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Abstract—Large-scale online service providers have been
increasingly relying on geographically distributed cloud in-
frastructures for service hosting and delivery. In this context,
a key challenge faced by service providers is to determine
the locations where service applications should be placed such
that the hosting cost is minimized while key performance
requirements (e.g. response time) are assured. Furthermore, the
dynamic nature of both demand pattern and infrastructure cost
favors a dynamic solution to this problem. Currently most of
the existing solutions for service placement have either ignored
dynamics, or provided inadequate solutions that achieve both
objectives at the same time. In this paper, we present a
framework for dynamic service placement problems based on
control- and game- theoretic models. In particular, we present
a solution that optimizes the desired objective dynamically over
time according to both demand and resource price fluctuations.
We further consider the case where multiple service providers
compete for resource in a dynamic manner, and show that there
is a Nash equilibrium solution which is socially optimal. Using
simulations based on realistic topologies, demand and resource
prices, we demonstrate the effectiveness of our solution in
realistic settings.

I. INTRODUCTION

Cloud computing has recently gained significant popu-
larity as a cost-effective model for delivering large-scale
services over the Internet. In a Cloud computing envi-
ronment, infrastructure providers (namely, cloud providers)
build large data centers in geographically distributed lo-
cations to achieve reliability while minimizing operational
cost [1]. The service providers (SPs), on the other hand,
leverage geo-diversity of data centers to serve customers
from multiple geographical regions. Today, large companies
like Google, Yahoo and Microsoft have already adopted
this model in their private clouds, offering a wide range
of services to millions of users world-wide. As Cloud com-
puting technologies become mature, an increasing number
of companies are expected to adopt this model by moving
into clouds.

A key technique of each SP in cloud service management
is to distribute servers in multiple data centers in order
to meet the performance requirements specified in Ser-
vice Level Agreements (SLA), while reducing operational
costs by optimizing the placement of servers in multiple
data centers. This typically involves solving two problems
jointly: (1) deciding on the number of servers placed in
each data center, and (2) routing each request to appro-
priate servers to minimize response time. As infrastructure

Figure 1. Model of service placement in geographically distributed data
centers

providers typically offer on-demand and elastic resource
access, it is possible to adjust the number of servers to
match service demand in a dynamic way. Furthermore, the
cost of reconfiguration (i.e. the cost of adding and removing
servers) must be taken into account. The consideration for
reconfiguration cost is important for ensuring the system
stability and minimum management overhead and costs.
For instance, these operations have costs for setup (e.g.,
VM image distribution) and tear-down (e.g., data / state
transfer). Thus, it is in the interest of SPs to reduce such
reconfiguration cost.

On the other hand, the price of resources offered by infras-
tructure providers are also subject to change. In particular,
energy consumption is a major contributor to the operation
cost of a data center. In many regions of the U.S., the
electricity grid of each region is managed independently by a
Regional Transmission Organization (RTO) which operates
wholesales electricity markets in order to match supply and
demand for electricity, as illustrated in Figure 1. As a result,
electricity prices in each region can vary independently
over time. Based on this fact, recently there have been
several studies on dynamic server placement [2], [3] and
request dispatching [4] in private clouds, taking into account
fluctuating energy costs. The same benefit can be achieved
in public clouds by introducing some degree of dynamic
pricing, such as the one being used by Amazon EC2 [5].
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Combining the above observations, a SP is facing the
problem of dynamically controlling the number of servers
placed in each data center to minimize the total resource
cost while satisfying SLA requirements, taking into consid-
eration the fluctuation of both demand and resource price.
We call this problem dynamic service placement problem
(DSPP). This problem shares many similarities with tradi-
tional replica placement problem in [6], [7], [8]; however, the
price fluctuation is often neglected in the existing literature.
Recently, there are several papers that have studied this
problem (e.g., [3]). However, the dynamic aspect of the
problem, particularly the cost of dynamically starting and
shutting down servers, is still largely unaddressed.

In this paper, we study the DSPP problem using both
control and game theoretic methods. Specifically, we first
propose a control framework based on Model Predictive
Control (MPC) approach to provide an online adaptive
control mechanism which aims at reducing service provider
costs, namely, resource allocation and reconfiguration costs.
We further extend this framework to a game-theoretic model
to consider the competition among multiple SPs, taking into
consideration the capacity constraint of each data center.
This model is realistic for several reasons: (1) on-demand
resource allocation mechanisms can often lead to situations
where resource demand exceeds the capacity available in a
data center (e.g., during holiday seasons). (2) Recently, there
are numerous proposals that advocate for small-scale data
centers (e.g., [9], [10]). In both cases, limited data center
capacity can result in some SPs not getting the resources
they desire. In this case, we analyze the outcome of resource
competition and show that there exists an optimal outcome,
and provide algorithms to compute this outcome. Finally,
using simulations based on realistic topologies, demand and
prices, we demonstrate the effectiveness of our proposed
approach and analyze various properties of the resource
competition game.

