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Introduction

• Energy cost is an important concern of cloud providers

• Accounts for 12 % of data center operational cost in 2010 [1]

• Government policies for building energy-efficient (i.e. “Green”) 

computing platform
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[3]

• Turning off servers is an 

effective way to minimize 

energy cost

• An idle server consumes as 

much as 60% of its peak 

power usage



Related Work

• Dynamic capacity provisioning and load dispatching 

• Estimate the number of servers then distribute requests among them

• Dynamically adjusting number of servers

• Differences from our work

• Most of the existing work focuses on provisioning at application level

• Trade-off between energy savings and scheduling delay

• Usually do not consider the cost of turning on and off machines 

• Do not consider the fluctuation of electricity prices

• Consider a single type of resource (i.e., CPU)
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Motivation

• To dynamically control data center capacity, one must 

consider the following factors:

• The task arrival rate 

• Task requirements

• Memory, cpu and disk

• The cost of turning on and off servers

• Wear-tear effect

• The fluctuating energy prices
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Trace Analysis

• Google’s compute clusters execute millions of tasks on a 

daily basis

• Workload traces collected from a production compute 

cluster in Google over 29 days

• ~ 12,000 machines

• ~2,012,242 jobs

• 25,462,157 tasks

• Applications are represented by jobs

• Each Job consists of one or more tasks

• User-facing jobs: e.g., 3-tier web applications

• Batch jobs: e.g., MapReduce jobs
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Trace Analysis (cont’d)

• The fluctuation of resource demand in data centers 

creates opportunities for dynamically turning on and off 

servers
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CPU Demand over 30 days Memory Demand over 30 days

Figure: Total resource demand in Google’s Cluster Data Set

Machine availability over 24 hours



Trace Analysis (cont’d)

• There is a trade-off between utilization and scheduling 

delay
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Scheduling Delay vs. Utilization

• The queuing delay � can be 

modeled by 
• A linear function 

� � = � ⋅ � + �

• A delay function for M/M/1 

queuing delay

� � = � ⋅
�

1 − �
+ �



System Architecture
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Our Solution

• A control-theoretic solution to the dynamic capacity 

provisioning problem

• Predict the demand as well as capacity required to handle the 

demand

• Formulate the problem as an optimal control problem

• Minimizing the total energy cost while meeting requirement

• Meeting performance requirement measured by the average queuing 

delay, (estimated as a function of the cluster utilization)

• Derive an expression for the optimal required capacity 

given electricity prices and queuing delay objectives
• Solve an optimization problem that minimizes the sum of electricity cost 

and SLA penalty cost
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Optimal Capacity

• Derive an expression for the optimal required capacity given 

electricity prices and queuing delay objectives

• Solve an optimization problem that minimizes the sum of SLA 

penalty cost and energy cost :

� This problem can be solved directly using KKT conditions, 

assume a M/M/1 queuing model is used for �(⋅)
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SLA Penalty Cost Energy cost



Designing the Controller

• At time k, predicting the future usage over a prediction window 
[�, � + 
]	using time-series method (e.g., ARIMA)

• Compute the optimal capacity ��
∗ required at each step in [�, � + 
]

• Design a control algorithm that tracks the reference value ��
∗ . We 

model it as a linear quadratic control problem:

• ����|� represents the controller action (number of servers to turn on 
and off) to be performed at time �
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Tracking Error Reconfiguration Cost



Experiments

12

• Usage Prediction
• ARIMA model - ARIMA (2,1,1)

• Performance metric : Relative Squared Error (RSE)



Experiments
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• Usage Prediction
• ARIMA model ARIMA (2,1,1)

• One-step prediction 

RSE1 = 0.062 RSE1 = 0.086



Experiments
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Capacity vs. Actual Resource Usage in the Cluster

CDF of Task Scheduling Delay

• Simulation Setup
• Traces from a Google compute cluster

• Reconfiguration cost R=0.1

• Desired average scheduling delay: 10 seconds

Number of machines over 24 hours



Experiments

• Effect of the reconfiguration cost on the solution
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Average Scheduling Delay as a Function of R Energy saving as a Function of R

Average cost per hour.



Conclusion

• Dynamic  capacity provisioning can achieve substantial 

energy savings in cloud data centers

• We proposed a control-theoretic solution that dynamically 

adjusts server allocations according to both demand and 

resource price

�Reduction of18.5 % in energy costs while meeting the SLA 

requirement in terms of scheduling delay

• Experiments using Google workload traces demonstrate 

the effectiveness of our approach
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Future work

• Heterogeneity is a major challenge for resource 

management in Cloud computing environments

• Machines have heterogeneous capacities and capabilities

• Applications have diverse resource characteristics, priority and 

performance objectives

�How to leverage machine heterogeneity and job arrival 

patterns to save energy, while meeting job performance 

objectives?

�How to design scheduling algorithms that consider workload 

heterogeneity?

�Many research opportunities exist for designing 

heterogeneity-aware resource management schemes
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Questions?

18



References

1. Technology research - Gartner Inc. 和
http://www.gartner.com/it/page.jsp?id=1442113

2. http://perspectives.mvdirona.com/

3. Chen et al., Energy-Aware Server Provisioning and 

Load Dispatching for Connection-Intensive Internet 

Services,  NSDI 2008

19



Backup Slides
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Future work (cont’d)

• Optimizing workload performance and resource efficiency 

using migration

• Live migration is a well known technique for online workload 

management

• How to use migration effectively given heterogeneous workload 

characteristics?
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Dynamic Energy-Aware Capacity Provisioning
Experiments

• Effect of the reconfiguration cost on the solution
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Capacity vs. Actual Resource Usage in the Cluster CDF of Task Scheduling Delay

Average Scheduling Delay 

as a Function of R

Energy saving 

as a Function of R

• Controller performance (R=0.1)



Machine heterogeneity
Energy consumption
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Energy consumption vs. Number of used 

cores (Normalized)
Energy consumption vs. Utilization



Application Heterogeneity: Job Priority 

and Size

• Most of the jobs have low priority
• Most of the jobs consists of <10 tasks, but a few of them have 

more than 1000 tasks
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Number of jobs per class CDF of Number of tasks per job



Application Heterogeneity: Task Size and 

Duration

• Most of the tasks require little resources, a few of them require a lot of 
resources

• Most of the tasks are short (<10 min), a few tasks are really long
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CDF of Task CPU Requirement CDF of Task DurationCDF of Task Mem
Requirement


