
An Evasive Attack on SNORT Flowbits

Tung Tran

University of Waterloo

Waterloo, Canada

t3tran@uwaterloo.ca

Issam Aib

University of Waterloo

Waterloo, Canada

issam.aib@gmail.com

Ehab Al-Shaer

Univ. North Carolina

Charlotte, NC

ealshaer@uncc.edu

Raouf Boutaba

University of Waterloo

Waterloo, Canada

rboutaba@uwaterloo.ca

Abstract—The support of stateful signatures is an important
feature of signature-based Network Intrusion Detection Systems
(NIDSs) which permits the detection of multi-stage attacks.
However, due to the difficulty to completely simulate every
application protocol, several NIDS evasion techniques exploit this
Achilles’ heel, making the NIDS and its protected system see and
explain a packet sequence differently.

In this paper, we propose an evasion technique to the Snort
NIDS which exploits its flowbits feature. We specify the flowbit
evasion attack and provide practical algorithms to solve it with
controllable false positives and formally prove their correctness
and completeness. We implemented a tool called SFET which
can automatically parse a Snort rule set, generate all possible
sequences that can evade it, as well as produce a patch to guard
the rule set against those evasions. Although Snort was used for
illustration, both the evasion attack and the solution to it are
applicable to any stateful signature-based NIDS.

I. INTRODUCTION

Snort [12] is a popular open source and lightweight Network

Intrusion Detection and Prevention System (NIDPS) [2]. It is

mostly signature-based and famous for its intrusion detection

capabilities that match packet content against a set of rules.

Snort supports a flexible and rich rule language which allow

users to inspect all fields of a packet. The flowbits option

was first introduced in Snort 2.1.1 and allows the detection

engine to track state across a single TCP session. The support

of stateful signatures allows a signature-based IDS to detect

multi-stage attacks. Because of its importance, this feature is

sometimes separately implemented for specific services [21].

A flowbit is essentially a flag that can be set by some rule and

then used by another one. The flowbits option works by using

labels to set and change the session state. Formally, it has the

format:

flowbits: [[un]set|toggle|[is|isnot|re]set,noalert][,<LABEL>];

Table I lists two flowbit rules taken from BleedingEdge [1],

which tracks an FTP session. We will illustrate the essence

of our evasion technique using this simple rule set. The first

rule checks if a user tries to log into the FTP server, in

which case it sets the flowbit login and no alert is raised

(noalert flowbit). The second rule raises an alert (absence

of a noalert flowbit) if the user uses the LIST command.

However, this occurs only if the user has not logged in yet, i.e.

the label login is not set. This rule set can detect someone

using the LIST command without prior login into the server.

However, a unauthorized attacker can always try to log in then

TABLE I
EXAMPLE OF A SNORT FLOWBITS RULE SET

alert tcp $EXTERNAL NET any -> $HOME NET 21
(msg:“BLEEDING-EDGE FTP USER login flowbit”; flow: established,
to server; content: “USER”; nocase; flowbits: set, login; flowbits:
noalert;)

alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:
“BLEEDING-EDGE FTP HP-UX LIST command without login”; flow:
established, to server; content: “LIST”; nocase; flowbits: isnotset, login;)

use the LIST command even though the login was not granted.

The rule set makes Snort treat any login attempt as successful

and hence allows the LIST command. This is an example

where a NIDS misjudges the application protocol session and

the evasion succeeds (no alert raised).

In this paper, actual session refers to the application

protocol session being protected, and actual session state

refers to the state of that application protocol session. in-

Snort session pictures an internal representative session (of

the application protocol) maintained by Snort, and in-Snort

session state represents the collective value of each flowbit of

the rule set (ref. Def.1 below). The in-Snort session state is

supposed to reflect the actual session state. However, the large

number and complexity of existing protocols and continuous

appearance of new ones makes it generally impossible to

completely simulate actual session states in Snort because of

obvious performance and storage reasons. The evasion attack

we identify in this paper exploits this practical inevitability.

Although it is illustrated for Snort flowbit rule sets, our evasion

can be applied to any NIDS supporting stateful signatures.

