A Green Framework for Energy Efficient Management in TDMA-based Wireless Mesh Networks

Ahmed Amokrane1, Rami Langar1, Raouf Boutaba2, Guy Pujolle1

1 LIP6, Pierre and Marie Curie University, France

2 University of Waterloo, Canada

CNSM 2012

October, 2012
Outline

1. Context
2. System Model
3. Proposed Methods
4. Performance Evaluation
5. Conclusion
Outline

1. Context
2. System Model
3. Proposed Methods
4. Performance Evaluation
5. Conclusion
Wireless Mesh Networks
Wireless Mesh Networks
Wireless Mesh Networks
Wireless Mesh Networks

- Energy efficient Wireless Mesh Network
Wireless Mesh Networks

- Energy efficient Wireless Mesh Network
Wireless Mesh Networks

- Energy efficient Wireless Mesh Network
Outline

1. Context
2. System Model
3. Proposed Methods
4. Performance Evaluation
5. Conclusion
Network Topology

- The network is seen as a directed graph \(G(V, E) \)
- \(V = \{v_1, ..., v_n\} \): set of all the nodes
 - \(S = \{s_1, ..., s_m\} = \{v_{n-m+1}, ..., v_n\} \): set of nodes with internet connection \(\Rightarrow \) Gateways
- \(E = \{(i, j)/i, j \in \{1, ..., n\}, i \neq j\} \)
- Connectivity Matrix \(M \):

\[
M_{i,j} = \begin{cases}
1 & \text{If there is a direct link between } v_i \text{ and } v_j \\
0 & \text{Else}
\end{cases}
\]
Interference Model

- Each node i: Transmission Range and Interference Range
- A link (i, j) interferes with (p, q) if:
 - $j \neq q$
 - $d_{i,q} \leq R_I(i)$
- Interference Matrix I

$$I(i,j),(p,q) = \begin{cases}
 1 & \text{If the link } (i, j) \text{ interferes with the link } (p, q) \\
 0 & \text{Otherwise}
\end{cases}$$
Each node i: Transmission Range and Interference Range
A link (i, j) interferes with (p, q) if:
- $j \neq q$
- $d_{i,q} \leq R_I(i)$

Interference Matrix I

$$I(i,j),(p,q) = \begin{cases}
1 & \text{If the link } (i,j) \text{ interferes with the link } (p,q) \\
0 & \text{Otherwise}
\end{cases}$$
Interference Model

- Each node i: Transmission Range and Interference Range
- A link (i, j) interferes with (p, q) if:
 - $j \neq q$
 - $d_{i,q} \leq R_I(i)$
- Interference Matrix I

\[
I_{(i,j),(p,q)} = \begin{cases}
1 & \text{If the link } (i, j) \text{ interferes with the link } (p, q) \\
0 & \text{Otherwise}
\end{cases}
\]
Interference Model

- Each node i: Transmission Range and Interference Range
- A link (i, j) interferes with (p, q) if:
 - $j \neq q$
 - $d_{i,q} \leq R_I(i)$
- Interference Matrix I

$$I_{(i,j),(p,q)} = \begin{cases}
1 & \text{If the link } (i, j) \text{ interferes with the link } (p, q) \\
0 & \text{Otherwise}
\end{cases}$$
Interference Model

- Each node \(i \): Transmission Range and Interference Range
- A link \((i, j) \) interferes with \((p, q) \) if:
 - \(j \neq q \)
 - \(d_{i,q} \leq R_I(i) \)
- Interference Matrix \(I \)

\[
I(i,j),(p,q) = \begin{cases}
1 & \text{If the link } (i, j) \text{ interferes with the link } (p, q) \\
0 & \text{Otherwise}
\end{cases}
\]
Interference Model

- Each node i: Transmission Range and Interference Range
- A link (i, j) interferes with (p, q) if:
 - $j \neq q$
 - $d_{i,q} \leq R_{I}(i)$
- Interference Matrix I

$$I_{(i,j),(p,q)} = \begin{cases}
1 & \text{If the link } (i, j) \text{ interferes with the link } (p, q) \\
0 & \text{Otherwise}
\end{cases}$$
Traffic model & Routing and Link Scheduling

- The Traffic: A set of flows L
- In TDMA: Time is divided into periods of T units of time, each period = \{1..T\} slots
Traffic model & Routing and Link Scheduling