The remainder of the paper is organized as follows:
Section II surveys the related work. Section III presents the
proposed framework for a single SP. Section IV describes
the problem formulation of DSPP for a single SP. The
design of our controller for DSPP is provided in Section
V. In Section VI, we extend our framework to a multi-
provider scenario and analyze the outcome of the resource
competition game. Section VII presents our experimental
results. Finally, Section VIII concludes the paper.

II. RELATED WORK

Service placement in large-scale shared service hosting
infrastructures has been studied in many contexts in the
past. Early works on this problem primarily have focused on
placing content replicas in the context of content delivery
networks (CDNs) [11], [12], [8]. However, most of the
work in that context have addressed the centralized cases
where the demand profile and network topology are static
or time invariant. More recent studies have also investigated

dynamic cases [7], [13] where iterative improvement algo-
rithms are proposed. In the context of application placement
in distributed systems, Oppenheimer et. al. [14] have studied
the problem of placing applications on PlanetLab. As re-
source usage can be heterogenous and time-varying among
the PlanetLab nodes. They have suggested that dynamically
adjusting service placement can potentially improve the
system performance. Laoutaris et. al. have formulated the
service placement as an uncapacitated facility location prob-
lem (UFLP) [15], and have presented a local search heuristic
algorithm for improving the quality of service placement
solutions over time. However, the objective of these studies
is to ensure the algorithm converges to a near optimal
solution for a static topology in finite number of iterations,
instead of optimizing the overall system performance in the
presence of demand and resource dynamics. Furthermore,
the cost of dynamic reconfiguration is not considered in
these studies. More recently, Arora et. al. [16] have presented
an approximation algorithm for the DSPP in the context of
virtual networks, however, the approximation guarantee is
inadequate to guarantee the quality of the solution in general
cases.

With the growth of large-scale data center infrastructures,
energy consumption has recently become an acute problem.
Not only does energy consumption account for a significant
fraction of data center operating cost, it also raises concerns
regarding environmental impact and sustainability of these
infrastructures. As a result, there is much effort in the
research community to improve energy efficiency of data
centers (e.g., [17], [18]) Driven by the fact that electricity
grids are independently managed in different geographical
regions, several recent works have started exploiting geo-
diversity for minimizing energy costs. For instance, Qureshi
et. al. [4] have provided a detailed analysis of regional elec-
tricity markets and have shown that energy-aware request
routing can achieve significant cost savings for large CDNs.
Following this line of research, Rao et. al. [2] have studied
the problem of server placement in a multi-electricity market
environments with the goal of minimizing electricity cost.
More recently, Liu et. al. [3] have presented a distributed
solution for the same problem, taking into consideration both
request response time and energy cost. However, both of
them have only studied static cases. As both service and
resource price can change independently over time, it is
necessary to find a solution that dynamically adjusts the
placement strategies to optimize both service performance
and cost, while minimizing the overhead of reconfiguration.

Lastly, the application of control theory to capacity pro-
visioning in compute clusters has been extensively studied,
primarily in the context of autonomic computing. Earlier
work in this area primarily focused on performance ob-
jectives, specifically, dynamic control of the number of
server replicas to meet a specific performance criterion.
For example, Diao et. al. [19] have studied the problem of
dynamically adjusting memory pool sizes for multiple agents

527



Table I
TABLE OF NOTATIONS

Symbol Meaning

xl
k

Num. of servers at DC l at time k

xlv
k

Num. of servers at l serving demand from v at time k
Dv

k
Avg. demand arrival rate originated from v

σlv
k

Avg. arrival rate of demand from v to DC l at time k

ulv
k

Change in the number of servers at DC l at time k

λlv
k

Avg. arrival rate to each server from v to l at time k
dlv Network latency between location v and data center l
μ Request process rate of a single server
pl Price of each server at DC l
r Reservation ratio
Cl Capacity of DC l
Hk Resource allocation cost at time k
Gk Reconfiguration cost at time k
J Total operational cost

in a database server with the goal of minimizing worst-
case response time. More recently, energy consumption has
become a consideration in these studies. For instance, Kusic
et. al. [20] have presented a control-theoretic framework
for reducing energy consumption while satisfying SLA
constraints. However, most of existing solutions only apply
to intra-data center environments (i.e. inside a data center),
while the impact of geographical location have not been
considered in these studies.

