbered FA9550-10-1-0573, and in part by the Boeing Compamopgh ~ ©F @ Small group of defenders to know all attack techniques,

the Information Trust Institute. but it is common to have knowledge about some attacks.



As a result, the attackers have a significant advantage owetched in Figure 1. At the lower level, an IDSolves the
the defenders. This motivates defenders to share knowledggtimization problem (P® where it chooses its propagation
with others to overcome their weaknesses. In fact, sonrate 7; to optimize its public utility function. At the upper
open source intrusion detection systems, such as Snort [&)el, an IDSi determines the request rate to all neighbors
and OSSEC [8], allow users to create and edit detectioR; from a private optimization problem (P The choice of
rules, which provides an opportunity for users to contgbutR;; at the upper level influences the decision-making at the
and exchange intrusion detection rules. The purpose wer public optimization level.

knowledge sharing CIDN is to provide such a platform for
users to share their detection rules with others effegtival
[9], an architecture called SMURFEN is proposed for users (Pi) max b (Pi) max U}
to share detection rules with others in the community. The

system is built on a peer-to-peer communication overlay for Rji=dji Tij | Ri=dh Tji
its scalability. In this section, a game-theoretical moidel Tij '
proposed for optimal knowledge sharing. (PPi) max U; (PPi) max U;f

A. CIDN Knowledge Propagation Modeling

Knowledge propagation is an essential part of the CIDN IDS i IDS ]

system. In t.hIS subsection, We. Qescrlbe a system model fﬁE} 1. An illustration of the rule propagation protocol ween IDS:
a collaborative network comprising a set/o1DSs, denoted and IDS;. Each IDS has a two-level decision process. iDSptimizes the

by N. In the network, users are allowed to contribute anefopagationtrateit]_- b_aStta_d on aB|aItr'L;Eéi% otr public tc;]ptimizatiotn gyamé _
. . . . .. Uses a private optimization problem; etermine the requested sending
share rules with others using peer-to-peer Commumcat'(ﬂj[e R;; which will be passed on to ID$ for its propagation decisions.

substrate. A usef propagates new rules to its neighborsjt can’be seen that the (PPdecision of IDS; depends on the decision
denoted by\;, with a probabilityp;;,j € Nj, to achieve from (Pi) of IDS i. The interdependence of the agents leads to a Nash
an optimal impact. We let; = |A;| be the number of Squiirium.

neighbors of node. The communication in the collaboration B. Lower Level — Public Utility Optimization

network is bi-directional, i.e., if nodeé propagates rules to | this subsection, we formulate an optimization frame-
nodej, then nodej also propagates rules to nodeWe use \york for each node to decide on the propagation rate to
a matrixr = [r;;]; jen to represent the rule propagationy)| its neighbors to maximize its utility. The utility of elac
rate between nodes in the network angl € [0,7;],Vi,j €  nodel; has two components: a public utility functidii”

N, is the rule propagation rate from nodeto nodej. and a private utility function7?. The utility U7 measures
To make the design robust to DoS attacks, nodes specifye aggregated satisfaction level experienced by nisle
maximum sending rate from their neighbors. We denote byeighbors weighted by their compatibility ratios. It allew
R = [R;j]ijen the requested sending ratbom i to j. 4 node to propagate its rules more toward those with whom
Note thatR;; is controlled by nodg and informed to node it is more compatible. On the other harid? measures the

i. CIDNs require nodes to control their sending rate und&fatisfaction level of a node with respect to the amount of
the requgste_d rate, i.e;; < R;;,Vi,j € N. To control the help it receives from its neighbors.
communication overhead, an IDSan set the upper-bound  An IDS 5 can control two sets of variableg, = [rij] en,
M; € R, on the total out-bound communication rate, i.eqng R, = [Rjiljen,. We call ¢;; = Bii the greed factor

— . . 7 Ti,' 1
2 jen; Tij < M;. Denote byr; the rule contribution rate yhich reflects the greediness of the request from node
from nodei. The rule propagation ra’ge fr.om nodeo othgr j. ¢ > 1 indicates that node requests a higher rule
nodes can not exceed the rule c_o_ntrlbut|on ratef nodes. propagation rate from nodethan the rate it propagates to
Letp;; € [0, 1] denote the probability that nodesends arule 5qe; The introduction of greed factor serves two major
to nodej when such a new rule occurs. Then the pmbab'“%urposes: 1) it sets an expectation of return ratio so that

can be derived from the rule sending and contribution rates, . TR ;
oy g & node: can determine its rule propagation ratg and