II. RELATED WORK

Several attacks on IDSes have been identified in the lit-

erature. Ptacek and Newsham [11] were the first to bring

up a way to evade a NIDS by using TCP Segmentation

and IP Fragmentation, and FragRoute is the tool created to

carry out these evasion techniques. A NIDS needs to carry

out TCP segments and IP fragments reassembly to defend

these evasion techniques. [6] describes a different solution to

stateful IDS evasion that relies on an extended version of the

IDS state transition diagram. Handley and Paxson [5] [10]

discussed evasion techniques based on inherent ambiguities of

the TCP/IP protocol which leads to a difference between a

NIDS and its protected system in performing TCP segments

and IP fragments reassembly. Traffic normalization suggested

by Handley et al. [5] tries to remove these ambiguities by978-1-4673-0269-2/12/$31.00 c© 2012 IEEE

351

patching the packet stream. Another solution to this is Active

Mapping, which was proposed by Shankar and Paxson [16]

and eliminates TCP/IP-based ambiguity in a NIDS analysis

with minimal runtime cost and is implemented in the Stream5

[9] preprocessor of Snort.

Besides NIDS evasion techniques, there are attacks on

NIDSs as well. Wagner and Soto [23] revealed mimicry attacks

on a Host-based IDS. Snot [18], Stick [4], IDSWakeup [15]

and Mucus [8] are over-stimulation tools that cause a DOS

attack on Snort by trying to overload Snort with alerts from

mutated packets constructed from Snort rules. Another DOS

attack to a NIDS comes from the algorithmic complexity

issue [3] [17], especially the authors in [17] presented a

highly effective attack against Snort, and provided a practical

algorithmic solution that successfully thwarts the attack.

Related to the signature (rules) testing and evaluation,

Vigna et al. [22] introduced a mechanism that generates a

large number of variations of an exploit by applying mutant

operators to an exploit template. These mutant exploits are

then run against a victim host protected by a NIDS. The

results of the systems in detecting these variations provide

a quantitative basis for the evaluation of the quality of the

corresponding detection model. Besides, Mucus [8] is also a

testing tool for Snort rules by using matching packets with

random data in the packet fields not considered by a given

rule.

Rubin et al. [14] observed that different attack instances

can be derived from each other using simple transformations.

TCP and application-level transformations are modeled as

inference rules in a natural-deduction system. Starting from

an exemplary attack instance, they used an inference engine to

automatically generate all possible instances derived by a set of

rules. They created AGENT, a tool capable of both generating

attack instances for NIDS testing and determining whether a

given sequence of packets is an attack. However, our attack

is not an instance generated by AGENT, assuming that the

rule set represents the original exemplary attack instance. Our

attack is neither a TCP nor an application-level transformation.

Existing evasion techniques can be used by our attack, how-

ever, these techniques only apply to injected packets which

are not part of the actual session. Although our paper only

deals with Snort rules, which are mainly manually written

by users, automatically generated semantic-aware signatures

[24] or session signatures [13] are also potentially vulnerable

to our identified attack. In order to avoid false positives,

these generated signatures must consider “innocent” paths (or

sequences) which are not attack instances. Our attack exploits

these “innocent” paths and tries to convince Snort that the

actual session is following one of them.

III. SNORT FLOWBIT EVASION

Let S = {R1,R2,. . . ,Rn} be a Snort flowbit rule set. We

define a rule that raises an alert when triggered (i.e. has no

noalert flowbit) as a Target rule; and Target rule set the set

of all target rules in a rule set. The evasion problem consists of

finding all possible packet sequences that successfully attack

the service protected by S yet manage not to trigger any target

rule of S. It can also be defined on a target rule group, which

is a subset of the target rule set containing rules having the

same match options except the flowbits conditions.
Definition 1 (Session state): It represents the group of

flowbits (labels) that are currently set (during a runtime

session). If n is the number of flowbits used in the rule set,

then there are potentially 2n different in-Snort session states.

It is a Target state if the flowbit set it represents correspond to

the condition of a target rule, otherwise it is called a non-target

state.
A Target packet is a packet that matches any target rule and

presumably the last packet in the packet sequence of a real

attack. A flowbit rule is evadable if it can be triggered by the

attacker to change an in-Snort session state while preserving

the actual session state.
An evadable rule can be triggered by two different kinds of

packets: a packet (from the connection session) that triggers

the rule and correctly reflects what Snort “thinks” about the

session, and a packet that is not supposed to trigger the rule

and makes Snort misjudge the session. Given a rule Ri, let

Pi represent the first kind of packets, called normal packets,

and P ∗

i
represent the second kind, called evasion packets.