III. SYSTEM ARCHITECTURE AND DESIGN

We consider a multi-regional cloud environment that
consists of multiple data centers situated at different geo-
graphical locations. Our system architecture consists of 4
components as depicted in Figure 2: (1) request routers,
(2) monitoring module, (3) analysis and prediction module,
and (4) the resource controller. Both the request router and
the monitoring module can be directly owned by the SP,
or leased from other service providers who offer them as
services. In particular, the service provider controls request
routers (a.k.a. redirectors) which are responsible for redi-
recting the requests to the appropriate servers [21], [22].
In practice, request redirection can play a key role in im-
proving server accessibility through load balancing, latency
minimization and content replication. For instance, Amazon
EC2 Elastic Load Balancing service [23] is an example of
a simplified request router. More sophisticated designs (e.g.
[22]) have also been studied in the literature. The monitoring
module is responsible for collecting statistics, including the
amount of requests received (i.e. the demand) at the different
request routers and the prices offered by each data center.
The analysis and prediction module models the dynamics
of demand and price fluctuations, and forecasts the future
values of both demand and resource prices. In practice, it
has been shown that both demand and price in production
data centers generally show daily fluctuation patterns [3],
[4]. In this case, the demand can be reasonably predicted
using historical traces. However, there are occasions where
both demand and resource price can behave in an unex-

Figure 2. System architecture for a single service provider

pectedly manner, e.g., flash-crowd effect or system failure.
Alternative prediction models such as autoregressive (AR)
models [24], and demand characterization models [25] may
be used. It is important to point out that our control-theoretic
model is generic and can work with any demand prediction
techniques.

Finally, the resource controller is responsible for solving
the DSPP and making online control decisions at run time.
It dynamically adjusts the number of servers leased in each
data center in order to satisfy the SLA requirements (in
terms of latency), while minimizing the resource rental cost.
Furthermore, it informs the request routers about the number
of servers allocated in each data center. The request routers
must then find appropriate assignment of demand to the
allocated servers. In our system architecture, request router
adopts a simple strategy which is to split demand propor-
tionally among the servers that satisfy the SLA requirements.
We will formally define the demand our assignment model
in Section 13. In the next section, we will first provide a
mathematical model of DSPP, and then use the model to
describe the request assignment policy employed by each
request router. The solution to DSPP will then be described
in the subsequent sections.

IV. PROBLEM FORMULATION

We model the network as a bipartite graph G = (L ∪
V,E), where L denotes the set of data centers, V denotes
the location of customers. For instance, V can be the set of
access networks which customers are connected to. Denote
by E ⊆ L×V the communication paths between customers
and data centers. We also assign constant weights dlv to
denote the network latency between a data center location
l ∈ L and a client location v ∈ V .

In our framework, we consider a discrete-time system
model where time is divided into multiple time periods
corresponding to the timescale at which server placement
and routing decisions are made. We assume that there is
an interval of interest K = {0, 1, 2, ...,K} that consists of
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K + 1 periods. Let N = {1, 2, ..., n} denote the set of SPs.
We assume that at time k ∈ K, each customer location
v ∈ V has demand Dv

k in terms of average arrival rate of
requests from location v at time k. We assume that Dv

k is
real valued since each request is typically small compared
to the aggregated demand.

For simplicity, we assume that all the servers leased by
each SP have identical size and functionality. For instance,
a server can be a virtual machine (VM) that runs a specific
application image. We define the state variable xl

k ∈ R+

as the number of servers owned by the SP at location
l ∈ L at time k. To simplify the model, we assume that
xl
k can take continuous values rather than discrete values.

This assumption is reasonable for large-scale services that
require tens or hundreds of servers, where the weight of each
individual server in the overall solution is small. In this case,
we can always obtain a feasible solution by rounding up the
continuous values to the nearest integer values. Based on
this assumption, we can further decouple xl

k by defining
xlv
k ∈ R+ as the number of servers at location l serving

certain amount of demand from v ∈ V :

xl
k =

∑
v∈V

xlv
k , ∀l ∈ L, 0 ≤ k ≤ K. (1)

Let ulv
k ∈ R denote the change in the number of servers in

xlv
k at time k. Therefore, the state equation for xlv

k is:

xlv
k+1 = xlv

k + ulv
k , ∀l ∈ L, v ∈ V, 0 ≤ k ≤ K. (2)

A. Modeling the Server Allocation and Reconfiguration Cost

To model the cost of server allocation, We assume that
there is a price plk for running a server at data center l ∈ L
at time k. The total resource cost Hk for service hosting at
time k is

Hk =
∑
l∈L

xl
kp

l
k =

∑
l∈L

∑
v∈V

xlv
k plk, ∀0 ≤ k ≤ K (3)

We also assume that there is a reconfiguration cost func-
tion S : R→ R+ that computes the cost of reconfiguration.
Specifically, we want to penalize rapid change in system
state, as it often leads to system instability and to addi-
tional costs (costs of setup/release of resources). A typical
reconfiguration cost that satisfies our goal is a quadratic
function S(ulv

k ) = cl(ulv
k )

2, where cl ∈ R+ is a predefined
constant [26]. Quadratic penalty functions are widely used in
control theory literature, as it penalizes rapid reconfiguration
of system states. In this case, the total reconfiguration cost
is given by:

Gk =
∑
l∈L

∑
v∈V

S(ulv
k ) =

∑
l∈L

∑
v∈V

cl(ulv
k )

2, ∀ 0 ≤ k ≤ K.