.., pij = 7, - R;;/r;; can reachy;; to achieve maximum satisfaction from

. Propagated rules are not all equa_lly usgful to their reCiFh'odej; 2) it serves as an upper bound for communications
ients. To capture the metric of relationship on helpfulpes$,anyeen nodes and j, i.e. rij < qijrji, or equivalently,

we use a matrbC = [Cy]; jen to denote theompatibility ... < .. it circumvents potential denial-of-service attacks

ratio between two nodes, wher€;; € [0,1],¥i,j € N, fom a malicious node who sends an excessive volume of
representing the probability or likelihood that a rule wsef ¢ 4tfic to node;.

to node; is also useful to nodg. Note that the compatibility — The public optimization problem (RPseen by each node

matrix can be asymmetric, i.eCj;; # Cj;. i,i € N, is given by
Our goal is to devise a system-wide rule propagation
protocol so that the rules contributed by all contributares a (PP) max U (7) = Y CjiSi(rij) 1)
fairly distributed to other nodes so as to optimize theiraeip ' JEN;
on the system. To achieve this goal, we model our system Z ri; <M 2)

based on a two-level optimization problem formulation as JEN:



ri; < Ry, (3) and consequently, we obtain the optimal solution

0 <mry < 7 4
= T s T ( ) ot CijCji
where S;; : R — R is the satisfaction level of nodgin Y >\ CiCui

response to the propagation ratg of node:. We let S;;

take the following form

M; + Z Riv) - R;j. (8)
veN;
When either one of the constraints (3) and (4) is active, the
optimal solution is attained at one of the extreme points of
Si;(ri;) == Ci; log (1 4 T ) (5) the poly_tope. Sinc_e thieg function has the fair_ness property,
R;; the optimal solutionr; has non-zero entries when the
The concavity and monotonicity of the satisfaction leveliin resource budget is positivé/; > 0. In addition, due to the
cate that a recipient becomes increasingly pleased whea m#ronotonicity of the objective function, the optimal sobuti
rules are received but the marginal satisfaction decreasgy is attained when all resource budgets are allocated, i.e.,
as the number of received rules increases. The parameg@nstraint (2) is active. Hence, the optimal solutigh to
Cy; in (5) suggests that a nodeis more content when the (PP%) is always on the face of the polytope where (7) holds.
compatibility or usefulness of rules sent from nads high. Remark 1: We can interpret (8) as follows. The solution
The objective function/7 : R™ — R in (1) aggregates 77 is composed of two components. The first part is a
the satisfaction leve$;; of node; by the compatibility factor proportional division of the resource capacity; among
Cj;. The utility U7 can be viewed as a public altruistic utility [V;| neighbors by their compatibilities. The second part is
in that a node seeks to satisfy its collaborators by choosing linear correction on the proportional division by balaggi
propagation rateg;. The problem (PF is constrained by (2) the requested sending ral&;. It is also important to notice
in that the total sending rate of a nodés upper bounded that by differentiatingr;; with respect toR;;, we obtain