P ∗

i
packets cause a change in the in-Snort session state (by

triggering Ri), but have no effect on the actual session state.
A packet sequence is considered a successful evasion attack

if right before the target packet is sent the packet sequence puts

the actual session in one of the target states and puts the in-

Snort session in one of the non-target states. We can assume

that, when the actual session is in one of the target states

and the in-Snort session is in one of the non-target states, the

attacker will always trigger the sending of the corresponding

target packet. As a result, the problem can be redefined as

finding all possible packet sequences that put the actual session

in a target state and the in-Snort session in a non-target state.

IV. LANGUAGE OF ALL FLOWBITS EVASIONS

A Deterministic Finite State Automaton (DFA) representa-

tion of a flowbits rule set can be derived using a mapping from

session states. Alg.1 constructs the in-Snort (Ds) and actual

(Da) session state DFA of a rule set S. As can be noticed,

the two automata have the same alphabet, set of states, start

state and the set of accept states. The only difference is in the

transition function where Ds changes state for evasion packets

(line 14) while Da does not.
Let Ls(S) and La(S) be the languages corresponding to

Ds and Da respectively. While Ls(S) represents all packet

sequences that Snort thinks to put the session in a target state,

La(S) represents all possible packet sequences that truly put

the session in a target state. The goal is then to find all possible

packet sequences that truly put Da in a target state but not

Ds. These packet sequences must hence be accepted by Da

and rejected by Ds. In other words, these packet sequences

are accepted by both the Da and ¬Ds. If we consider these

packet sequences as a language, say Le(S), then:
Lemma 1 (Language of all flowbits evasions): The

language of all packet sequences that successfully attack

352 2012 IEEE Network Operations and Management Symposium (NOMS)

Algorithm 1 Construction of Snort (Ds) and Actual (Da)

Session DFAs

1: Set of states: reachable session states constructed from the rule
set

2: Start state: the state where no label is set.
3: Accept states: all target states
4: Alphabet Σ = {Pi: Ri is not a target rule} ∪ {P ∗

i : Ri is evadable
and Ri is not a target rule}

5: // Transition function
6: for all non target rule Ri do
7: for all state A do
8: state B ← A
9: if Ri can be triggered at A then

10: B ← output state of Ri when triggered from A
11: end if
12: Add (A,Pi) → B to both Ds and Da

13: if Ri is evadable then
14: Add (A,P ∗

i) → B to Ds

15: Add (A,P ∗

i) → A to Da

16: end if
17: end for
18: end for

the service protected by a rule set S using flowbits evasion

equals:

Le(S) = La(S) ∩ ¬Ls(S) = L(De(S)) (1)

where De(S) = Da(S) ∩ ¬Ds(S)

V. TRIGGERING A SNORT RULE WITHOUT AFFECTING

THE ACTUAL SESSION STATE

A. Packet-based property of Snort

Snort is a packet-based NIDS and most packets it receives

are checked by the detection engine. This feature allows the

creation of evasion packets. One method is to construct a

packet that matches a given rule, however, with an “out of

order” TCP sequence number. This packet is not processed

by the receiver’ application layer but is still examined by the

Snort detection engine (then triggers the rule). Snort, with

the stream5 preprocessor enabled, knows that the packet does

not have an expected sequence number for the session stream

and is overlapping with a previous packet (assuming that this

previous packet has some payload). In this case, Snort does

exactly as the protected host: not reassemble this packet into

the session stream. However, the packet is still passed down to

the detection engine because the packet may match some TCP-

based attacks where the sequence number is not important (e.g:

Nmap [7] uses TCP packets with random sequence number to

probe a host’s OS). Hence, it is always possible to construct

a packet (with an “out-of-order” TCP sequence number) to

fake a request from the client and inject it into the connection

session. Therefore, any Snort flowbit rule matching traffic from

the client side can be triggered without causing the actual

session state change. This was tested with Snort 2.9.1 [20],

the newest version at this time.

B. Loose rules

We say that a flowbit rule is loose if it does not match

packets using tight options like dsize, depth, or offset. A loose

rule can wrongly explain the intention of a packet if the packet

just happens to match the rule but logically does something

else. Moreover, it is possible to create or trigger the sending

of such a packet. The packet can even be created from the

connection session itself.

Depending on the service protocol, an attacker may be able

to make a request from the client-side that matches a loose

rule while logically doing something else rather than what the

rule expects. For example, consider a loose rule that checks if

a user that is currently in an FTP session is trying to quit the

session by examining client-side packets containing QUIT\n

in their payload. The attacker can make a request to create

a directory named QUIT, which happens to have QUIT\n in

the packet payload and causes Snort to misjudge the session.

