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Abstract—Multimedia services have become a dominant part
of the network and content provider’s service portfolio. A formal
modeling methodology for video quality assessment not only
affords the providers a clear cause-effect management view
of their services, but also helps to guide management and
planning operations. We examine the relation between network
performance and perceived video quality through VIDAR, a com-
prehensive VIDeo quality Analyzer in Real-time. VIDAR links
network performance to objective frame quality (eSSIM), and
modify eSSIM values by subjective filters. Through experiments,
we show that VIDAR helps providers to better understand and
assess the impact of the network performance on perceived video
quality.

Index Terms—video quality management, H.264, QoE

I. INTRODUCTION

Multimedia services have become a dominant part of the

network and content provider’s business portfolio [1][2]. Due

to the best-effort nature of IP networks, network performance

is known to fluctuate over time. Multimedia service is particu-

larly sensitive to network QoS parameters, more specifically to

loss, delay and jitter. Thus, effective and efficient video quality

management is of paramount importance to the providers

today. Unlike network QoS metrics, video quality metrics

can be difficult to model and to quantify. This is in part

due to the many factors that jointly influence video quality

(network transport, video encoding/decoding process, com-

pression, packetization techniques, error resilience algorithms,

video content, etc.). It is also in part due to the inherent

subjective nature of human perception and experience. Human

vision system is highly non-linear and viewer’s mean opinion

score (MOS), an established evaluator of user experience, is

also known to be non-linear and difficult to capture without

explicit user feedback.

Nevertheless many work exist today that deal with some

aspects of video quality assessment. In large, they can be

categorized as white-box or black-box approaches. In a white-

box approach [3][4], key indicator metrics are computed.

In a black-box approach [5], the relations between lower

level performance metrics (such as network QoS) and the

higher level user experience (MOS) are estimated through

experiments. In comparison, a white-box approach has the

advantage of granting a clear and precise understanding of the

correlational causality among metrics. However, it can also be

computationally expensive. A black-box approach is simple to

implement and is good in capturing the general performance

trends, however it does not precisely capture the causality

among metrics that is crucial to enable effective management

operations.

In this paper, we present VIDAR (VIDeo quality Analyzer

in Real-time), an analytical framework for real-time video

quality monitoring and analysis (Section III). We follow a

white-box approach. To this end, we first investigate the

correlation between network QoS and objective video frame

quality. In this paper, we focus on packet loss. Although it is

known that predictive packet loss can be used to estimate video

signal distortion [3], there is no direct correspondence to user

perception [6][7]. We use Structural Similarity Index (SSIM)

[8] for this reason as it better models the human vision system.

Because SSIM computation is full reference based (Section

II), we propose a Reversed Reduced Reference (R3) model

(Section IV) that not only provides good real-time SSIM es-

timation (eSSIM) with minimal communication overhead, but

also preserves the correlational causality between network QoS

and video quality. As the basis of our investigation, we choose

H.264/AVC [9] as the video technology. Because SSIM is not

subjective and is specialized for image assessment, we propose

Vidi model to correlate eSSIM to perceived video quality

(Section V). Our Vidi model considers the subjectivity in

human perception over both spatial and temporal observations.

Through experiments (Section VI), we show the effectiveness

of VIDAR and report on the impact of network performance

on perceived video quality.

II. RELATED WORK

Video quality assessment approaches can be classified based

on the need for source- and client-side videos as: full-reference978-1-4673-0269-2/12/$31.00 c© 2012 IEEE
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Fig. 1. Process Flow of VIDAR Framework

(FR), reduced-reference (RR), and no-reference (NR). FR

approaches require access to both the source video and the

client-side video, while RR approaches extract some features

from the source video to aid in computation. NR approaches

only require access to the client-side video. In terms of

suitability for real-time implementation, NR approaches are

the best, but in terms of accuracy, they are the worst.

Among the different objective metrics used to assess video

quality, Peak Signal-to-Noise Ratio (PSNR) / Mean Squared

Error (MSE) is a popular choice. It is easy to compute and has

good RR and NR estimations [10]. It has been reported [6][7]

that PSNR/MSE does not match well with human perception

due to its bottom-up design. SSIM [8] is another popular

metric that compares the structural similarity between two

images. It is shown to be a good metric for image assessment

and has since been extended to video quality assessment [4].