by its communication capacity. The additional constraiit ( g%;}_ = %_1 < 0, suggesting that at the optimal
ensures that the propagation rate does not exceed its rdigition, the propagation rate decreases as the recipient
contribution rater;. Note that the constraint (3) is imposedsets a higher requested sending rate. If a node wishes to
by its recipient while constraint (4) is set by notiéself. — yeceive higher propagation rate from its neighbors, it fas n
Define the sets;’ .= {r; € R™ : > e, 7ij < Mi, Mi € jncentive to overstate its level of request. Rather, a npde
Rit} and 77 = Mjen, F7j, where 7 := {r;; € Ry : pag the incentive to understate its request level to inereas
rij < min(Rij,7;)}. The optimization problem is feasible if .« However, the optimal solution is upper bounded by
and only if 7; := F'N 7 is not empty. The feasible set is am]in(ﬂ’ Ri;). Hence, by understating its requeBt;, the
convex polytope and it can be represented by the convex Nhtimal propagation rate is achieved at its boundary point
of its finite set ofK; extreme pointdC; = {k1, ko, -, kx, }, min(r;, Rij).
where K; = |K;|. Since the utility function (1) is strictly
convex in7; and the feasible set is convex, the optimizatior- Upper Level — Private Utility Optimization
problem (PR) is in a form of convex programming and An IDS ;i has another degree of freedom to choose its level
admits a unigue solution. of requested sending rate;; of its neighborsR;; states the
It can be seen that whel; is sufficiently large and (2) is maximum rule propagation rate from nogeo i that node
an inactive constraint, the solution to @@Pecomes trivial ; can accept. In contrast to the public utility optimization,
andr;; = min(R;;, 7;) for all j € NV;. The situation becomes the optimization at this level is inherently non-altruistr
more interesting when (2) is an active constraint. Assumingrivate. The objective of an IDSis to chooseR; so that its
thatg,;; and hencek;; have been appropriately set by node private utility U} : R’} — R is maximized, i.e.,
we form the Lagrangian functiond’ : R™ x R x R™ — R

(P))  max UP(Ry), 9)
LTy, iy i) = Z C;iCijlog (1 + ;;j) Ri€Ry’
JEN; i subject to the following constraint from the total recegyin
capacity R;, i.e., Sien, Rii < R;. Let U} take the form
— Z rij — M | — Z 8ij(rij — ), (6) of Ul =3, n. Cjilog(1+7},), wherer?, is the optimal
JEN; JEN; solution attained at (PP The log function indicates that

an IDS intends to maximize its own level of satisfaction
by choosing an appropriate level of request. The request
M Zje./\/i rij — M; ) =0, andd;;(ri; —75) = 0,V € Nj, capacity is imposed to prevent excessive incoming traffic
where 7;; := min(R;;,7;;). We minimize the Lagrangian as a result of high level of requests. We assume that the
(by differentiating it) with respect to; € R’} and obtain the capacity is sufficiently large so that the constraint is fivac
first-order Kuhn-Tucker conditionﬁ% = u;+6;5, Vj € Therefore, the decision variablg;; is uncoupled and the

N;. When (2) is active but (3) and (4L)J are inactive, we camproblem (R) can be equivalently separated int&/;| op-
find an explicit solution supplied with the equality conditi timization problems with respect to eagh i.e., for every

where u;, 6;; € Ry satisfy the complementarity conditions

JjEN,
> ry =M, @) Pij log(1 + 1%, 10
= (Pij) Anax. og(1+r7;). (10)



The following proposition characterizes the optimal chkoic structures of interest. L&&1 := (N, {7 }ien, {U] Fienr) be

of Rj; or ¢;; of nodes.

the game that corresponds to optimization probleni)#RP

Proposition 1: Assume that; is sufficiently large so that which each node chooses its propagation rates given the re-
the constraint (4) is inactive. The optimization problem) (P quested sending rates from its neighbors. Hence, theesilit

admits an optimal solution given by

1 CijCji

I CuCi . (1)

Mj + Z ij
’UENj

ko ko
Rj; = qjimij =

Proof: The proof of Proposition 1 is in Appendix A.

[ ]
Combining the solutions to optimization problems {(P&nd
(P:) with the above result, we arrive at

1 C..C..
rh =R == | Mit+ ) R | (12
’ ’ 2 Zue.f\ﬁ- C?ucuv ( 1)€ZM, ) ( )

of the users in Equation (5) reduce to mere functions of
ri;. Denote byG2 := (N, {7, RiYienr, {UT, Ul}icnr) the
game that corresponds to the two-level optimization proble
(PR) together with (P). In G2, each nodei chooses its
propagation rates as well as its request rates. We next study
the existence and uniqueness properties of Nash equilibria
(NE) of these two games:

Proposition 2: There exists a NE fofz1 and G2.

The proof of Proposition 2 is in Appendix B.

Theorem 1: There exists a NE such thai; = Ry,
Vi, € N in G2. We call such NE a prime NE.