It is harder to evasively trigger a loose rule matching traffic

from the server side than the client side because traffic from

the server side is not always controllable by the attacker.

However, when dealing with interactive protocols, there are

many tricks the attacker can use to cause the server to send

a packet containing desired strings and then trigger the rule.

Consider a rule which checks for any packet from the server

in a telnet session containing the string “Granted” in the

payload. The attacker can issue an invalid command containing

“Granted”. The server will send back an unknown command

error message, which happens to contain the string “Granted”,

and hence triggers the rule. Another trick is to create a folder

named “Granted” and then try to list all the folders.

VI. EXAMPLE OF A FLOWBITS EVASION

The rule set in Table II follows an FTP session and raises

an alert if a non-admin user tries to do anything related to

an important file whose access is restricted to administrators

only. For simplicity, we show only the flowbits and the msg

options in a rule. The msg option denotes the purpose of a

rule.

Rule R1 and R2 determine if a non-admin user is logging in.

Rule R3 indicates that the user is denied to login. R4 checks

if the user has successfully logged in. R5 indicates that the

user has logged out of the FTP session, and R6 checks if the

logged-in user tries to do anything with a restricted file and

raises an alert. Only R6 is a target rule. Theoretically, any rule

is evadable, but in this example, for simplicity, we assume

that only R5 is. This means that the attacker can come up

with a way to trigger R5 without affecting the actual session

state. He can accomplish this in many different ways which

are discussed in Section V.

Three labels are used in this rule set, leading to 23 = 8
possible states. However, only four of these are reachable,

including the start state (no label set): A ={}, B={nalu},

C={nalu, nalp} and D={nalu, nalp, nauld}. The in-Snort DFA

Ds and actual session state DFA Da are depicted in Fig.1

and Fig.2. The intersection of Ds and Da, which is De is

constructed in Fig.3, where (A,A) is the start state and (D,A),

2012 IEEE Network Operations and Management Symposium (NOMS) 353

Fig. 1. Ds of the FTP rule set Fig. 2. Da of the FTP rule set

TABLE II
A FLOWBITS RULE SET TO DETECT A NON-ADMIN USER ACCESSING A

RESTRICTED FILE FROM AN FTP SESSION

R1 msg: “FTP Non-admin User Login Attempt - Send user-
name”; flowbits: set, nalu; flowbits: noalert;

R2 msg: “FTP Non-admin User Login Attempt - Send pass-
word”; flowbits: isset, nalu; flowbits: set, nalp; flowbits:
noalert;

R3 msg: “FTP login denied”; flowbits: isnotset, nauld; flow-
bits: isset, nalu; flowbits: isset, nalp; flowbits: unset, nalu;
flowbits: unset, nalp; flowbits: noalert;

R4 msg: “FTP login granted”; flowbits: isset, nalp; flowbits:
set, nauld; flowbits: noalert;

R5 msg: “FTP user exits”; content: “QUIT|0D0A|”; nocase;
flowbits: isset, nauld; flowbits: unset, nauld; flowbits: unset,
nalu; flowbits: unset, nalp; flowbits: noalert;

R6 msg: “Non-admin User accesses restricted file”; flowbits:
isset, nauld;

(D,B), and (D,C) are accept states. The language correspond-

ing to this De represents all possible packet sequences that

successfully attack the FTP server.

For example, p1p2p4p
∗

5
is a successful evasive packet se-

quence accepted by this De. The attacker can apply this packet

sequence to perform a real attack as follows: First, the attacker

logs in as a normal user (non admin) with a correct username

and password. This action needs p1 and p2 to be sent from

the attacker and leads to the sending of p4 from the server to

indicate that the user is successfully authorized. The next step

the attacker needs to do is to cause the sending of p∗
5
. There

are two options to create p∗
5
. The first is to manually construct

and inject into the connection a packet that matches R5 but

has an out-of-order sequence number. The second is to send

a packet that matches R5 but logically does something else

rather than exiting the session as Snort thinks. The attacker can

create a directory named QUIT, which makes Snort misjudge

the session and think that the user has logged out. After that,

the attacker can download or access the restricted file at the

server. This last action does not triggers the target rule and

the evasion succeeds.

