
Event-based Estimation of User Experience for
Network Video Streaming

Yongfeng Huang∗, Jin Xiao∗, James Won-Ki Hong∗, Ahmed Mehaoua†, Raouf Boutaba‡

∗Division of IT Convergence Engineering, POSTECH, Pohang, South Korea

email:{xgjonathan,jinxiao,jwkhong}@postech.ac.kr

†Laboratorie d’Informatique Paris Descartes, Paris Descartes University, Paris, France

email:ahmed.mehaoua@parisdescartes.fr

‡School of Computer Science, University of Waterloo, Canada

email:rboutaba@cs.uwaterloo.ca

Abstract—In managing multimedia services, it is important to
understand how network performance affects user experience.
The model presented in this paper aims to estimate user
perception of video quality based on defect events, which are
automatically classified by machine learning techniques. The
underlying principle of our model is that human experience is
event-based and there is a strong correlation between defective
events and user MOS. Through experiments, we show that our
model can detect different types of defect events with good
accuracy even under small data set, and we find that indeed
different defect event types affect user experience with different
sensitivity.
Index Terms—video quality management, H.264/AVC, QoE, ma-
chine learning

I. INTRODUCTION

Multimedia services have become an important part of to-

day’s network offering. Therefore, how to guarantee user’s

perception of delivered video quality is a critical problem

for all content providers, especially when the underlying

transportation uses a shared network infrastructure. In order

to improve user’s Quality of Experience (QoE), it is important

to have a good understanding of the different parameters that

affect the perceptual quality of displayed content and how

are related. These parameters include underlying network-

related factors (packet loss, delay, jitter, etc.), application-

related factors (frame rate, bit rate, codec types, loss recovery

technique, etc.), and human perception-related factors (light,

user’s preference for video content, etc.). In this paper, we are

interested in the effect of network-related factors specifically

network packet loss, because delay or jitter can be translated

into losses in the playback buffer.

In order to assess user’s perception of video quality, many

existing work rely on measurable objective metrics. In most

cases, including the peak signal to noise ratio (PSNR)/the

mean squared error (MSE), structure similarity (SSIM) [1],

and video quality metric (VQM) [2], metric is computed

frame by frame, which means they need the original frame for

reference. However, these approaches have the advantage of

granting a clear and precise understanding of the correlations

among metrics. One major disadvantage of these objective

metrics is that human perception factors are not well repre-

sented.

Compared to these objective metrics, subjective perception of

video quality is generally measured in terms of QoE, which

are generally obtained via direct user feedback. A common

way of such subjective measurements is the mean opinion

score (MOS), which ranges from 1 (bad) to 5 (excellent) [3].

However, as a metric, MOS is not readily measurable and

its reliance on human feedbacks makes it difficult for content

providers to estimate user’s QoE based on measurable metrics.

Considering the cons and pros of both objective and subjective

measurements, mapping from objective metrics to subjective

ones is a good way of assessing user’s QoE. More specifically,

such a mapping should not only base on objective metrics,

but also takes the particularities of human perception into

consideration.

In this paper, we present the video perception model of VIDeo

quality Analyzer in Real-time (VIDAR) project [4], which

uses an analytical approach to evaluate user experience of

video services under varying network conditions. The percep-

tion model we propose is a method to map objective frame

level metrics to perceivable video defects with distinct user

MOS characteristics, using machine learning techniques. In

summary, our model focuses on the following two problems:

• Because conventional objective metrics do not consider

human perception factors, how to improve the accuracy

of estimated user MOS based on these metrics?

• Because our model is applied to real-time streaming

multimedia, how to ensure that it is simple and fast?

Accordingly, our contributions are as follows: first, to improve

the accuracy of estimated user MOS. Based on the event-based

nature of human experience, we group frame quality metrics

into defective events, which are series of defective frames in

close played time proximity. Then, multi-class classification

is applied to automatically determine the types of defects a

human viewer will experience. Because of the complex defect

patterns produced by stochastic packet losses and the varied

length of defective events, traditional time series classification



by measuring similarity among series are not suitable to our

problem. Therefore, we extract statistical features from time

series data that best represent the characteristics of different

defective events. Second, to ensure that our model is simple

and fast, we only focus on a few key features. At the same

time, optimization processes are applied in our machine learn-

ing techniques, including parameters selection for radial basis

function (RBF) kernel of support vector machine (SVM), and

methods selection for aggregating binary classifiers. Through

experiments, we show that our perception model can provide

good estimate of user MOS from frame level objective metrics,

while keeping the overall process simple and fast.