The proof of Theorem 1 is provided in Appendix C. In

Equation (12) suggests that an optimal response of nog@ge following, we state two results on the uniqueness of NE

i to node is to propagate rules at the same rate as th@ G1 and G2. Their proofs are in Appendices D and E,
requested rate, which is proportional to the propagatite rarespectively.

sent by nodej by the optimal greed factay;; since R;; =

*
qij,rji'
liz

A
r=<Ri
M, [ Ri
\.Qf r.<Ro
; r\l
0.0 M
Ri R:
Fig. 2. An illustrative example of a 3-person system invalvthe set of
nodes{s, 1,2}. Node: solves (PP while nodes 1 and 2 solve {F) and

(P214), respectively.

The properties of the solutions to ijPand (PR) are
illustrated in Figure 2 for an ID$ and its two neighboring

peers. In this illustrative example, we look at the optimal 4
propagation rule for nodeto communicate with nodes 1 and

2. Nodei solves (PP with constraints (1)1 + r2 < M;,

(2) ri1 < R;1, and (3)r;2 < Rys. The shaded region is
the feasible set of the optimization problem. The optimal

allocation can be points on the face ofi + ri» = M;
of the feasible set. Given the request rafes and R;»,

Proposition 3: Assume that only (2) is an active con-
straint in optimization problem ¢ of each node in G1.

Let \;; = % Then, there exists a unique NE

for G1 if ¢;5q;; # m for each pair of neighbor
nodesi, j.

Proposition 4: Assume that; is sufficiently large and the
response of each node follows (12). There exists a unique
NE for G2 if n;\;; < 2 for every pair of neighbor nodes
andj.

A. Dynamic Algorithm to Find the Prime NE

Algorithm 1 Distributed Dynamic Algorithm to Find the Prime
NE at nodei

1: Initialization :
2: R™ <= {e,¢, ..., e} Il Small request rates for new neighbors.
3 Rout = SendReceiv(aﬁi") /I Exchange requested sending rates with
all neighbors.
set new timer event,, “SpUpdate) // Update sending rates and
request rates periodically.
5: Periodic update:
6: at timer event ev of type ‘SpUpdat€’ do
7: /I Update the sending rate to all neighbors and then uptiee
requested sending rates from all neighbors.
8: for k =0to B do .
1 7out < OptimizeSending C, R°“t, M, 7) I/ (PPi) optimization.
10: 7" <« SendReceivé®“t) // Exchange sending rate with all

suppose the optimal allocation is found at the red point. At

the higher level, nodesand2 need to solve the optimization E
problems (R:) and (R), respectively. They have incentives

to understate their requests. For example, nbdan request 13:
14:

15:

a lower rate until it hitsR}, and the optimal allocation will
increase until it reache®},. This fact leads to the green

neighbors.
R « OptimizeReques{C, ™, R) // (Pi) optimization.
Rout = SendReceiveﬁm) /I Exchange requested sending rate
with all neighbors.
end for
setnew timer eventy,,

end timer event

“SpUpdate’)

point which is the optimal solution to (PPfound on the

vertex of its feasible set given that, < R};. Node2 makes
a similar decision and results iR},

I11. NASH EQUILIBRIUM AND ALGORITHMS

In this subsection, we describe a distributed algorithm
(Algorithm 1) for each node to decide on its rule propagation
rates. The subscript is removed for the convenience of
presentation. The goal of the algorithm is to lead the system

In a collaboration network, each node responds to othés converge to a prime NE which we defined earlier. In
nodes by choosing optimal propagation rates and requdbe beginning, nodes set a small requested sending rate for
rates. The two-level optimization problem leads to two gamall new neighbors (line 2). An update process is triggered



periodically where functionOptimizeSending is used for traffic to neighbors will be revealed as potential malicious
the nodes to find their optimal sending ratg¥® based nodes, and thus removed from the neighbor list of others.
on the compatibility matrixC and requested sending rate
Reut which is informed by the acquaintances in process
SendReceive (line 3). M and 7 are the sending capac- In this paper, we have studied a rule-sharing collabora-
ity and rule contribution rate of, respectively. Function tive intrusion detection network and used a game-theoretic
OptimizeRequest is used for the nodes to find optimal framework for its protocol design. We have shown that
Rin (G2) which gives the maximal private utility, given at equilibrium the system has the properties of incentive
the C, the incoming sending rat&”, and the receiving compatibility, and robustness to denial-of-service #ac
capacityR. The update process is repeaf@dounds to yield Moreover, the system has also been proved to be fair, efficien
a converged result. and scalable. Through simulations, we have corroborated
these important CIDN properties. As future work, we intend
to show system robustness to different insider attacks.