(4)

B. Modeling the Constraints

While minimizing the total operational cost, the allocation
of servers and demand assignment must satisfy a set of
constraints, including (1) demand constraint, (2) data center
capacity constraint and (3) SLA performance constraint.
Define σlv

k as the demand arrival rate from v assigned to
data center l at time k, the demand constraint ensures that
all demands are satisfied, i.e.,∑

l∈L

σlv
k = Dv

k, ∀v ∈ V, l ∈ L, 0 ≤ k ≤ K. (5)

The data center capacity constraint specifies an upper-bound
Cl the denotes the number of servers that can be allocated
in each data center l ∈ L.∑

v∈V

xlv
k ≤ Cl, ∀l ∈ L, 0 ≤ k ≤ K. (6)

Finally, there is a SLA performance constraint that specifies
a maximum latency d̄lv that the SP tries to achieve between
a location v and a data center l. We focus on modeling this
constraint in the rest of the this subsection.

For data center l ∈ L, we assume that the demand σlv
k

arriving from location v is equally split among the local
servers xlv

k . Let λ = σlv

k

xlv

k

denote the arrival rate of requests
for each server. For model simplicity, we model the queuing
delay using the standard M/M/1 queueing model. But we
believe it is straightforward to adapt our framework to other
queueing models as well. In our case, The queueing delay
for a demand at location v ∈ V to a server at l ∈ L can be
computed as:

q(xlv
k , σlv

k ) =
1

μ− λ
=

1

μ−
σlv

k

xlv

k

. (7)

where μ is the service rate of each server. For a request
from location v ∈ V to server at l ∈ L, we want to ensure
that for any (v, l) ∈ E with σlv

k > 0, the average delay is
upper-bounded by d̄lv:

dlv + q(xlv
k , σlv

k ) ≤ d̄lv, ∀v ∈ V, l ∈ L, 0 ≤ k ≤ K. (8)

The constraint (8) can be rewritten as

xlv
k ≥

σlv
k

μ− 1
d̄lv−dlv

, ∀v ∈ V, l ∈ L, 0 ≤ k ≤ K. (9)

By defining

alv =

{
1

μ−(d̄lv−dlv)−1
, if d̄lv − dlv > 0,

∞, otherwise ,
(10)

as a known constant, we can rewrite the constraint (9) as:

xlv
k ≥ alvσlv

k , ∀v ∈ V, l ∈ L. (11)

We would like to point out that even though our model
focuses on bounding the average delay, it is straightforward
to extend it to handle more general cases, such as φ-
percentile delay (where φ is typically 95%) by multiplying
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q(xlv
k , σlv

k ) by a constant factor ln
(

1
1−φ

)
. Furthermore, it is

straightforward to extend our model to consider additional
requirements and constraints. For example, some SPs may
wish to over-provision capacities (e.g., capacity cushion) to
account for temporary demand fluctuation. This factor can be
modeled by introducing a variable r ∈ R+ to represent the
ratio between the actual number of servers and the number of
servers required to satisfy the SLA performance constraint,
taking into consideration the over-provisioning of capacities.
In this case, we only need to change the definition of alv to
alv = 1

μ−(d̄lv−dlv)−1
for the case d̄lv − dlv > 0.

C. Modeling the Demand Assignment

We can combine constraints (5) and (11) to eliminate
demand assignment variable σlv

k as follows:

∑
l∈L

xlv
k

alv
≥ Dv

k, ∀v ∈ V, 0 ≤ k ≤ K. (12)

If (12) is satisfied, we can define the demand assignment
policy that specifies σlv

k for each request router as:

σlv
k = Dv

k ·
xlv

k

alv∑
l∈L

xlv

k

alv

. (13)

This ensures that SLA requirement is met by all request
routers. In practice, each request router for location v ∈
V can implement the policy by splitting the demand Dv

k

proportionally according to
x
lv

k

alv

∑
l∈L

xlv

k

alv

for each l ∈ L using

any standard load balancing techniques.

D. DSPP formulation

Given the system model described above, the goal of
DSPP is to minimize the total cost of server allocation and
reconfiguration cost. Based on (3) and (4), the goal of DSPP
is to minimize the following objective function:

J :=

K∑
k=0

Hk +Gk =

K∑
k=0

∑
v∈V

∑
l∈L

xlv
k plvk + cl(ulv

k )
2.