- **The Traffic**: A set of flows \(L \)
- **In TDMA**: Time is divided into periods of \(T \) units of time, each period = \(\{1..T\} \) slots
Traffic model & Routing and Link Scheduling

- The Traffic: A set of flows \(L \)
- In TDMA: Time is divided into periods of \(T \) units of time, each period = \(\{1..T\} \) slots
Traffic model & Routing and Link Scheduling

- **The Traffic**: A set of flows L
- **In TDMA**: Time is divided into periods of T units of time, each period = $\{1..T\}$ slots
Traffic model & Routing and Link Scheduling

- The Traffic: A set of flows \(L \)
- In TDMA: Time is divided into periods of \(T \) units of time, each period = \(\{1..T\} \) slots
Traffic model & Routing and Link Scheduling

- The Traffic: A set of flows \(L \)
- In TDMA: Time is divided into periods of \(T \) units of time, each period = \(\{1..T\} \) slots
Traffic model & Routing and Link Scheduling

- The Traffic: A set of flows L
- In TDMA: Time is divided into periods of T units of time, each period $= \{1..T\}$ slots
Energy Efficiency & Throughput

- Energy Efficiency $= \text{Reduced number of used nodes (ON/OFF model)}$

- Higher throughput (Routed Traffic / Used slots) $= \text{Reduced number of used slots during } T$
Energy Efficiency & Throughput

- **Energy Efficiency** = Reduced number of used nodes (ON/OFF model)

 Used node definition:

 \[
 y_i = \begin{cases}
 0 & \text{If } \sum_{t=1}^{T} \sum_{l \in L} \sum_{j=1}^{n} x_{ij}^{(t)}(l) + x_{ji}^{(t)}(l) = 0 \\
 1 & \text{Otherwise}
 \end{cases}
 \]

- **Higher throughput** (Routed Traffic / Used slots) = Reduced number of used slots during \(T \)
Energy Efficiency & Throughput

- Energy Efficiency = Reduced number of used nodes (ON/OFF model)

 Used node definition:

 \[y_i = \begin{cases}
 0 & \text{If } \sum_{t\in\{1,..,T\}} \sum_{l\in L} \sum_{j=1}^{n} x^{(t)}_{ij}(l) + x^{(t)}_{ji}(l) = 0 \\
 1 & \text{Otherwise}
 \end{cases} \]

- Higher throughput (Routing Traffic / Used slots) = Reduced number of used slots during \(T \)

 Used slot definition:

 \[z_t = \begin{cases}
 0 & \text{If } \sum_{l\in L} \sum_{i,j=1}^{n} x^{(t)}_{ij}(l) = 0 \quad \forall t \in \{1, .., T\} \\
 1 & \text{Otherwise}
 \end{cases} \]
Problem

GIVEN:
- A physical topology $G(V, E)$, connectivity and interference matrices M and I
- A set of m gateways
- A list L of flows

FIND:
- The optimal routing and link scheduling of the L flows
- Best tradeoff between network throughput and energy consumption
Outline

1. Context

2. System Model

3. Proposed Methods

4. Performance Evaluation

5. Conclusion
The ILP

\[\text{Minimize} \left(\alpha \sum_{i=1}^{n} y_i + (1 - \alpha) \sum_{t\in\{1,..,T\}} z_t \right), \quad \alpha \in [0, 1] \]

subject to:
No transmission over a non-existing link:
\[x_{ij}^{(t)}(l) \leq M_{i,j} \quad \forall i, j \in \{1, ..., n\}, \forall t \in \{1, .., T\} \]

Two interfering links are not scheduled during the same slot:
\[x_{ij}^{(t)}(l) + x_{pq}^{(t)}(l') I_{(i,j),(p,q)} \leq 1 \quad \forall i, j, p, q \in \{1, ..., n\}, \forall t \in \{1, .., T\} \]
The ILP

Flow conservation:

\[
\sum_{l \in L} \sum_{t \in \{1, \ldots, T\}} \sum_{j=1}^{n} x_{ij}^{(t)}(l) = \sum_{l \in L} \sum_{t \in \{1, \ldots, T\}} \sum_{k=1}^{n} x_{ki}^{(t)}(l) + \sum_{l \in L, s(l) = i} \sum_{t \in \{1, \ldots, T\}} \sum_{j=1}^{n} x_{ij}^{(t)}(l) \quad \forall i \in \{1, \ldots, n - m\}
\]