V. CONCLUSION

IV. EVALUATION

We simulate a network of» nodes. Each nodeé ¢
{1,2,---,n} is labeled with an expertise levet; €
[0,1],V5 € N, which is the probability that a rule propagatedA. Proof of Proposition 1

by nodei is effective for intrusion detection. Note that From Remark 1, we learn that; is a monotonic de-
the higher the expertise level, the higher the compatbilitcreasing function with respect t&,; or g¢;;. Since the
value. Each node contributes detection rules to the networkytijity function in (Pij) is monotonically increasing with
following a Poisson distribution with an average arrivalrafi' increasingR;; will decrease the utility. Hence, an IDS
rate7;. Cj; is learned byj through past experiences usingseeks to lowet?;; until the optimal utility is achieved to be
the Bayesian learning method described in [9]. The I'U|@/‘ib* = log(1 + 7). In other words, an optimal solutioR’;

propagation follows the two-level game design described igchieves at’; = 7;;. Assume that; is sufficiently large,
Section Il. In this section, we show some selected results g haver;; = R;;. Then R}, solves

propagation efficiency, incentive compatibility, fairsesand
robustness of the system. . Ci;Cjs §
Fig. 3 shows the propagation efficiency for both the mail- £%j; = S CuCos M;+ > Rj, | - R;, (13)
ing list and our system. We define the propagation efficiency ueN; Iu vEN;
to be the percentage of useful rules that nodes receive. Wich yields (11). It is easy to see that any requésts

see that when using the our system, the information qwalitiqgji < R, will lower the optimal allocation?; and hence
received by both the low-expertise and the high-expertisgs yiility. ‘

nodes are significantly improved compared to the mailing 0
list method. The high-expertise nodes receive higher tyali
rules than low-expertise nodes, which reflects the incentivB. Proof of Proposition 2
compatibility of the system. In G1, for eachi € N, the feasible sef; is a closed,

Fig. 4 shows that uniform gossiping provides no incentivounded and convex subset®f:. The public utility func-
to nodes with higher compatibility. On the other hand, théion U; is jointly continuous in its arguments and strictly
best neighbor propagation scheme provides incentive but Benvex in#;. Hence, using Theorem 4.3 in [10], it follows
fairness. Nodes of the same compatibility may have verhat G1 admits a Nash equilibrium in pure strategies.
different return benefits. This is because under the beghnei  In G2, without relaxation, the convex program (#PP
bor mechanism, nodes form collaboration groups. Nodes atimits a solution®;;, which is continuous ink; [11]. The
the same compatibility may join different groups. Since thgeasible set of (B is compact and convex and tﬁél.b is
return benefit largely depends on which group a node belong@sintly continuous in its arguments and strictly convexip
to, nodes with the same compatibility values may havelence,G2 has a Nash equilibrium at the level of private op-
significantly different return benefit. On the contrary, outimization. We can determine; which yields an equilibrium
system has a continuous concave utility on the return beneit the level of public optimization. Therefor€2 admits a
over compatibility values. It ensures incentive compétibi Nash equilibrium in pure strategies {)Q‘Fi7ﬁi)7i eN). O
as well as fairness.