Formally, DSPP can be represented as the following opti-
mization problem:

min

K∑

k=0

∑

v∈V

∑

l∈L

x
lv
k p

lv
k + c

l(ulv
k )2

s.t.
∑

l∈L

xlv
k

alv
≥ D

v
k, ∀v ∈ V, 0 ≤ k ≤ K

x
lv
k+1 = x

lv
k + u

lv
k , ∀l ∈ L, v ∈ V, 0 ≤ k < K

∑

v∈V

x
lv
k ≤ C

l
, ∀l ∈ L, k ∈ K,

x
lv
k ∈ R+, u

lv
k ∈ R, ∀l ∈ L, v ∈ V, 0 ≤ k ≤ K

Define xk = [x11
k , ...xL1, ..., xlv

k , ..., xLV
k ]� ∈ R

LV
+ ,

p
′

k = [p1k, p
2
k, ..., p

L
k ] ∈ R

L
+, pk = [p

′

k,p
′

k, ...p
′

k]
� ∈

Algorithm 1 MPC Algorithm for DSPP
1: Provide initial state x0, k ← 0
2: loop
3: At beginning of control period k:
4: Predict Dl

k+i|k for horizons i = 1, · · · ,K using a
demand prediction model

5: Solve DSPP to obtain uk+t|k for t = 0, · · · ,W − 1
6: Change the resource allocation according to uk|k

7: Update demand assignment policy of request routers
according to equation (13)

8: k ← k + 1
9: end loop

R
LV
+ , uk = [u11

k , ...uL1, ..., ulv
k , ..., uLV

k ]� ∈ R
LV , avk =

[ 1
a1v

k

, 1
a2v

k

, ..., 1
aLv

k

]�, ak = diag−1{a1k, ...,a
V
k } ∈ R

LV×V
+ ,

R
′

= [c1, c2, ..., cL] ∈ R
L
+, R = diag{[R

′

,R
′

,

...,R
′

]} ∈ R
LV×LV
+ , Dk = [D1

k, ..., D
V
k ]
�, C =

[C1, C2, ...CL]� ∈ R
L
+, s = [IL×L, ..IL×L]� ∈ R

LV×L
+ ,

we can rewrite DSPP as follows:

min
{u0,..,uK−1}

J =

K∑
k=0

p�k xk + u�k Ruk

s.t. a�k xk ≥ Dk, ∀0 ≤ k ≤ K,

s�xk ≤ C, ∀0 ≤ k ≤ K,

xk+1 = xk + uk, ∀0 ≤ k ≤ K − 1,

xk ∈ R
LV
+ ,uk ∈ R

LV , ∀0 ≤ k ≤ K − 1.

This problem is a linear-quadratic program that can be
solved optimally using standard methods [27].

V. CONTROLLER DESIGN FOR DSPP

Even though DSPP can be solved optimally, in practice,
the resource controller must solve this problem in an online
setting where future demand is unknown. In this case, we
use the Model Predictive Control (MPC) framework that is
widely used for solving online control problems. Algorithm
1 is our MPC algorithm used by the resource controller for
solving DSPP online. It can be described as follows. At
time k, the resource controller predicts the future demand
Dv

k for multiple periods [k+1, ..., k+W ]. using the demand
predicted by the analysis and prediction module, where W
is the prediction horizon. Denote by Dv

k+t|k the demand
predicted for time k+t at time k. The controller then solves
the optimization problem for the horizon [k, ..., k + W ],
starting with the initial state xlv

k|k = xlv
k . Even though the

solution of the optimization problem will contain a set of
values ulv

k|k, ...,u
lv
k+W−1|k The controller will only execute

the first step in sequence ulv
k|k. When the next control period

k + 1 starts, the same procedure is performed again by
the controller. Using this MPC algorithm, the controller can
effectively adjust the number of servers in each data center.
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VI. COMPETITION AMONG MULTIPLE PROVIDERS

In this section, we extend our previous model and consider
the case where multiple SPs share the cloud platform in
terms of resources in data centers. The goal of each SP
is to minimize its operational costs with respect to the
SLA performance requirements and the data center capacity
constraints. In our model, we assume that the placement
configuration of each SP is kept private from other SPs. In
this scenario, strategic interactions may arise as each SP
makes decisions independently. Therefore, we can model
the system as a multi-person non-cooperative game. Our
objective is to analyze the equilibrium outcome of this game
and discuss its properties.

One of the key challenges in defining the resource com-
petition game is the modeling of the data center capacity
constraints. As there are multiple SPs using the resources
in data centers, it is necessary to ensure that total capacity
constraint of each data center is not violated. To make our
analysis tractable, we assume that this capacity is exact,
namely, the resources in each data center can be optimally
allocated to servers without loss in wastage. Even though this
assumption may not hold in general (Optimally scheduling
virtualized servers with heterogenous resource requirements
generalizes the NP-hard bin-packing problem), we believe
it is a reasonable approximation of the real world scenario,
and is sufficient to illustrate the characteristics of the re-
source competition game. Furthermore, cloud infrastructure
providers typically design VM sizes to match physical
machine capacities to reduce resource wastage. An example
is the GoGrid public cloud service, which offers VMs in 6
different types. Arranged from the smallest to the largest,
each type of VMs has exactly twice the size of previous
type in terms of CPU, memory and disk capacity. When
VM sizes are multiples of each other, bin-packing can be
solved optimally using First-Fit-Decrease (FFD) policy [28],
and no resource is wasted during the process. In this case,
our competition model can be applied exactly to the case of
GoGrid.