Because SSIM does not consider temporal relations, its ex-

tension to video quality assessment remains ineffective. Some

work on RR models of SSIM for image quality assessment

[11][12] have been proposed, but they require substantial

feature information and thus are not suitable for analyzing

large volumes of data such as a video stream. Video Quality

Model (VQM) [13] is designed for video quality assessment.

Although it shows good correlation with perceived video

quality, it is not suitable for real-time implementation due

to high computational complexity and information processing

overhead.

MOS is the de facto metric for evaluating user experience.

Extensive user testing is typically conducted over large sets

of user experiments. Some existing work try to estimate

MOS from the objective video quality measure. MintMOS

[5] estimates MOS in a black-box approach. They construct

QoE (Quality of Experience) space based on a survey of MOS

values under different network conditions and application pa-

rameters. In operation, MOS is estimated by finding the closest

fit based on distance. Their evaluation shows good result with

a small parameter set. Considering the large parameter space

of network performance, video encoder/decoder behaviours,

user preferences, etc., collecting a reasonable data set can

become intractable. In [3], a white-box approach is used to

estimate PSNR. The work studies the impact of packet loss

on video quality as measured by PSNR. They proposed the

rPSNR metric which does not rely on codec parameters and

thus is computationally inexpensive for real-time monitoring.

In our work, we relate network performance to estimated SSIM

(eSSIM), and use the subjective Vidi model for mapping eS-

SIM to perceived video quality. The work of [14] qualitatively

assess the impact of losing different frame types on perceived

video defects, however no formal correlations are presented.

Our observations confirm their results.

III. OVERVIEW OF THE VIDAR APPROACH

In this section, we present an overview of VIDAR, a com-

prehensive video quality analyzer in real-time. VIDAR takes

as input the network QoS conditions observed at the client

side, and estimates their impact on the quality of video frames,

the perceived video quality, and user experience. It considers

key parameters across multiple management layers including

varying network conditions (Network layer), encoder/decoder

algorithms and error recovery techniques (Service layer), video

content (Service layer) and viewer subjectivity (Customer

layer). As shown in Figure 1, VIDAR is comprised of three

models: the R3 model, the Vidi model, and the user model. In

this paper, we only deal with the R3 model and a part of the

Vidi model. The rest of the Vidi model and the user model

will be investigated in the future work.
The R3 model relies on a lightweight client-side monitor

(the VIDAR monitor) and a server-side R3 analyzer (Section

IV). The VIDAR monitor is a modified video decoder that

can be used in place of the client decoder or as a stand-

alone monitor that sniffs the client video stream. Its aim is to

collect and generate correlated error logs of defective video

frames in the form of error-correlation trees, and to send

this information to the server-side R3 analyzer. Although we

focus only on network packet loss in this paper, we observe

that many other network defects such as excessive delays and

packet errors produce similar defects at the application layer in

which the VIDAR monitor operates. More specifically, video

data that arrives later than the scheduled play time are counted
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as losses, and corrupted packets that cannot be corrected are

also counted as losses. The R3 analyzer computes estimated

SSIM (eSSIM) for each distorted video frame. It is a reversed

RR model in that existing work on estimating SSIM requires

access to the client-side distorted video, while our R3 model

requires only access to the source video at the server side.

This design has three salient advantages: 1) the amount of

information transferred between the client and the server is

minimized; 2) client side can be kept lightweight, ideal for

power-constrained mobile devices; 3) better preservation of

network-video causalities. SSIM is chosen as the key objective

indicator metric because it models the human vision system

better than signal-based metrics such as PSNR.

The Vidi model is a subjective model that generates subjec-

tive eSSIM values and relates eSSIM to events of perceived

video defects. The design rationale behind this model is as

follows: a good estimation of image quality is not sufficient to

evaluate perceived video quality on its own. This is because

human perception of video is temporal and subjective. For

instance, it is known that minor to moderate defects in dark

scenes are much less noticeable to the viewers [4]; busy scenes

can distract the viewers from some defects; and the residual

image can hide defects in frames immediately following a

scene change [15]. In our experiments, we’ve also observed

that very short bursts of distortions in video are only registered

as quick flashes to the viewer. Our Vidi model takes into

account these subjective factors through the use of subjective

filters: the luma adjust filter, the frame complexity filter and

the scene change filter. These filters modify the eSSIM values

and help the eSSIM aggregator in combining defective video

frames into events of video defects. The subjective filters

will be explained in Section V, and the process of eSSIM

aggregator and the user model will be explained in the future

work. To experiment with our models, we have chosen VLC as

the application for video streaming and playback. Our source

videos are encoded in H.264/AVC and decoded with FFmpeg

decoder.