The rest of the paper is organized as follows. Section II

provides a brief overview of H.264/AVC, related work on

objective metrics, as well as that on mapping from objective

metrics to user MOS. Section III presents the overview of

VIDAR, specifically our user model. In section IV, we explain

the classification algorithms used on defective events. We show

our simulation results in section V and conclusion in section

VI.

II. RELATED WORK AND BACKGROUND

A. Overview of H.264/AVC

H.264/AVC was developed by ITU-T Video Coding Experts

Group together with ISO/IEC Moving Picture Experts Group

in 2003. It is the current state of the art video codec standard

by achieving a significant improvement in rate distortion

efficiency relative to existing standards [5]. In H.264/AVC, a

video is composed of a sequence of frames, and a frame con-

sists of several slices, which are made up of consecutive mac-

roblocks. H.264/AVC is also a temporal compression scheme,

which means that besides conventional spatial compression

within each frame, it also considers redundant probabilities

among frames. To be specific, three slice types are defined.

Intra slice (I slice) is coded using only spatial information

within the slice. In addition to the coding scheme of I slice,

predictive slice (P slice) is also coded using inter prediction

with at most one previous reference slice. Bi-predictive slice

(B slice) is similar to P slice, but uses inter prediction with

two reference slices. In general, all of the slices in a frame are

coded with the same slice type, termed I-, P-, and B-frames.

Because both intra-frame prediction and inter-frame prediction

are used during the coding process, several problems may

occur during the decoding process, if network packets are

lost. First, H.264/AVC is subject to error propagation, which

means that the loss of a single packet containing one or more

slices, affects not only frames these slices belong to, but also

frames using these slices as a reference. However, this error

propagation is limited to a group of pictures (GOP), which

starts with an I-frame followed by P- and B-frames. Usually,

the encoder can set the maximum and minimum GOP sizes,

however the actual GOP size depends on the content of videos.

For example, a GOP may start after a scene change where

frames change greatly in a short time. Second, H.264/AVC is

also sensitive to the content of video, meaning that the more

things change over time, the more difficult it is to compress

the video while maintaining high quality and minimizing

bandwidth and storage. More specifically, a scene change or a

fast moving of object has negative impact on bandwidth and

video quality. A detail exploitation of these characteristics can

be found in VIDAR’s R3 model [4].

B. Objective video quality assessment methods

Objective video quality assessment (VQA) methods can be

categorized as full-reference (FR), reduced-reference (RR),

and no-reference (NR) depending on whether methods require

access to full information, partial information, or no infor-

mation of transmitted videos, respectively [6]. FR and RR

give better result in terms of accuracy, but are impractical for

real-time scenarios, while NR gives the worst accuracy, but is

suitable for real-time implementation.

Among the different FR models to assess video quality, PSNR

is simple and popular. However, it has poor performance

against human perception according to investigation [7]. VQM

shows good correlation with user’s perception of video quality

[2]. However, due to its high requirement of processing

capacity, it is not suitable for real-time scenarios. Another

popular metric is SSIM [1], which is computed frame by frame

on the luminance component of the video. It has been shown

to be a good metric for still image quality assessment, but

it does not consider temporal factors or content features of

video. We choose SSIM as our objective metric, and remedy

its shortcoming with our subjective model (Vidi model) in

VIDAR [4].

C. Inferring user MOS from objective metrics

Objective metrics that are related to user perception of video

quality can be classified into application-level metrics (MSE,

PSNR, etc.) and network-level metrics (packet loss, delay,

etc.). Here, we start with related work on predicting user MOS

from application-level metrics.

Since objective metrics, including MSE, PSNR and SSIM,

consider neither natural visual characteristics nor perceptual

characteristics of human visual system (HVS), a lot of work

has been done to remedy these objective metrics by mapping

with subjective factors.

A simple perceptual metric based on MSE is proposed as

follows [8]:

MOSp = 1 − k(MSE)

Where k is derived from the spatial edge strength, since spatial

edges give a good estimate of the amount of detail in a region

and are related to object boundaries, surface crease, and other

important visual events [9].

PSNR is normalized in the MOS scale by scaling factor a

and shift factor b, which are obtained by applying an affine

minimum MSE estimator [10]:

̂MOSPSNR[n] = a × PSNR[n] + b

Where n is the frame index. After normalization, several

simple human perception rules are applied to correct this

result. For example, gradual scene changes are compensated



by multiplying the minima with k > 1, which is obtained by

linear minimum mean square estimation applied to all tested

sequences.