A. Problem Formulation

We formally define the resource competition game in this
section. For each v ∈ V , define N = {1, 2, ..., N} as the
set of SPs, and let i ∈ N represent the index of each SP.
Let K = {0, 1, 2, ...K} denote the set of stages (i.e. time
indices) of the game. At time k, 0 ≤ k ≤ K, each SP
has a state xiv

k = [xi1v
k , ..., xiLv]� ∈ R

L
+ that describes the

number of servers allocated to demand from v ∈ V at data
center l ∈ L. Each SP i also makes a control decision uiv

k =
[ui1v

k , ..., uiLv]� ∈ R
L at time k ∈ K, where uilv

k denotes
the change in the number of servers serving v ∈ V at data
center l ∈ L at time k. Given an initial system state xi

0, the
system dynamics for each SP is captured by the following
state equation:

xiv
k+1 = xiv

k + uiv
k ∀i ∈ N , v ∈ V, 0 ≤ k ≤ K − 1, (14)

At time k ∈ K, we assume each SP i has a demand Di
k =

[Di1
k , Di2

k , ..., Div
k ]
�, where Div

k represents the demand for
SP i originated from v ∈ V at time k ∈ K. The total resource
allocation must satisfy the demand constraint, which states
that the total resource allocation must be sufficient to handle
all demands without violating the SLA policy. This demand
constraint can be formally stated as:

ai�k xiv
k ≥ Div

k , ∀i ∈ N , v ∈ V, 0 ≤ k ≤ K, (15)

where aik is defined as in Section IV-D for each SP i. We
also require the total allocated resources to satisfy the data
center capacity constraint:∑

i∈N

∑
v∈V

xilv
k si ≤ Cl, ∀i ∈ N , l ∈ L, 0 ≤ k ≤ K, (16)

where si ∈ R+ is the “size” of a server owned by SP i
in terms of resource requirement, such as CPU or memory.
Define si = si · IL×L ∈ R

L×L
+ and C = [C1, C2, ...CL]� ∈

R
L
+, we can rewrite equation (16) in vector form as follows:∑

i∈N

∑
v∈V

sixiv
k ≤ C, ∀l ∈ L, 0 ≤ k ≤ K. (17)

Lastly, we define uiv = {uiv
0 ,uiv

1 , ...,uiv
K−1} xiv =

{xiv
0 ,xiv

1 , ...,xiv
K−1}, ui = {ui1,ui2

1 , ...,uiV
K−1}. Further-

more, let u−i = {u1, ...,u(i−1),u(i+1), ...,uN} represent
the control decisions of the other SPs, the objective of SP i
is to minimize its cost function:

J i(ui,u−i) =

K∑
k=0

∑
v∈V

pkx
iv
k + uiv�

k Riuiv
k

s.t. a
i�
k x

iv
k ≥ D

iv
k , ∀i ∈ N , v ∈ V, 0 ≤ k ≤ K,

∑

i∈N

∑

v∈V

s
i
x
iv
k ≤ C, 0 ≤ k ≤ K,

x
iv
k+1 = x

iv
k + u

iv
k , ∀i ∈ N , v ∈ V, 0 ≤ k ≤ K − 1,

x
iv
k ∈ R

L
+u

iv
k ∈ R

L
, ∀i ∈ N , v ∈ V, 0 ≤ k ≤ K.

where Ri = [ci1, ci2, ..., ciL] ∈ R
L
+ which captures the

weight factor for reconfiguration cost for SP i in every data
center l ∈ L.

B. Resource Competition Game Analysis

In this section, we characterize the Nash equilibrium (NE)
of the resource competition game. The Nash equilibrium
refers to the stable outcome of the competition, where no SP
can improve its cost by unilaterally changing the its server
allocation over time. Formally, the resource competition
game can be represented as a N -player dynamic non-
cooperative game Ξ. Notice that as our controller relies on
the MPC framework for dynamic resource allocation, we
need to introduce a new version of Nash equilibrium for
control strategies using the MPC framework. We first start
with the following general definitions:

Definition 1 (η-Nash Equilibrium [29]). Let Iik be the
information set of a SP i at time k under a given information
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structure ηi, and Γi is the set of all admissible policies of
SP i under ηi. The policy {γi∗, i ∈ N} is an η−Nash
equilibrium of the game Ξ, where ui = γi∗(Iik) and
η = {ηi, i ∈ N} if J i(γi∗, γ−i∗) ≤ J i(γi, γ−i∗), for all
admissible policies γi ∈ Γi and for all i ∈ N , where
γ−i∗ = {γj , j �= i, j ∈ N}.

Definition 1 provides a general description of NE under a
given information structure (IS) ηi. The dynamic game Ξ can
admit different NEs under different information structures
η. Typical information structures are, for example, open-
loop IS, where the policy is only dependent on the initial
conditions, and the perfect-state feedback IS, where the
policy depends on the perfect measurement of the system
state. The IS under MPC algorithms in Algorithm 1 can
be deemed a special mixture between open-loop IS and
feedback IS since at each stage each SP computes within a
window in an open-loop manner but the initial condition of
the computation is the current state known to SPs. With this
special IS, we can define NE under MPC-type computations
for our resource competition game.