Algorithm 2 flowbitsRectify small (TargetRuleGroup T)

1: Let De be the flowbits evasion DFA for target rule group T
2: for all accept state t ∈ De do
3: remove outgoing transitions of t
4: end for
5: create SP the set of all simple paths from the start state of De

to an accept state.
6: k ← 0;
7: for all simple path P ∈ SP do
8: k ← k + 1;
9: Let P = q1q2 . . . qm, where qi is the signature (or an evasion)

of rule R(qi)
10: Create a new flowbits rule set Sk.
11: Let Ak

0 be a flowbits label that is set by default
12: for i ← 1 to m do
13: Create flowbits label Ak

i

14: Add to Sk the rule consisting of:
15: begin
16: flowbits: isset, Ak

i−1; flowbits: set Ak

i ; flowbits: noalert;
17: all options in R(qi) in the original rule set (header and

body) except the flowbits options
18: end
19: end for
20: // target rule
21: Create flowbits label Ak

m+1

22: Let RT be a target rule in T
23: Add to Sk the rule consisting of:
24: begin
25: flowbits: isset, Ak

m; flowbits: set Ak

m+1;
26: all options in RT in the original rule set (header and body)

except the flowbits options
27: end
28: end for

VII. FLOWBITS EVASION RECTIFICATION

A. Solution for small rule sets

We can consider De as a directed graph. Theoretically, we

need to add a rule set to detect each path from the start state

to an accept state, which we call an evasion path. Fortunately,

it is enough to consider only simple evasion paths, where a

simple path is a path with no cycles. This is because rules

added to detect all simple evasion paths can actually detect

all evasion paths. Moreover, it is sufficient to consider only

subset paths over all simple paths. Alg.2 details this procedure.

Simple path translation into a rule set is given in lines 12-19

with the target rule in lines 21-27. For example, the set of

354 2012 IEEE Network Operations and Management Symposium (NOMS)

Fig. 3. De of the FTP rule set Fig. 4. Simple De

evasion path

simple paths SP collected from De of Fig.3 has one simple

path (after removing subset paths) as shown in Fig.4. There

are five rules added for this simple path as shown in Table III.

The fact that Alg.2 searches for all simple paths to target

states (line 5) attributes to it an exponential worst time

complexity. Hence, Alg.2 is only suitable for rule sets of a

small size. In the evaluation, the computational limit is quickly

achieved for rule sets of size ≥ 9. In the following, we present

a different solution that is feasible for both small and large rule

sets.

B. Solution for large rule sets

For large rule sets, we will use Thm.1 below (proof in

appendix).

Definition 2 (Vulnerable Rule): It is an evadable rule that

renders the rule set vulnerable (Le(S) �= ∅) even if all other

rules are not evadable.

Theorem 1: If a set Q of evadable rules makes the rule

set vulnerable, then at least one of these evadable rules is

vulnerable. (This theorem can be proven using contradiction)

It follows that any evasion sequence needs to exploit at least

one evadable rule, i.e., it contains at least one evasion packet.

Hence, the idea is to behave in a pessimistic way and set a flag

whenever an evadable rule is triggered. If Snort sees a target

packet while the flag is set, it raises an alert. Interestingly,

TABLE III
RULES ADDED FOR THE SIMPLE PATH IN FIG.4

R1(1) flowbits: set, A1
1; flowbits: noalert;

R1(2) flowbits: isset, A1
1; flowbits: set, A1

2; flowbits: noalert;

R1(3) flowbits: isset, A1
2; flowbits: set,A1

3; flowbits: noalert;

R1(4) flowbits: isset, A1
3; flowbits: set, A1

4; flowbits: noalert;

R1(5) flowbits: isset, A1
4;

Algorithm 3 flowbitsRectify Large (TargetRuleGroup Tm)

1: construct Ds and Da corresponding to Tm

2: // Find vulnerable rules of Ds

3: set Vm = {}; // set of vulnerable rules
4: for all non target rule Ri in rule set S do
5: construct Di

s and Di

a, where Ri is the only evadable rule.
6: Di

e ← Di

a ∩ ¬Di

s

7: if Di

e has a reachable accept state then
8: Vm ← Vm + {Ri}
9: end if

10: end for
11: if Vm �= φ then
12: create new label Fm

13: Add new rule RT

m consisting of:
14: begin
15: flowbits: isset, Fm; //the flowbits condition
16: all header and body options in a target rule of Tm except

flowbits.
17: end
18: for all Ri ∈ Vm do
19: Add to Ri flowbits:set, Fm

20: end for
21: end if

Thm.1 tells us that we only need to do this with vulnerable

rules.