Besides related work above where basic statistical techniques

are used, machine learning (ML), as a more advanced statis-

tical method, is applied to build accurate and adaptive QoE

prediction model [11]. Both support vector machine (SVM)

and decision tree, as popular ML algorithms, are used to

predict user’s perception of video quality. Data instances used

in these algorithms are made up of four parameters, including

video spatial information, video temporal information, frame

rate and bit rate, while the output is just simple ”YES” or

”NO”. Obviously, simply accepted or not cannot express user’s

QoE comprehensively.

Besides approaches mentioned above that are based on

application-level metrics, some work also try to predict user’s

QoE from network-level metrics using ML algorithms. Neural

network-based reasoner is designed to optimize the QoE, in

terms of PSNR, with a random packet loss on the link [12].

Compared to methods, that predict user’s QoE from either

application-level metrics or network-level metrics, our ap-

proach is event-based, which is motivated by the observation

that human experience is largely event-based. The viewers re-

act and evaluate their experience by recollecting their reactions

to past events. In this way, our approach can give better pre-

diction of user’s QoE, with human perceptual characteristics

considered.

D. Machine Learning Techniques

Since we have defined defective event classes, and generated

a set of event data with class labels, we will only give a brief

summary of supervised machine learning techniques in this

part, but not unsupervised ones.

In general, supervised ML is the process of learning from

supplied instances to produce general hypotheses, and then

make predictions about future instances. Basic steps in the pro-

cessing include: collecting dataset, data pre-processing, feature

construction, algorithm selection, training, and evaluation with

test data. According to the result of evaluation, we need go

through all the steps repeatedly and adjust anyone that can

improve the accuracy.

Briefly, supervised ML algorithms can be classified into

logic-based algorithms, perceptron-based techniques, statisti-

cal learning algorithms, and SVM [13]. Among logic-based

algorithms, decision tree is a popular one. Each node in

a decision tree represents a feature of instances, and each

branch represents a value that the node can assume. However,

logic-based algorithms, like decision trees, usually cannot

perform well with numerical features. Artificial neural network

(ANN), as a popular algorithm of perceptron-based techniques,

has been applied to many real-world problems, but can be

very inefficient with the presence of irrelevant features. Nave

Bayesian network (NB) is the most well known representative

of statistical learning algorithms. The major advantage of NB

is its short computational time for training, but NB is also con-

sidered to be partial, because it assumes that it can discriminate

between classes by a single probability distribution. Another

popular algorithm under the category of statistical method is

k-nearest neighbor (kNN), which is based on the principle

that instances close to each other have similar properties.

Although kNN is very sensitive to irrelevant features, it is

simple to use with only one single parameter (the number of

nearest neighbors) to set. Finally, as the newest supervised ML

technique, SVM has been shown to perform much better when

dealing with multi-dimension and continuous features, as well

as situations with a nonlinear relationship between the input

and output features.

Considering the pros and cons of each ML technique, no

single one can uniformly outperform other algorithms over

all datasets. The simplest approach is to test several candidate

algorithms on the dataset, then choose one with the highest

accuracy. Therefore, for our problem with numerical features,

we choose kNN (the simplest) and SVM (usually has the best

performance) as our candidates.

III. OVERVIEW OF OUR APPROACH

A. Overview of VIDAR

VIDAR is a video quality analyzer in real-time. It takes as

input the network QoS conditions observed at the client side,

and estimates the impact on the quality of video frames and

user’s perception of video quality. VIDAR is made up of three

models: the R3 model, the Vidi model, and the user model

(Figure 1).

The R3 model relies on a lightweight client-side monitor and a

server-side R3 analyzer. The client-side monitor is a modified

video decoder that can generate error-correlation trees and

send it to the server-side R3 analyzer. Error-correlation trees

are the key part of the R3 model, which is a result of packet

loss in our case. By analyzing these trees, it is possible to

estimate SSIM (eSSIM) without access to transmitted videos

[4].

The Vidi model relates eSSIM of frames to temporal events

of perceived video defects. The design rationale behind this

model is as follows: a good estimation of image quality is

not sufficient to evaluate perceived video quality on its own.

This is because user perception is video content-dependent.

For instance, it is known that minor to moderate defects

in dark scenes are much less noticeable to the viewers [1]

and residual image can hide defects in frames immediately

following a scene change [14]. In Vidi model, we consider

four key content features: luminance, frame complexity, scene

change, and motion. A combination of these factors can be

used to describe different classes of video content (e.g. news,

sports, action, drama, etc.). The Vidi model generates video

index (Vidi) metrics.