All flows have to be routed:

\[
Success(l) = 1 \quad \forall l \in L
\]
Optimal-based method: Optimal Green Routing and Link Scheduling (O-GRLS)
- Both Routing and link scheduling
- Optimal solution using a solver
Solving methods

- **Optimal-based method: Optimal Green Routing and Link Scheduling (O-GRLS)**
 - Both Routing an link scheduling
 - Optimal solution using a solver

- **Meta-heuristic-based method: Ant Colony Green Routing and Link Scheduling (AC-GRLS)**
 - Based on Ant Colony meta-heuristic
 - Near optimal solution
 - Reduced computational complexity
 - Path Formulation
AC-GRLS

- **Path formulation:**
 - Reduces the complexity of link formulation
 - Each flow (among L flows) is provided with K different paths toward a gateway
 - A solution: One path for each flow $\Rightarrow K^{|L|}$ possible solutions
 - Ant Colony meta-heuristic for efficient exploration of solution space

- Scheduling is done using a proposed Greedy Link Scheduling algorithm
Outline

1. Context
2. System Model
3. Proposed Methods
4. Performance Evaluation
5. Conclusion
Test Settings

The objective function:

\[
Minimize \left(\alpha \sum_{i=1}^{n} y_i + (1 - \alpha) \sum_{t \in \{1,\ldots,T\}} z_t \right)
\]

\(\alpha \in [0, 1]\)

Performance metrics:
- Objective Function Value
- Proportion of non-source used nodes
- Achieved throughput
- Average path length

Network settings:
- Grid and Random Topologies
- Uplink traffic

<table>
<thead>
<tr>
<th>Scale</th>
<th>Nodes</th>
<th>Gateways</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>25</td>
<td>4</td>
<td>25%, 50% and 75%</td>
</tr>
<tr>
<td>Large</td>
<td>100</td>
<td>9</td>
<td>25%, 50% and 75%</td>
</tr>
</tbody>
</table>
Results: Small Scale Networks (25 nodes)

- AC-GRLS and O-GRLS Vs SP: Objective function value 30% better
- AC-GRLS Vs O-GRLS: Near optimal solution in a short computation time (0.5s Vs 550s)
Results: Small Scale Networks (25 nodes), 75% load

- Achieved throughput and Energy consumption:
 - The same energy budget, achieved throughput is 30% better ($\alpha = 0.4$)
 - The same throughput with 30% fewer used nodes ($\alpha = 0.7$)
Results: Small Scale Networks (25 nodes), 75% load

- **Tuning α:**
 - A desired throughput \Rightarrow a certain value of α
 - Desired Throughput = 1.8 flow/slot \Rightarrow $\alpha = 0.5$
Results: Small Scale Networks (25 nodes), 75% load

- Average path length:
 - Relatively short paths ($\alpha \in [0.4, 0.7]$)
Outline

1. Context
2. System Model
3. Proposed Methods
4. Performance Evaluation
5. Conclusion
Conclusion

- Energy efficient management in TDMA-based WMNs
 - Routing and link scheduling
 - Optimal formulation and efficient approximation
 - Parametrized objective function: Energy-Throughput tradeoff
 - Better than Shortest Path strategies

- Future work:
 - Fine-grain energy consumption model
 - Switch ON/OFF costs
The ILP

\[
\text{Minimize} \left(\alpha \sum_{i=1}^{n} y_i + (1 - \alpha) \sum_{t \in [1, T]} z_t \right), \quad \alpha \in [0, 1]
\]

subject to:

No transmission over a non existing link:

\[
x_{ij}^{(t)}(l) \leq M_{i,j} \quad \forall i, j \in \{1, \ldots, n\}, \forall t \in [1, T]
\]

Two interfering links are not scheduled during the same slot:

\[
x_{ij}^{(t)}(l) + x_{pq}^{(t)}(l') I_{ij}, (p,q) \leq 1 \quad \forall i, j, p, q \in \{1, \ldots, n\}, \forall t \in [1, T]
\]
The ILP

No routing when reaching a Gateway

\[x_{ij}^{(t)}(l) = 0 \quad \forall i \in \{n-m+1,...,n\}, j \in \{1,...,n\}, \forall l \in L, \forall t \in [1,T] \]

No loops when routing

\[
\sum_{t=1}^{T} \sum_{j=1}^{n} x_{ji}^{(t)}(l) \leq 1, \quad \sum_{t=1}^{T} \sum_{j=1}^{n} x_{ij}^{(t)}(l) \leq 1, \quad \forall i \in \{1,...,n\}, \forall l \in L
\]
The ILP