Alg.3 starts by determining the set Vm of vulnerable rules

(lines 4–10). Next, it patches in Ds every destination state

of a vulnerable rule by setting the flag Fm (line 19). Once

a vulnerable rule has been triggered, an alert is raised at the

encounter of a signature belonging to a target rule regardless

of the flowbits state (lines 15–16). This pessimistic approach

comes at a performance cost. However, it brings the benefit

of having a polynomial complexity, which is an important

scalability enhancement over Alg.2.

Considering the rule set of Table II and assuming all

rules are evadable, the first step of the algorithm (lines 1–

9) indicates that only rules R3 and R5 are vulnerable (note

that Fig.3 is the De created assuming only R5 is vulnerable).

2012 IEEE Network Operations and Management Symposium (NOMS) 355

Fig. 5. Vulnerable and safe rule sets percentage when SFET is
run in the cautious mode

Fig. 6. Average Overhead to patch small rule sets

Fig. 7. Average Overhead from false positives control patch (for
small and large rule sets)

Fig. 8. Average false positives rate caused by the small rule set
solution

Fig. 9. Average false positives rate caused by the large rule set
solution

Fig. 10. Average false negatives rate for the small and large rule
set solutions

So R3 and R5 are modified by inserting the flowbits option

flowbits:set F6. RT

6
is the added rule and all other rules

are the same. Table IV shows the modified and added rules to

patch the rule set.

We can formally prove that both Alg.2 and Alg.3 are

complete (rule set’s semantics preserved) and sound (fully

eliminate the flowbits evasion).

C. False positives control

Even though the approach used for large rule sets also works

for small rule sets, it potentially causes more false positives.

While the latter only raises an alert if a complete evasion

sequence is seen, the former does so only for important packets

in an evasion sequence. However, the overhead caused by

the latter is larger. In order to avoid false positives, Snort

needs to consider session packets beyond a target state (in

the patched rule set). These can give clues about who is

running the session. If a target packet is encountered right

356 2012 IEEE Network Operations and Management Symposium (NOMS)

TABLE IV
MODIFIED AND ADDED RULES USING THE LARGE RULE SETS APPROACH

R3 flowbits: isnotset, nauld; flowbits: isset, nalu; flowbits:
isset, nalp; flowbits: unset, nalu; flowbits: unset, nalp;
flowbits: set, F6; flowbits: noalert;

R5 flowbits: isset, nauld; flowbits: unset, nauld; flowbits: un-
set, nalu; flowbits: unset, nalp; flowbits: set, F6; flowbits:
noalert;

RT

6 msg: “Normal User accesses important file”;
flowbits: isset, F6;

away it is most likely that it is an attack. Otherwise, if the

following packets continue triggering normal transitions in Ds

as normal users do, it becomes more and more probable that

it is a benign session. Hence, the more session packets are

considered afterward, the more accurate the decision becomes.

In order to determine all possible actions a normal user

might do after Snort is put into a target state, we need to

know all the states in Ds after an evasion sequence has been

identified (for small rule set solution) or after a vulnerable rule

is triggered (for large rule set solutions). Then all possible

actions of a normal user are equivalent to all paths starting

from any of these states. As a result, we can create rules

corresponding to these paths to control the false positives rate

caused by the patched rule set.

There is always a tradeoff between vulnerability and false

positives. A patched rule set (whether for the small or large

rule set algorithms) has zero false negatives yet potentially

a lot of false positives. On the other hand, a non patched

vulnerable rule set has no false positives (with regards to

flowbit evasion). The false positives control patch makes the

rule set vulnerable again because a smart attacker can always

send packets corresponding to all possible actions a normal

user might do before sending the target packet. However,

this false positives control patch is useful when missing few

evasions is better than having too many false positives.

Let L be the length of actions (or path length) Snort

considers after it is put into a target state to decide if the

session is run by a normal user or not. The tradeoff we have

is that the shorter L we use, the less false positives we obtain,

however, the more false negatives we might cause.

VIII. IMPLEMENTATION AND EVALUATION

We developed a program called SFET (Snort Flowbits

Evasion Tool) to parse a rule set, check if the rule set is

vulnerable to the proposed attack, generate the corresponding

De (or evasion sequences) and patch the rule set accordingly

depending on its size and the number of evasion sequences.

SFET can be run in 3 modes: specified mode, automatic

mode and cautious mode. In the specified mode, SFET allows

users to specify which rule is evadable and which rule is a

target rule. In the automatic mode, SFET itself decides the

possibility of a rule to be evadable based on the rule’s matching

options (like content options and traffic direction the rule

matches) and chooses rules with no flowbits:noalert option

as target rules. Lastly, in the cautious mode, SFET assumes

all rules in a rule set are evadable. A rule set is considered

vulnerable if there exists an evasion sequence for any chosen

target rule.