The user model maps the Vidi metrics to user MOS. The

mapping approach depends on that how different types of

defective events affect user QoE and their intensity. Although

we do not provide a mapping of Vidi metrics to MOS in this

paper, we show how Vidi metrics can be used to analyze

viewer’s perception and the impact of different defects on

user’s MOS.



Fig. 1. Process flow of VIDAR framework

B. Overview of event-based classification

According to our experiential investigation, defective events

of transmitted video can be categorized as follows:

• Distortion: frames containing perceivable distortions.

• Glitch: short sequence of distortion.

• Freezing: series of duplicate frames, or frames dropped

and duplicated in interleaving patterns.

• Discontinuity: two frames not in consecutive order are

played back-to-back.

In our previous work [4], these defective events are generated

from a modified aggregated eSSIM by passing eSSIM through

the content feature filters (Figure 1). Then, a specific class

label for each event has to be tagged by users manually,

which is impractical and prone to human errors. Therefore,

this motivates us to develop an approach to classify defective

events automatically by using ML techniques.

Fig. 2. Process flow of eSSIM aggregator (machine learning)

The basic steps of our classification approach are shown in

Figure 2. Since we have multiple types of defective events,

multi class techniques are used in our research. Among our

candidate binary classification algorithms, both ANN and kNN

can be directly extended to do multi-class classification, while

a combination of several binary SVM classifiers has to be used

to solve a given multi-class problem.

According to our initial experiments, we find that these four

defective types are not mutually exclusive and some types

often co-exist in the same event, i.e., freezing is always

followed by discontinuity. Therefore, we combined freezing

and discontinuity in the experiment.

IV. CLASSIFICATION OF DEFECTIVE EVENTS

In this section, we present multi-class classification for the

defective events (Figure 2). To improve the accuracy while

keeping the classification processing efficient, several opti-

mization steps are applied (i.e. parameter selection of SVM

kernel).

A. Preprocessing for eSSIM raw data

Considering that human perception is content-dependent, eS-

SIM raw data has been passed through four content filters,

including luminance, frame complexity, scene change and

motion (Figure 1). However, to improve the accuracy of

classification, some hints injected into raw data can also be

helpful. Among the four defective types, all of distortion,

glitch and freezing have their own mark in the eSSIM raw

data: distortion may exist in a series of frames with lower

eSSIM values (the range of original eSSIM value is [0, 1].

1 shows a perfect match between the original frame and the

transmitted frame. The nearer 0, the heavier the distortion, but

0 means that the frame is duplicated or dropped.), glitch may

exist in a shorter series of frames with not very low value,

and freezing usually happens with a sequence of duplicated

frames (eSSIM = 0). The difference between discontinuity

and the other three types is that only discontinuity requires the

comparison between two frames. Based on our experience of

experiments, discontinuity always happens with freezing. To

be precise, there are two situations:

• Frames dropped: if the frame before dropped frames

and the frame after them have distinguishing content,

discontinuity may be perceived.

• Frames duplicated: when a sequence of frames duplicate

the frame before them, and the frame after them has a

distinct content, discontinuity may be perceived.



To let the original eSSIM have discontinuity characteristic, we

introduce a discontinuity mark:

eSSIMdisc = ssim(frameb, framea) − 1

The function ssim() calculates the structure similarity be-

tween the frame (frameb) before and one (framea) after

duplicated or dropped frames. Since the value range of SSIM

is [0, 1], eSSIMdisc has a range of [-1, 0]. Therefore, the

closer the value is to 0, the less difference there is between

frameb and framea. According to two situations mentioned

above, we give two modification strategies, respectively:

• Frames dropped: replace the original eSSIM of dropped

frames with eSSIMdisc.

• Frames duplicated: keep eSSIM of duplicated frames at

0, and add an eSSIMdisc after duplicates.

Two issues are worth mentioning. First, the process of

eSSIMdisc is done at the server side, meaning that frameb

and framea can be extracted from the original video. Sec-

ond, because for human vision system, the first few frames

immediately following a scene change are not perceived [14],

hence our process work on eSSIM values that have already

passed through the scene change filter.