IV. MAPPING NETWORK PERFORMANCE TO SSIM: R3

MODEL

A. Error-Correlation Tree

At the client side, a lost network packet may affect multiple

slices. Since macroblock is the basic unit of image processing,

it is ideal to track error correlation at the macroblock level.

However, this level of inspection requires decoding the video

data which is quite expensive in real-time. Therefore, we

choose to work at the slice level, where only the video

headers need to be parsed. For ease of discussion, we denote

a slice containing lost data as a lost slice. Some strategies are

employed by the client side to recover a lost slice, depending

on its frame type and the severity of the loss across an entire

frame. I-, P- and B-frames are used in H.264/AVC. Because

P- and B-frames rely on their reference frames for decoding,

a lost slice of a P- or B-frame is reconstructed from its

reference slices. As I-frames do not have dependency on other

frames, a lost slice of an I-frame is reconstructed from its

spatially neighboring slices in the same I-frame. If a frame

contains too many lost slices, it may be discarded. As we

observe through experiment, this condition is more frequent

when packet loss is bursty. How a discarded frame is treated

is also decoder dependent. The decoder may choose to skip

the frame entirely during playback (generally the case with a

single frame discard) or may choose to replace the discarded

frame with its previous frame in play time order. Since I-

frames and P-frames can serve as reference frames in the same

Group of Pictures (GOP), the error caused by a lost slice in

an I- or P-frame will propagate throughout the GOP.

Fig. 2. An Example Error-Correlation Tree

The impact of a network packet loss is frame type depen-

dent, which is in turn video content and codec dependent.

This is a strong motivation for preserving their correlations

during analysis. Fortunately, given the deterministic nature

of the decoding and error recovery process, it is possible

to represent the error correlation information of a GOP as

an error-correlation tree (Figure 2). Error-correlation tree is

recorded as a log file, and is transmitted to the server side.

Each node on the tree records a slice. Directed edge leading

away from the slice depicts inter-frame dependencies. Solid

edge shows dependencies of reference frames. Dashed edge

shows reconstruction dependencies. The error-correlation tree

is rooted at the I-frame. Each node contains: the frame and

slice ID, type, offset, and status. The status are as follows:

• slc ok: the slice itself is healthy. It may still be subject

to error propagation.

• slc drop: the slice is dropped and skipped during play-

back.

• slc dup: the slice is replaced entirely by the previous

frame in play time order.

• slc frm ref : the lost slice is reconstructed from its refer-

ence slices.

• slc frm oth: the lost slice is reconstructed from non-

reference slices (error recovery algorithm).

B. Estimating SSIM

The SSIM value of each frame is computed based on the

error-correlation tree. Two factors contribute to the distortion

of a video frame: slice reconstruction and error propagation. To

estimate the error of slice reconstruction, we follow the intu-

ition that a lost slice is reconstructed based on some reference
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information, thus the more similar the reference information is

to the lost data, the less distortion the resulting reconstruction

contains. Therefore, we can leverage the strength of SSIM in

comparing the structural similarity of the missing slice and the

reference slice and use it as the basis of estimation. For error

propagation, because SSIM is a normalized metric, the severity

of error does not drift significantly across a GOP, therefore

we carry errors across linearly. The standard computation of

SSIM is given in [8]. The value of SSIM is bounded between

0 and 1, where 1 indicates a perfect match. Our estimated

SSIM (eSSIM) computation is only performed for frames with

lost slices and frames affected by error propagation since the

eSSIM value of a healthy frame is 1.