Fig. 5 is to demonstrate the robustness of the system in the Proof of Theorem 1
face of insider denial-of-service attacks. We can see timtt We first introduce a few definitions and then prove Propo-
influence of a node is bounded in the system. This is becausiion 5, which will be used in the proof of Theorem 1.
the system enforces propagation agreements between eacBbefinition 1: Let E;‘,Fi,z‘ € N, be a NE. The non-prime
pair of nodes. Each node sets a rule propagation limit tdegreeD of an equilibrium is the number of distinct pairs
all its neighbors using the two-level game (see Section 11)i,5},5 € N, such thatR;; # r;;. Note that a prime NE
Therefore, when a node intends to launch a DoS attack, thas non-prime degre@
amount of rules it is allowed to send to others is bounded In this proof, we show that any non-prime NE can be
by the limits set by its neighbors. Nodes sending excessiveduced to a prime NE withD = 0. From Proposition

APPENDIX
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2, we know that there exists at least one NE 2. Let
R* = [R!];car andr* = [];cn be a NE. Suppose it is not
a prime NE. Hence, there must exist at least one pair th
satisfies, < R?, for some paifu, v}. Construct a feasible

uv

solution (R’, *) from (R*,r*) such thatR = Ry, for
every {i,j} € Ui jen; ienté i\ {u, v}, and RU =717
for {i,j} {u, vz} From Proposition 5, it follows that

(R/,r*) also constitutes a NE, whose non-prime degre

becomesD; — 1. By an iterative process, a non-prime NEA

(Rx,r*) can be reduced to a prime NE. Hence, there exis
a prime NE inG2. O
Proposition 5: Let (R*,r*) be a NE withD # 0 and
{u,v} be a pair of nodes such tha}, < R,. Let (R’ r’)
be a constructed feasible solution such tﬁai: r*, R, =
Ry;, for every {i,j} € UZ?éJJGNi’iGN{Z,j}\{U,U}, and

R, = r¥;, for {i,j} = {u,v}. Then (R/,r*) is a NE of

.
G3.
We need to show that* is an optimal response t&'
and then nodes have no incentive to deviate flm For
a feasible solutionR,r), we say thatr;; is a boundary

allocation if r;; = min(7;, R;;); otherwise, we say that;;
is an internal allocation. At a NE solution, the marginalngai
gg ,j € N;, are equal for internal allocation points. In
addition, the marginal gain of at boundary allocations is
no less than the marginal gains ©&t internal allocations.
SinceR* is a G2 NE, nodewv has no incentive to move
by changingR.,.,. If a nodev decreases its requestddrom

value R} to valuer? , then the allocation from node will

’L]’

uv’

not increase. This can be easily shown by contradiction a

follows.

Suppose the reverse is true, then there must exist an

internal allocationr,,,, to m whose marginal gain is higher
than the marginal gain ak, . However, from (2) and (5),

uv "

we can see that by understating the requests, nodes cé&i

increase their marginal gains. Hence, the marginal gain
* m IS larger than the marginal gaingf,. Therefore, we can
conclude that* is not an optimal solution of configuration
, which contradicts with the property of NE.
We also observe that nodecan not ga|n fromu by either
decreasing or increasing its requestRjt,. Decreasing the
request results in decreasing the allocation framsince

the resource is bounded by the request. On the other hapg

increasing the request &, shall not increase the allocation
from u, since it will otherwise contradict with the properties
of NE R* that nodes can not gain better utility by changing
its request at a NE.

Expertise Level

06 0.7 08 09 1

10
Contrubution Rate

20

n Expertise Levels Fig. 5. Influence vs. Sending Rate
Therefore, after the node decreasesz;,, to R W
. ’
we arrive atr = r*. The constructed solutloR andr

ahother NE ofG2. D

D. Proof of Proposition 3

For each pair of collaborative nodésj, we haver;; =
Aijrl-j -+ bija where rj; = [Tij,rﬁ]T, bij = [)\”(Ml -+
Nji(Mj + 324 ven, GoT0s)] ", and
0 (Nij — 1)aij
tS ()‘ - 1)(] i 0
of Nash equmbrlum and the assumptions gpn andg;;, t
uniqueness of the Nash equilibrium is ensured only When
A;; is non-singular. O

v;ﬁj,qjej\fi qivrvi)7

. Given the existence

E. Proof of Proposition 4

From (12), we can conclude that the optimal response
R;; to other nodes is given byR}; 5= A (M; +
Zv;é] VN, R;y). Since Rj; is linear in R, u € M, we
can build the above set of equations into a linear system
of equations with the variableR;;,i,j € N stacked into
one vector. The linear system has a unique solution if
the condition of diagonal dominance holds, leading to the
condition. O
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