B. Event segmentation

The design of event-based classification is motivated by the

observation that human experience is event-based as we react

and evaluate our experience by collecting past events. At the

same time, this motivation also shows us that the length of

event (in this paper, the length of event means the number

of frames in an event) can be scalable and the boundary

between events can be coarse. But event segmentation is a

key part to generate event instances for both ML training and

testing. Therefore, according to our experimental experience

(in our experiment, we set frame rate of video to 30 frames

per second, and bitrate to 800 bits per second.), we set the

following rules to extract event instances from video eSSIM

sequences: an event has minimum length of 10 and maximum

of 100. The boundary frames between two events must be 10

or more.

C. Feature Extraction

We consider a defective event as a time series data. Traditional

classification algorithms on time series data usually use a

distance measure, i.e. Euclidean Distance. But it is impractical

for our problem. First, the time series data is very long (high

dimensionality), so it slows down the speed of computation.

Second, it is sensitive to handle time series with missing

or noisy data if actual points are used as input. Third, it

cannot process time series data with different length, and it

also requires a 1 to 1 alignment. But for our case, events do

not have a uniformed start point and do not follow a specific

pattern. There are many reasons for these characteristics of

our data, including packet-loss model used in our experiment,

size of a group of pictures (GOP), and event segmentation

methods.

Therefore, to provide a method that can handle time series

data with varying length, be robust to missing or noisy

data, and ensure the computing efficiency, we find a path on

using statistical measures to extract features from event data.

Basically, the set of features extracted from defective events

should follow several considerations: first, it can best capture

the global characteristic of event data; second, it can discern

similarity and difference between events; third, it should be

calculated in a normalized way, since the length of events can

be different.

The features we extract from event data are: 1) mean (μ); 2)

standard deviation (σ); 3) minimum;

4) defective ratio:

ratio =
NeSSIM<0.95

n
,

where NeSSIM<0.95 is the number of frames with eSSIM <
0.95. It shows the severity of distortion in terms of the number

of frames.

5) severity of dropped frames and duplicated frames:

severity =
NeSSIM≤0.0

n
,

where NeSSIM≤0.0 is the number of frames with eSSIM ≤
0.0. It indicates the severity of freezing.

6) skewness: it is a measure of the asymmetry of the prob-

ability distribution of event data. Negative skewness shows

that the mass of distribution is concentrated on the right of

the distribution, and vice versa. Therefore, both skewness and

the following kurtosis are calculated based on the probability

distribution of event data. According to our experimental

experience, the probability distribution is generated based on a

range of varying unit: [-1.0, 0.0, 0.1, 0.5, 0.8, 0.9, 0.95, 0.98,

1.0].

7) kurtosis: it is a measure of whether the data are peaked or

flat, relative to a normal distribution.

By applying these statistical measurements to defective event

dataset with high dimension and different length, a new dataset

with a limited number of features are generated.

D. Preprocessing for features

During generation of above seven features, we have considered

calculating them in a normalized way by dividing values by n.

But both the range of skewness and kurtosis are still different

from that of the others. This unbalanced situation can decrease

the efficiency of classification. For instance, the Euclidean

Distance function treats every dimension equally, and when we

apply it in kNN to calculate distance between two instances,

skewness and kurtosis can affect the result significantly. There-

fore, before next step, our dataset is normalized to range [-1,

1].

E. Feature reduction

Although we only extract seven features to limit the size of

dataset, these features are not totally independent. For instance,

it is very likely that a high defective ratio is accompanied by

a large mean value. The dependence among several features



often unduly influences the accuracy of classification [15].

Compared to SVM, kNN is very sensitive to noisy data or

irrelevant features [13]. Therefore, a greedy forward selection

of features is applied to kNN. For the greedy forward selection

algorithm, the best individual feature is selected first, and then

the second one is chosen from the rest to be combined with

the best individual feature. Afterwards, the input subsets with

three, four, and more features are evaluated. Finally, the best

one is selected from all the combinations.

F. Multi-class classification (SVM)

SVM is widely used and usually performs well in many fields.

Its advantages include that it performs well when there is

a nonlinear relationship between the input and output, and

that it is capable of dealing with high dimensional data. The

performance of SVMs is dependent on a number of important

factors: preprocessing data, kernel selection, parameters setting

of the SVM and the kernel. We discussed preprocess data prior,

we will focus on kernel selection and parameters setting.