Definition 2 (W−MPC Nash Equilibrium). Let W i be the
prediction window of SP i and every SP adopts MPC as
outlined in Algorithm 1. The dynamic non-cooperative game
Ξ admits W−MPC Nash Equilibrium, W = {W i, i ∈ N},
if the sequences uiv∗ := {uiv∗

k , 0 ≤ k ≤ K} obtained under
MPC algorithms satisfy J i(ui∗,u−i∗) ≤ J i(ui,u−i∗), for
all admissible sequences ui ∈ U i and for all i ∈ N , where
U i is the set of admissible control sequences under MPC
algorithms, and u−i∗ = {uj , j �= i, j ∈ N}.

Note that Nash equilibrium solutions may not be unique,
and hence we let U∗ to denote the set of Nash equilibrium
solutions u∗ := {ui,u−i} that satisfy Definition 2. The
W−MPC Nash equilibrium {ui∗, i ∈ N} can be used to
compare with the optimal MPC solution {ui◦, i ∈ N} to
the social welfare problem (SWP), which is described as
follows.

min
{u1,...,uN}

∑

i∈N

J
i(u1

, ...,u
N )

s.t. a
i�
k x

iv
k ≥ D

iv
k , ∀i ∈ N , v ∈ V, 0 ≤ k ≤ K

∑

i∈N

∑

v∈V

s
i
x
iv
k ≤ C, 0 ≤ k ≤ K,

x
iv
k+1 = x

iv
k + u

iv
k , ∀i ∈ N , v ∈ V, 0 ≤ k < K,

x
iv
k ∈ R

L
+u

iv
k ∈ R

L
, ∀i ∈ N , v ∈ V, 0 ≤ k ≤ K.

(SWP)
The optimal MPC solution to (SWP) can be compared

with the W−MPC Nash equilibrium using price of anarchy
(PoA) and price of stability (PoS), [30], [31], defined as
follows.

Definition 3. The price of anarchy (PoA) ρMPC and the price
of stability (PoS) ξMPC of the dynamic non-cooperative game
Ξ under centralized MPC Algorithm 1 and distributed MPC

Algorithm 2 are defined by

ρMPC := inf
u∗∈U∗

∑
i∈N

∑
v∈V J i

v(u
i◦)∑

i∈N

∑
v∈V J i

v(u
i∗)

, (18)

ξMPC = sup
u∗∈U∗

∑
i∈N

∑
v∈V J i

v(u
i◦)∑

i∈N

∑
v∈V J i

v(u
i∗)

, (19)

where {ui◦, i ∈ N} is the optimal solution to (SWP)
obtained by MPC algorithm 1, and {ui∗, i ∈ N} is the
W−MPC Nash equilibrium of the game Ξ.

The metric ρMPC is a measure of worse-case efficiency
loss of the game, while ξMPC provides a best-case measure
of loss of efficiency. It is easy to observe that both ρMPC and
ξMPC are always greater or equal to 1.

Theorem 1. Assume that the prediction horizon of each
SP i, i ∈ N , is the same, i.e., W i = W̄ and W̄ is also
the prediction window used for (SWP). Then, the price of
stability ξMPC of the game Ξ is always equal to 1, i.e., there
exists a Nash equilibrium solution yields no efficiency loss
under the common knowledge of the capacity constraint.

The proof of Theorem 1 relies on the fact that the utility
functions of the SPs are not coupled and the interdependence
among the players enters in the constraints. The details
of the proof can be found in [32]. One direct implication
of Theorem 1 is that there exists a Nash equilibrium that
achieves optimal social outcome for all SPs given that the
demand and resource prices follow a stable patten. This
result also motivates us to design algorithms to converge to
the equilibrium solution which has this property. We propose
a simple best-response algorithm (See Algorithm 2) based on
MPC Algorithm 1 to compute this Nash equilibrium, based
on dual decomposition technique [27]. We can interpret
this algorithm as follows. Cloud infrastructure providers
are responsible for coordinating the allocation of resources
when demand exceeds capacity. Specifically, the algorithm
performs an iterative process. In each iteration, every SP
first requests resource quota Cil ∈ R+ for DC l ∈ L,
and computes its allocation strategy over time, based on
the received quota for every data enter. Each SP i then
solves DSPP using Algorithm 1, and reports the optimal dual
variable λil to each DC. Then each infrastructure provider
will adjust quota for each SP based on the received dual
variable. This process repeats until no SP can significantly
improve its total cost. Algorithm 2 essentially provides an
online computation algorithm of Nash equilibrium solutions.