Instead of computing the SSIM value over an entire frame,

we constrain our sampling window to the slice of interest and

its reference slice. This modification significantly reduces the

computational cost of SSIM. Let SSIMms(I, Ir) denotes the

SSIM computation between a missing slice I of an I-frame

and the reference slice Ir that is used for reconstruction. Then

the eSSIM between the original I-frame I and the distorted

I-frame I ′ is computed as:

eSSIM(I, I ′) = 1 − Q3 ×

∑
ms(1 − SSIMms(I, Ir))

eSSIM(Ir, I ′r) × Sn

Ir is either the spatial neighboring slices in the same I-frame

or the corresponding slice in the previous frame (in play time

order) that are used for reconstruction. Sn is the number of

slices in the frame I . Q3 denotes the reconstruction error of

the decoder algorithm. In the case of FFmpeg which does not

perform error concealment for I-frames, we find Q3 = 1.55
through experiments. The computation of eSSIM for a P-frame

consists of a reconstruction term and an error propagation

term:

eSSIM(P, P ′) = 1 − Q2 ×

∑
ms(1 − SSIMms(P, Pr))

eSSIM(Pr, P ′
r) × Sn

−
1 − eSSIM(Pr, P ′

r)

[SSIM(P, Pr)]
×

Φ

Sn

The reconstruction term is normalized based on the SSIM

condition of the reference frame eSSIM(Pr, P
′

r). Φ is the

number of healthy slices in a frame (i.e., Φ = Sn −|ms|). Q2

is the reconstruction parameter that reflects the outcome of

the decoder’s reconstruction algorithm. For FFmpeg that uses

rudimentary error concealment schemes, we find Q2 = 1.1.

SSIM(P, Pr) is conditional in that it is only used if P is

long-range dependent on Pr. We say frame A is long-range

dependent on frame B if and only if A’s reference is missing

and thus A becomes dependent on the missing reference’s

reference, B. In Figure 2, Frame 69 is long-range dependent

on Frame 63. The computation of eSSIM for B-frame is

more elaborate as its reconstruction depends on two reference

frames. We first consider the case where both reference frames

Br1 and Br2 are present:

eSSIM(B, B′) = 1 − reconstruct − error prop

recostruct = Q2 ×

( ∑
ms(1 − SSIMms(B, Br1))

eSSIM(Br1, B′

r1
) × 2Sn

+

∑
ms(1 − SSIMms(B, Br2))

eSSIM(Br2, B′

r2
) × 2Sn

)

error prop =
Φ((1 − eSSIM(Br1, B′

r1)) + (1 − eSSIM(Br2, B′

r2)))

2Sn

In the case when B-frame has only a single reference, we

compute its eSSIM similar to the P-frame computation:

eSSIM(B, B′) = 1 − Q2 ×

∑
ms(1 − SSIMms(B, Br1))

eSSIM(Br, B′

r1
) × Sn

−
1 − eSSIM(Br1, B′

r1
)

SSIM(B, Br1)
×

Φ

Sn

Here the factor SSIM(B,Br1) is not conditional when

computing the error propagation term. This accounts for the

drift bias B sustains as it is reconstructed from a single

reference frame. If both reference frames of a B-frame are

missing, the B-frame is discarded.

V. RELATING FRAME QUALITY TO PERCEIVED VIDEO

DEFECTS: VIDI MODEL

The Vidi model takes eSSIM of frames as input and modify

it using subjective filters. As outlined in Section III, the

design of our Vidi model is motivated by the observation that

human perception is subjective both in spatial and temporal

dimensions. Frame quality metric eSSIM values are modified

by the subjective filters. In the case of luma adjust filter,

the modification is applied to the eSSIM computation process

itself; while in the case of frame complexity and scene change

filters, the modification is applied to the eSSIM values of the

frames.

A. Luma Adjust Filter

It is known that human perception is luminance dependent.

Low to moderate levels of video distortions are not as

perceivable in dark scenes as in well-lit scenes. Luminance

adjustment techniques can be used to incorporate this

phenomenon. Our luma adjust filter is modified based on

the technique of [4]. It augments the R3 model in which

eSSIM is computed. More specifically, SSIM computation

is carried out over a series of sampling windows. In the

standard computation, the SSIM value of each sampling

window contributes the same weight to the SSIM value of

the frame. With luma adjust, we weigh the SSIM value of

each sampling window based on a wj factor (0 ≤ wj ≤ 1)

depending on the luminance of the sampling window. The

value of wj is determined as follows:

If μY
x ≤ 50 and μY

y ≤ 50,

wj =

⎧⎨
⎩

0 , if
μY

x +μY
y

2 ≤ 40

(
μY

x +μY
y

2
)−40

10 , if 40 <
μY

x +μY
y

2 ≤ 50

Else, wj = 1.
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(a) Low Frame Complexity