Kernel selection: a kernel function for SVMs is used to map in-

stances of a dataset from the original feature space to a higher

dimensional one. Then, a decision boundary is constructed

in this high dimensional feature space to distinguish between

two classes. Kernel functions can be classified into linear (i.e.

linear kernel) and non-linear ones (i.e. polynomial kernel and

radial basis function (RBF)). Based on our experiment (Section

V) with optimized parameters, linear kernel gives the worst

result (accuracy: 74.45%±0.63%), while RBF kernel performs

the best (accuracy: 85.46%±0.29%) and polynomial kernel is

in the second place (accuracy: 83.88% ± 0.36%). The reason

for linear kernel’s poorest performance is that our instances are

not linearly separable even in the higher dimensional feature

space. Therefore, we choose RBF kernel for our classification.

RBF kernel is shown as the following:

k(−→x ,−→xl) = exp(−γ‖−→x −−→xl‖2),

where γ = 1/2σ2.

Parameters setting: for the SVM with RBF kernel, there are

two parameters to set: C for the SVM and γ for the RBF

kernel. C is the soft margin constant or the penalty factor. It

controls how strict every instance can be classified correctly.

γ controls the flexibility of the decision boundary. When γ
is small, the decision boundary is nearly linear. Underfitting

happens when both C and γ are small, and overfitting occurs

when γ is too large. To choose the best combination of C and

γ, a common approach is using a grid search, which has time

complexity of O(n2). Since we require our model to support

real-time streaming, grid search is not feasible. However, we

observe that the best combination of C and γ are in fact located

in a local area. The result of a SVM with linear kernel can

therefore serve as a baseline [16]:

logσ2 = logC − log ˜C,

where ˜C is the penalty parameter of the SVM with a linear

kernel. The baseline with best combinations of C and γ is

therefore located as defined by the above equation, when ˜C

is optimized for the linear SVM. Accordingly, we obtain our

combination of C and γ based on the following procedure:

1) search for the optimal ˜C of the SVM with linear kernel;

2) search for the best C and γ combination that satisfy the

equation based on the optimal ˜C. The time complexity is thus

trimmed down to O(n).
Combination of binary classifiers: to meet the requirement

of classifying multiple classes, it is common to combine

several binary classifiers. There are two popular strategies

of combination: one versus all (OVA) and one-versus-one

(OVO). OVA combines M (the number of classes) binary

classifiers. For each classifier, it choose a class as the positive

class, and the remaining as the negative class. OVO combines

M(M−1)/2 binary classifiers. For each classifier, it select two

from all the classes mutually exclusively: one as the positive

class, and the other as the negative class. For instance, in our

problem set, we have the following three OVO classifiers:

distortion vs. glitch, distortion vs. freezing, and glitch vs.

freezing. Given the relatively small class size and presence

of biased sample sizes across the classes [17], we select OVO

as the combination method for our multi-class classification.

G. Multi-class classification (kNN)

kNN is a method for classifying points (instances) in the

feature space by comparing their relative distance. The basic

principle behind it is that instances which are close to each

other have similar features. Because of this, kNN can be

very sensitive to noisy instances or imbalanced features. Two

decisions need to be made when use kNN: choosing k and

the distance function. A smaller k is more sensitive to noisy

instances, but can fit classes with small areas. The distance

function minimizes the distance between instances of the

same class, and maximizes the distance between instances of

different classes. We use a grid search to find the best k and the

best distance function ∈ Minkowsky, Manhattan, Chebychev,

Euclidean) [13].

V. EXPERIMENT

In this section, we show our experiment results. First, we show

our data set for classification and that how it is generated.

Then, we compare the result of multi-class classification and

investigate the effect of our optimized steps on the classifica-

tion efficiency. Finally, we analyze that how our classification

method is related to user MOS.

As experiment setup, original videos are encoded at the server

side into H.264/AVC using the x264 of VLC media player.

Then, these videos are streamed to the client side through

RTP over UDP. The client decodes the streamed video using

TABLE I
ORIGINAL VIDEOS

Name Scene Cuts Motion Content
Foreman 0 Medium Portrait and landscape

Mother and Daughter 0 None Portrait

Football 0 Fast Sports

Bus 0 Medium Moving vehicle

inception 6 Fast Varied



FFmpeg, and plays the video with VLC media player. Five

original videos are used for the experiment (Table I). During

encoding, we set two different sizes (12 and 24) of GOP

for each video, since the varying GOP affects the severity of

defects in videos [4]. Besides, to simulate different network

packet loss situations, we apply two packet loss models for

the experiment: Bernoulli uniform loss model and Glibert-

Elliott (GE) burst loss model. 2% packet loss rate is set to both

of them. Through the experiment, we find that generally GE

model creates severer defects than the uniform model, and GE

model is more likely to introduce freezing into the transmitted

video, while glitch defects are more probably caused by the

uniform model.