We collected publicly available rule sets (mostly from

BleedingEdge [1] and SourceFire [19]). About 60% of the

rules use flowbits matching traffic coming from the client’s

side (presumably from the attacker’s side), hence these rules

are considered evadable. All together (considering different

rule options as well), there is about 68% out of the rules using

flowbits determined by SFET as evadable. In addition, there

are about 6% and 4% of 400 rule sets (using flowbits) detected

vulnerable to the proposed attack when SFET was run in the

cautious mode and the automatic mode respectively.

When running SFET in the specified mode with some

chosen rule sets (we know exactly which rule is evadable),

all evasion sequences generated by SFET can be converted to

a real attack (this is not true for other modes).

Even though large rule sets (the number of rules ≥ 9)

make up only 20% of the considered rule sets, they are more

susceptible to the attack than small rule sets. While 10% of

large rule sets are vulnerable to the attack, only 5% of small

rule sets are vulnerable. This is shown in Fig.5.

When applying the proposed solution to small vulnerable

rule sets, the number of added rules in average is triple that of

rules in the rule set (for both automatic and cautious modes).

Fig.6 shows the average number of added rules for each rule

set size (note: we do not find any vulnerable rule set of size

4).

For large vulnerable rule sets, the number of modified rules

is the same as that of vulnerable rules. Even though some large

rule sets have many evadable rules, in average, only 10% of

evadable rules are vulnerable. In addition, the number of added

rules for each large rule set is at most the number of target

rules in the rule set. The average number of added rules is

only 3.5 for both automatic and cautious modes.

We applied the false positives control patch for different

values of L. On average, the number of rules added to

control false positives increases exponentially as L increases

(as expected) and this is shown in Fig.7.

To measure false positives caused by our patches, we run

Snort with vulnerable rule sets and generated traffic according

to their DFAs. To be more accurate, we generated traffic with

both normal and evasion packets. However, we set the rate of

evasion packets to be small (anywhere from 1% to 5%). A

false positive occurs when the patched rule set raises an alert

on a benign packet sequence (not an evasion sequence and the

original rule set does not raise an alert on).

Fig.8 shows the average false positives rate for the small

rule set solution. We see that patched rule sets of smaller

size tend to have more false positives than those of bigger

size. Besides, rule sets of size 2 or 3 have high average

false positives rate because their DFAs are small and there

is no significant difference between the number of evasion

sequences and the number of normal sequences. However,

when the false positives rate is high, the false positives control

2012 IEEE Network Operations and Management Symposium (NOMS) 357

can be effective in decreasing the rate (e.g. the average false

positives rate for rule sets of size 3 goes down from 17% to

7% when false positive control L=1 is used) .

Fig.9 shows the average false positives rate for the large

rule set solution. In general, the false positives rate is small

even when the false positives control is not applied. There are

two exceptions where the false positives rates are very high

(≈75%). These occurred when we dealt with cases having

many vulnerable rules in a rule set. Fortunately, the false

positives control significantly decreases the false positives

rates in these cases (to ≤5%).

Since the false positives control puts a patched rule set back

to vulnerability, it is important to measure the false negatives

rate it might cause. Specifically, we measure the number of

evasion attacks not detected by the patched rule set (with

the false positive control enabled) over the number of all

evasion attacks. Fig.10 shows the average false negatives rate

for different L. As we expected, the smaller L we use, the

higher false negatives rate we have. In fact, when L goes to

infinity, the false negatives rate goes to 0. This reflects the

situation when we do not use the false positives control for a

patched rule set and we can detect all evasion attacks. Besides,

Fig.10 also shows that the large rule set solution causes more

false negatives than the small rule set solution when the false

positives control is applied. Finally, it seems that L=2 is a good

value to use in order to balance between the false positives rate

and the false negatives rate.

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed an evasion technique to Snort

flowbits rule sets which exploits, among others, the packet-

based nature of Snort and/or the possibility of having loose

rules. We suggested two main algorithms to resolve it. The

first algorithm generates low false positives but can potentially

run in exponential time and generate a large set of patch rules.

Hence, it practically yields results for small rule sets of about

less than dozen rules. The second algorithm runs in polytime

and has a linear output with respect to the size of the rule set

DFA. In this regard, it works for both small as well as large

rule sets. It however generates high false positives. A tunable

false positive control method was then suggested to balance

the tradeoff between soundness and efficiency.