Flow conservation:

\[
\sum_{t=1}^{T} \sum_{j=1}^{n} \sum_{l \in L} x_{ij}^{(t)} (l) = \sum_{t \in \{1, \ldots, T\}} \sum_{k=1}^{n} x_{ki}^{(t)} (l) + \sum_{l \in L, s(l) = i} \left(\sum_{t=1}^{T} \sum_{j=1}^{n} x_{ij}^{(t)} (l) \right) \quad \forall i \in \{1, \ldots, n - m\}
\]

All flows have to be routed:

\[
Success(l) = 1 \quad \forall l \in L
\]
Algorithm 1 AC-GRLS pseudo code

1: Set Parameters
2: Initialize pheromone trails
3: for $i = 1 \rightarrow$ Number of Iterations do
4: Construct Ant Solutions
5: for all Ants do
6: Build a solution step by step
7: end for
8: end for
9: Update Pheromones
10: end for
AC-GRLS

Building a solution step by step:

1: for $l = 1 \rightarrow$ Number of flows do
2: \hspace{1em} $p \leftarrow Random(0..1)$
3: \hspace{1em} if $p < q_0$ then
4: \hspace{2em} Choose path j where $j = \text{Argmax}_{k \in N_l} \left(\tau_{lk}^{\alpha_{\text{ANT}}} \times \eta_{lk}^{\beta_{\text{ANT}}} \right)$
5: \hspace{1em} else
6: \hspace{2em} Choose path j according to P_{lj} probability
7: \hspace{1em} $P_{lj} = \frac{\tau_{lj}^{\alpha_{\text{ANT}}} \eta_{lj}^{\beta_{\text{ANT}}}}{\sum_{k \in N_i} \tau_{lk}^{\alpha_{\text{ANT}}} \eta_{lk}^{\beta_{\text{ANT}}}}$
8: \hspace{1em} end if
9: \hspace{1em} Add the j^{th} path for flow l to current_solution
10: end for
AC-GRLS

Pheromone Trail Update:

1: //Update Pheromones for all flows l
2: for $l = 1 \rightarrow \text{Number of flows}$ do
3: \hspace{1em} for $j = 1 \rightarrow K$ do
4: \hspace{2em} $\tau_{lj} \leftarrow (1 - \rho)\tau_{lj}$ //Evaporation
5: \hspace{2em} if current solution is the best solution for the current iteration And j^{th} path is selected for flow l then
6: \hspace{3em} $\tau_{lj} \leftarrow \tau_{lj} + \Delta_{lj}^{best}$ //Reinforce the pheromone for the best solution of the current iteration
7: \hspace{2em} end if
8: end for
9: end for
Greedy Link Scheduling
Greedy Link Scheduling

Algorithm 2 Greedy Link Scheduling

1. **IN:** LS: List of links to schedule, The conflict graph.
2. **OUT:** $Sched$: List of Slots with the corresponding scheduled links in each slot.
3. $Sched \leftarrow \{\};$ $i \leftarrow 0$ // i is the current slot
4. **while** $LS \neq \emptyset$ **do**
5. // Extend $Sched$ by one slot
6. $i \leftarrow i + 1; Sched[i] \leftarrow \{\}$
7. **for all** $ls \in LS$ **do**
8. **if** ls is not interfering with any link in $Sched[i]$ **then**
9. $Sched[i] \leftarrow Sched[i] \cup \{ls\};$ Remove ls from LS
10. **end if**
11. **end for**
12. **end while**
13. **Return** $Sched$
Results

Large Scale Networks (100 nodes), 75% network load

Achieved Throughput (flow/slot) Non-source used nodes (%)

AC-GRLS Beam Search Shortest Path Routing
Large Scale Networks (100 nodes), 75% network load

Results

- **Used gateways (%)**
 - AC-GRLS
 - Beam Search
 - Shortest Path Routing

- **Average path Length**
 - AC-GRLS
 - Beam Search
 - Shortest Path Routing
Energy Consumption & Traffic Model

- ON/OFF Energy consumption model model:
 - ON: node consumes energy
 - OFF: no energy consumed

- The Traffic: A set of flows L:
 - Each flow $l \in L$: from a source $s(l)$ toward a gateway $s \in S$
 - Multi-hop routing