There are 157 defective events generated by the Vidi model

with preprocessing, including 87 distortion events, 27 glitch

events, and 43 freezing events. These defective events are

labeled manually. We compare four multi-class classification

methods in terms of both accuracy and time:

• SMO-G: sequential minimal optimization (SMO) with

RBF kernel, and the best combination of C and γ is set by

Grid search (SMO-G). the range of C and γ for searching

is the same as that in last section. SMO is an algorithm for

efficiently solving the optimization problem which arises

during the training of SVMs [18].

• SMO-L: SMO with Linear kernel (SMO-L). Since for

linear kernel, only C needs to be set. We use a fine

granularity, C ∈ 2, 4, ..., 198, 200, for search the best

C.

• SMO-O: SMO with RBF kernel, and the best combination

of C and γ is set by the optimized method introduced in

Section IV-F. First, we fix ˜C with the best C selected

by SMO-L. Then, compared to SMO-G, we use a fine

granularity, γ ∈ 0.05, 0.10, ..., 1.95, 2.00, for searching

the best combination of C and γ.

• kNN: we use a grid search for the best combination of k

and distance function.

For all these four methods, we conduct a ten-fold cross-

validation on the data set. The implementation is based on

Weka open source library [19]. The classification result is

shown in Table II. According to this table, SMO-G performs

the best in terms of accuracy, but its running time is much

higher than the others. On the other hand, SMO-O gives almost

the same accuracy as SMO-G, while it requires a reasonable

running time. It is worth noting that with the best performance

in terms of time, kNN also shows a relative high accuracy.

But as a lazy-learning algorithm, the executing time of kNN

is much higher than its training time, especially when the data

set is huge.

For the above experiment, we set parameters for each bi-

nary classifier uniformly to make it simple and fast. Now

TABLE II
CLASSIFICATION RESULT

SMO-G SMO-L SMO-O kNN
Accuracy 85.46% ± 0.29% 74.45% ± 0.63% 84.57% ± 0.29% 83.00% ± 0.33%
Time (s) 445.2 ± 16.0 66.7 ± 2.7 94.5 ± 4.5 31.6 ± 3.2

we investigate them separately. According to Table III, the

highest accuracy of “Glitch vs. Freezing” shows that glitch

and freezing can be distinguished from each other easily. The

reason for the lower accuracy of “Distortion vs. Glitch”, we

believe, is that classification between them is content-related.

For instance, considering the same amount of error while

decoding macro blocks, error on the main object (i.e., mother’s

face in Mother and Daughter) is more perceivable than that on

the background. On the other hand, the reason for the lowest

accuracy of “Distortion vs. Freezing” is that distortion and

freezing happen together in the same event sometimes.

Fig. 3. Feature Sensitivity Under Different Binary Classifiers

In Figure 3, we study how each binary classifier is sensitive

to seven features. The dashed line shows the classification

result without any feature removed, while the solid line is the

classification result after each feature is removed. As we can

see, the remove of any feature cannot improve the accuracy of

all binary classifiers at the same time, which means all seven

features are necessary for multi-class classification. However,

we do see that some classifier is sensitive to feature remove.

For instance, “Distortion vs. Glitch” is sensitive to the feature

ratio. In fact, it is reasonable since glitch usually has a quite

small ratio compared to distortion. Therefore, ratio must be a

key metric to distinguish glitch from distortion.

Now we examine how well the defective events predict user

MOS. We conducted user tests with 5 people. 30 defective

events were selected randomly from the data set as the

testing set, including 10 glitch, 10 distortion and 10 freezing,

respectively. Then, we prepared play lists for each person by

arranging these defective events in a random order. Every

user was asked to provide a real valued MOS for each event.

The average MOS for each type of defect was calculated

(Figure 4). According to our definition of defective events,

not surprisingly, distortion causes the worst perception of

video quality (2.11±0.67), while glitch is not too perceivable

(3.48 ± 0.34). It is worth mentioning that although disconti-

nuity after freezing is the main reason for the low average

TABLE III
RESULTS BY BINARY CLASSIFIERS

Dist. vs. Glitch Dist. vs. Freeze Glitch vs. Freeze
Accuracy 92.04% 85.38% 97.18%



Fig. 4. MOS of Each Type of Defect

MOS (2.3 ± 0.66), we find that freezing is accompanied by

distortion for some cases, and it can also cause a lower MOS.