(b) Medium Frame Complexity

(c) High Frame Complexity

Fig. 3. Comparison of Distorted Frames with Same SSIM=0.76

B. Frame Complexity Filter

The busyness of a frame has a direct correspondence to how

perceivable a distortion can be, especially when the degree

of distortion is not severe. Figure 3 illustrates three distorted

video frames as generated due to packet loss. They all have the

same SSIM value (source vs. distorted) of 0.76, yet we observe

significant difference in defect visibility. This effect is more

pronounced when motions are involved. Busy scenes in video

clips are typically associated with wide area motions or highly

complex structures. Accordingly, we introduce a weight factor

αFC that moderate the eSSIM value of a frame.

To determine αFC , a good indicator of frame complexity is

needed. Frame complexity is a known concept in video rate

controllers. Their goal is to estimate the compression rate of

input video stream such that efficient rate control algorithm

can be implemented. Mean Absolute Difference (MAD) is

often used as the frame complexity metric. In their case, MAD

is computed over the entire frame to obtain a complexity score.

We find that such computation is too coarse for our purpose

and does not show a good indication of the level of busyness

in a frame. But when we combine MAD with the idea of

sampling windows in SSIM computation, we can obtain a

good frame complexity indicator given an appropriate choice

of window size. To illustrate, the complexity of each frame in

Figure 3 are 10.28, 21.22, and 29.52 respectively.

Our computation of frame complexity is as follows:

FC =

∑
r∈R

∑
k∈m,n |vY

k,r
− μY

r |

Rmn

R is the number of samples of size m × n pixels to be

taken in a frame. vY
k,r is the luminance component of the pixel

k in sample window, and μY
r is the mean of luminance in

the sample window r. The weight modifier αFC can then be

specified as follows:
If eSSIM ≥ 0.60, eSSIM = αFC × eSSIM

αFC =

⎧⎨
⎩

0 , if FC ≥ 30
1 − (FC − 25) × 0.2 , if 30 > FC > 25
1 , if FC ≤ 25

C. Scene Change Filter

Human vision system is affected by residual image effect

in that if there is a sudden change of scene (e.g., high speed

motion, or a scene cut), the first few frames immediately

following the scene change are not perceived nearly at the

same degree of clarity as the frame before change. It was

reported in [15] that immediately after a scene change, even

if severe distortions are present in video frames, the viewers

do not register any perceived defects. This effect lasts for

approximately 0.33 second. This phenomenon is leveraged

to achieve better video compression by reducing the image

fidelity. In their case, the degradation to image quality is

uniform across the frame, while in our case the loss-induced

distortions are concentrated locally on a frame. The latter is

far easier to be perceived by a viewer, thus we designed a

modified version of the scene change filter to take into account

this difference.

Scene change detection is accomplished by computing the

color difference between two consecutive frames. A number

of approaches can be used to realize this. We choose a block-

based color histogram approach due to its low computation

cost and effectiveness. We compute the scene change factor

as follows:

SC(fi−1, fi) =

∑
c∈RGB

∑
4×4

b=1

∑Lc

k=0
|H(fi−1, c, b, k) − H(fi, c, b, k)|

mn

H is the histogram function. In summary, we break up a

frame into 16 blocks (4×4). For each block, we construct the

color histogram for each of the R, G and B color components

over all possible integer values k in range LC . The sum of

differences among the corresponding histograms between two

consecutive frames (fi−1 and fi) are then divided by the block

size to obtain the scene change value. A frame’s weight factor

βSC is given below. The threshold values are obtained through

experiments. Consider (fi−1, fi) as a scene change shortly

before a frame k is played.
eSSIM = βSC × eSSIM

βSC =

⎧⎨
⎩

0 , if SC(fi−1, fi) ≥ 3.0 & Condition A

0 , if 3.0 > SC(fi−1, fi) ≥ 1.7 & Condition B

1 , otherwise

Condition A: k is within 0.17 sec. after frame i-1

Condition B: k = i
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(a) SSIM-eSSIM Bernoulli (b) SSIM-eSSIM GE (c) SSIM-eSSIM-PSNR

Fig. 4. Performance of eSSIM in Bernoulli and GE loss model

VI. EXPERIMENT STUDY

In this section, we report on the experiment studies carried

out using VIDAR and show the performance of eSSIM and

how network performance affects video quality in H.264/AVC.