We implemented the SFET tool, which automatically cal-

culates the evadability of a rule based on the its content

and generates all possible evasion sequences to a given rule

set. Besides, SFET can augment a vulnerable rule set with

additional rules that thwart the flowbit evasion using the

suggested algorithms. Evaluations showed that a good number

of available rule sets are vulnerable to the proposed evasion.

The practical nature of our solutions in generating little

overhead for both small and large vulnerable rule sets was

also demonstrated.

Our solution, in addition to curing existing rule sets, also

provides a characterization of evadable rule sets, which helps

administrators in the design of future flowbit evasion free

rule sets and/or redesign existing ones. Finally, we note that,

although our proposed flowbit evasion was studied for Snort,

the underlying concept extends to any NIDS with stateful

signatures. Hence, we consider its application to different

NIDSs in future work.

REFERENCES

[1] BleedingEdge Inc. http://www.bleedingthreats.net.
[2] Brian Caswell, Jay Beale, and Andrew R.. Baker. Snort Intrusion

Detection and Prevention Toolkit. Syngress Publishing, 2007.
[3] S.A. Crosby and D.S. Wallach. Denial of Service via Algorithmic

Complexity Attacks. In USENIX Security Symposium, Aug 2003.
[4] C. Giovanni. Fun with Packets: Designing a Stick.

Technical report, Draft White Paper on Stick, Mar. 2001.
http://www.eurocompton.net/stick.

[5] Mark Handley, Vern Paxson, and Christian Kreibich. Network intru-
sion detection: evasion, traffic normalization, and end-to-end protocol
semantics. In USENIX Security Symposium, pages 9–9, Berkeley, CA,
USA, 2001. USENIX Association.

[6] Aib Issam, Tung Tran, and Raouf Boutaba. Characterization and solution
to a stateful IDS evasion. In IEEE ICDCS, Canada, 2009.

[7] Gordon “Fyodor” Lyon. Nmap Network Scanning. Insecure.org, Sept.
2008.

[8] D. Mutz, G. Vigna, and R. Kemmerer. An experience developing an
IDS stimulator for the black-box testing of network intrusion detection
systems. In ACSAC, 2003.

[9] J. Novak, S. Sturges, and I. Sourcefire. Target-Based TCP Stream
Reassembly. Sourcefire, Incorporated, Aug 2007.

[10] V. Paxson. Bro: a system for detecting network intruders in real-time.
In USENIX Security Symposium, pages 3–3, 1998.

[11] T.H. Ptacek and T.N. Newsham. Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection, 1998.

[12] M. Roesch. Snort–Lightweight Intrusion Detection for Networks. In
USENIX LISA, 1999.

[13] S. Rubin, S. Jha, and B.P. Miller. Language-based generation and
evaluation of NIDS signatures. In IEEE S&P, pages 3–17, May 2005.

[14] Shai Rubin, Somesh Jha, and Barton P. Miller. Automatic generation
and analysis of NIDS attacks. In IEEE ACSAC, pages 28–38, 2004.

[15] S.Aubert. http://www.hsc.fr/ressources/outils/idswakeup/index.html.en.
[16] U. Shankar and V. Paxson. Active mapping: resisting NIDS evasion

without altering traffic. In IEEE S&P, pages 44–61, May 2003.
[17] Randy Smith, Cristian Estan, and Somesh Jha. Backtracking algorithmic

complexity attacks against a NIDS. In IEEE ACSAC, 2006.
[18] Sniphs. Snot, 2003 January. http://www.l0t3k.org/tools/IDS/snot-

0.92a.tar.gz.
[19] SourceFire, Inc. http://www.sourcefire.com.
[20] Sourcefire, Inc. Snort 2.9.1. The Snort Project, 23 Aug 2011.

http://www.snort.org/downloads/1107.
[21] G. Vigna, W. Robertson, Vishal Kher, and R.A. Kemmerer. A stateful

intrusion detection system for world-wide web servers. In IEEE ACSAC,
2003.

[22] Giovanni Vigna, William Robertson, and Davide Balzarotti. Testing
network-based intrusion detection signatures using mutant exploits. In
ACM CCS, 2004.

[23] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion
detection systems. In ACM CCS, 2002.

[24] Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, and Somesh Jha.
An architecture for generating semantics-aware signatures. In USENIX

Security Symposium, 2005.

358 2012 IEEE Network Operations and Management Symposium (NOMS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