In summary, the approximate 85% accuracy of SMO-O shows

that the features extracted from eSSIM series are able to

capture both similar and different characteristics of defective

events even under a rather small training set. This is encour-

aging as the requirement on large training data is one of the

major drawbacks of ML-based approaches. Lastly, we find

that different defect events impact user experience at different

sensitivity. Therefore, it makes sense to deal with the mapping

of defects to MOS from a per event class perspective.

VI. CONCLUSION

In this paper, we have presented an automatic event-based

video quality analyzer using ML techniques. Our model con-

siders the event-based nature of human experience, which

is a different perspective compared to other known ML ap-

proaches. To make our design practical to implement, we

have stressed on performance efficiency, including feature

selection, parameter optimization, and method selection. In

our investigation, we find that it is paramount to select key

features that bear strong correlation with the defective event

being classified, and the applying subjective filters is a method

for data pre-process. For future work, we will conduct more

experiments and focus more on predicting user MOS.

ACKNOWLEDGEMENTS

This research was supported by World Class University pro-

gram funded by the Ministry of Education, Science and

Technology through the National Research Foundation of Ko-

rea (R31-10100) and Next-Generation Information Computing

Development Program through the National Research Foun-

dation of Korea(NRF) funded by the Ministry of Education,

Science and Technology (2011-0020518).

The authors would also like to thank Arum Kwon for her

guidance and Oussama Stiti for his technical support.

REFERENCES

[1] Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment based on
structural distortion measurement,” Signal Processing: Image Commu-
nication, vol. 19, no. 2, pp. 121–132, February 2004.

[2] M. H. Pinson and S. Wolf, “A new standardized method for objectively
measuring video quality,” IEEE Transactions on Broadcasting, vol. 50,
no. 3, pp. 312–322, September 2004.

[3] ITU-T, “Methods of subjective determination of transmission quality,”
ITU-T Recommendation P.800, 1996.

[4] A. Kwon, J. Xiao, S. S. Seo, J. W.-K. Hong, and R. Boutaba, “The
impact of network performance on perceived video quality and user
experience in H.264/AVC,” in IEEE/IFIP Network Operations and
Management Symposium (NOMS), mini-conference, 2012.

[5] T. Wiegand, G.-J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the h.264/avc video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July
2003.

[6] ITU-T, “User requirements for objective perceptual video quality mea-
surement in digital cable television,” ITU-T Recommendation J.1443m,
2000.

[7] A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their
performance,” IEEE Transactions on Communications, vol. 43, no. 12,
pp. 2959–2965, December 1995.

[8] A. Bhat, I. Richardson, and S. Kannangara, “A new perceptual quality
metric for compressed video,” in IEEE International Conference on
Acoustics, Speech and Singal Processing, April 2009.

[9] X. Ran and N. Farvardin, “A perceptually motivated three-component
image model - part 1: Description of the model,” IEEE Transactions on
Image Processing, vol. 4, no. 4, pp. 401–415, April 1995.

[10] O. Nemethova, M. Ries, M. Zavodsky, and M. Rupp, “PSNR-based
estimation of subjective time-variant video quality for mobiles,” in
MESAQUIN, 2006.

[11] V. Menkovski, A. Oredope, A. Liotta, and A. Cuadra, “Predicting quality
of experience in multimedia streaming,” in International Conference on
Advances in Mobile Computing and Multimedia, 2009.

[12] S. Latre, P. Simoens, B. D. Vleeschauwer, W. V. D. Meerssche, F. D.
Turck, B. Dhoedt, P. Demeester, S. V. D. Berghe, and E. D. de Lumley,
“An autonomic architecture for optimizing QoE in multimedia access
networks,” Computer Networks, vol. 53, pp. 1587–1602, July 2009.

[13] S. B. Kotsiantis, “Supervised machine learning: A review of classifica-
tion techniques,” Informatica, vol. 31, pp. 249–268, 2007.

[14] A. R. Reibman and D. Poole, “Predicting packet-loss visibility using
scene characteristics,” in Packet Video, November 2007.

[15] S. Markovitch and D. Rosenstein, “Feature generation using general
construction functions,” Machine Learning, vol. 49, pp. 59–98, 2002.

[16] S. S. Keerthi and C.-J. Lin, “Asymptotic behavior of support vector
machine with gaussian kernel,” Neural Computation, July 2003.

[17] F. Provost, “Learning with imbalanced data sets 101,” in AAAI 2000
Workshop on Imbalanced Data Sets, 2000.

[18] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods - Support Vector
Learning, 1998.

[19] Weka, ”http://www.cs.waikato.ac.nz/ ml/weka”.