We illustrate the effects of varying key parameters including

loss rate, loss pattern and GOP size.

The computation of eSSIM is normalized to [0, 1]. In our

experiments, we find that eSSIM is a good estimation of

SSIM. Figure 4 illustrates our findings. We have conducted

experiments using Foreman and Inception video clips. Two

different types of network error models are used, namely the

Bernoulli and Gilbert-Elliott (GE) packet loss models as used

in [3]. The Bernoulli loss model exhibits uniform random loss

patterns for which we set the loss probability to 2%. Figure 4a

shows our eSSIM as computed by R3 model over 200 distorted

frames. We observe a strong correlation between eSSIM and

SSIM. Similarly, we studied the performance of R3 under the

GE packet loss model. It is a bursty loss model for which

we set the expected burst length to 1.67 and the loss event

probability to 1.93% (p=0.02, q=0.60). Figure 4b suggests

that eSSIM is a good estimation of SSIM. Figure 4c plots

SSIM, eSSIM and PSNR. We normalized the PSNR value of

each frame based on its mean, and normalized the SSIM and

eSSIM values of each frame based on the SSIM mean. We

took the eSSIM computation that showed the worst correlation

among all of the test scenarios: the Foreman video under 2%

Bernoulli loss model. From the figure, we see that SSIM and

eSSIM capture the variations in frame quality over time (the

frame IDs are in sequence of play order), while the PSNR

shows significant fluctuations. This further confirms that SSIM

is indeed a better image assessment metric than PSNR, and

eSSIM is a good estimator of SSIM.

To examine the effect of varied network performance on

video quality, two source videos are used. Foreman video

is a reference video containing both a portrait scene and a

landscape scene. However, there is no rapid movement or

scene cuts. We therefore also use a 10 sec. clip from Inception

as the second source video. We study two packet loss models:

the Bernoulli uniform loss model and the Gilbert-Elliott (GE)

bursty loss model. Figure 5 presents the computed eSSIM

values of the frames. The frame IDs are in playback order,

and an eSSIM value of 0 indicates that the frame is discarded.

Figure 5a shows the effect of changing GOP size in Foreman.

The result is significant even under a moderate 2% uniform

packet loss. We see periods of prolonged video distortions

when the GOP size is set to 24. This is expected as any

distortion to the P- and I-frames tend to propagate over the

entire GOP. Figure 5b shows the effect of varying the loss

rate of Bernoulli uniform model in Foreman. We see that the

increase in packet loss is uniformly mapped to distortions

across the frames. A loss rate of 4% generates significantly

more distortions, and at higher intensity and longer duration.

We observe that the distortion grows non-linearly with loss

rate. Figure 5c shows the effect of varying burst length in

Foreman, the expected burst lengths are 1.67 (p=0.02, q=0.60)

and 2.2 (p=0.02, q=0.45) packets respectively. We see that

H.264/AVC is more sensitive to bursty loss than to uniform

loss. Even at a low loss rate (1.93% and 1.91%), the distortion

is prolonged and sometimes severe. The number of missing

and discarded frames are also significantly higher than that

of the uniform loss case. Figure 5d shows the results of

Inception video under the same GE parameter. Since Inception

has smaller GOP size due to multiple scene cuts, we observe

slightly less frame drops.

Our examination of eSSIMs under varied network and codec

parameters gave us a good overview of the impact of network

performance on video defects at the frame level.

VII. CONCLUSION

In this paper, we presented the VIDAR framework for

video quality assessment. Following a white-box approach for

modeling, we correlated the effect of network performance

degradations to video frame distortions. An estimation of

SSIM (eSSIM) is used as the key indicator metric for this

as computed in our R3 model. We modified eSSIM by using

subjective filters in our Vidi model. Through experiments, we

showed the effectiveness of VIDAR in capturing metric cor-

relations across different management layers and in assessing
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(a) Foreman uniform loss 2%, GOP size = 12 and 24 (b) Foreman uniform loss 2% and 4%

(c) Foreman GE loss p = 0.02, q = 0.60 and 0.45 (d) Inception GE loss p = 0.02, q = 0.60 and 0.45

Fig. 5. Frame Distortion Under Varied Network Conditions

the impact of network performance on perceived video quality.

As future work, we will suggest an event-based video quality

metric and elaborate on the user model and validate VIDAR

through further experimentation and user studies.
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