VII. EXPERIMENTS

We have implemented our distributed algorithm and con-
ducted several simulation studies. To make the experiment
realistic, we have used a real Internet topology graph from
the Rocketfuel project [33], which contains link latency in-
formation. However, as the data set only contains topologies
for several tier-1 Internet Service Providers (ISPs), we have
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Figure 3. Prices of electricity used in the experi-
ments
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Figure 4. Impact of demand change on resource
allocation
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Figure 5. Impact of price on resource allocation

Algorithm 2 Iterative Algorithm for Computing the Best
Nash Equilibrium

1: Provide initial state x0, k ← 0, Initialize Ci ∈ R
L
+,

x̄i
k ← 0, ∀k ∈ K J̄(u1, ...,uN ) ← ∞, converged ←

false
2: repeat
3: for i = 1→ N do
4: ui ← solution of DSPPi with capacity vector

Ci,∀k ∈ K
5: λil ← the dual variable of capacity constraint for

DSPPi of DC l ∈ L, ∀k ∈ K
6: end for
7: C̄i := (Ci + α[λi1, ..., λiL]�)
8: Ci := C̄i · C∑

i∈N
C̄i

9: J(u1, ...,uN ) =
∑

i∈N J i(u1, ...,uN )
10: if |J(u1, ...,uN ) − J̄(u1, ...,uN )| ≤ εJ̄(u1, ...,uN )

then
11: converged← true
12: end if
13: J̄(u1, ...,uN )← J(u1, ...,uN )
14: until converged = true

augmented the topology graph by introducing intermediary
ISP and access networks, similar to the procedure for gener-
ating transit-stub networks in the GT-ITM network topology
generator [34]. We specify the communication latency at
intra-transit, stub-transit and intra-stub domain links to be
20ms, 5ms and 2ms, respectively [35].

Based on our knowledge about Google’s data centers, in
our experiment, we have created 5 large data centers located
in San Jose, CA, Houston, TX, Atlanta, GA and Chicago, IL.
As for the access networks that originate service requests,
we have studied the geographical locations of the routers and
created 24 access networks in major cities across the U.S.
The requests are generated from a non-homogenous Poisson
process that considers both the population of each cities as
well as the time of day. Generally speaking, requests from
the same location follow an on-off stochastic process that
has high arrival rate during working hours (8am-5pm) and
low arrival rate at night.

In our experiment, the price of resources in each data

center is set to the electricity price of each VM. Figure 3
shows the price of electricity of all 4 data centers during
different times of each day. We assume that there are 3
types of VMs: small, medium and large. The electricity
consumption of each VM type is set to 30 watts, 70 watts
and 140 watts, respectively. The capacity of data centers are
set to 2000 machines each.

A. The Case for a Single Service Provider

In this subsection, we report our experiment results for a
single service provider. To demonstrate how our controller
adjusts resource allocation to handle fluctuating requests, in
the first experiment, we consider the simplest case where
there is a single data center responsible for requests from
a single access network. Figure 4 shows the experiment
result. It can be observed that the controller always tries
to adjust the resource allocation dynamically to match the
demand, while minimizing the change of number of servers
at each time step. This indeed is what we expect to achieve
in our design. We have also analyzed the effect of prediction
horizon K on the outcome of dynamic resource allocation.
Figure 6 shows that the change in the number of servers
tends to be less as K increases.

To demonstrate how the resource controller reacts to
dynamic resource pricing, we have conducted an experiment
where multiple data centers are used to serve demand from
different locations with constant arrival rate. Our experiment
result is shown in Figure 5. It can be observed from Figure
3 that the electricity price is generally higher in Mountain
View than in Houston. The difference reaches its maximum
around 5pm in the afternoon. Consequently, Figure 5 shows
that our controller allocates less sources in the Mountain
View data center in the afternoon. This suggests that our
algorithm indeed achieves its objective of load balancing
according to price change.

B. The Case for Multiple Service Providers

In this section, we analyze the outcome when multiple
SPs are competing for resources in data centers. In our
simulation, we generate the input parameters (μi, Di

k, si,
cil,d̄i) for each SP i ∈ N randomly. We have implemented
an iterative algorithm that computes the NE solution as
described in Section VI.
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We start with the analysis of the convergence rate of
the algorithm. To produce a competition scenario, we set
the number of servers in the data center with the cheapest
cost (i.e. Data center in Dallas, TX) to 100, 200 and
300, respectively, and record the number of iterations the
algorithm takes to produce an approximately stable outcome.
Thus we call an outcome relatively stable if the difference in
the solution cost is less than a small constant factor ε, i.e.,
|J̄(u1, ...,uN ) − J(u1, ...,uN )| ≤ εJ̄(u1, ...,uN )), where
J̄(u1, ...,uN ) is the cost of the solution in the previous
iteration. In our experiments, we have set ε = 0.05. The
result is shown in Figure 7. It is clear that the number of
iterations to obtain a stable outcome grows with number of
players and the tightness of data center capacity constraints.
For instance, the case where the bottleneck data center has
only 100 servers requires many more rounds to converge
compared to the other two cases. It can be seen that the
solution takes moderate number of steps to converge. How-
ever, we believe it is possible to improve the running time
by computing approximate solutions using faster algorithms.

Finally, we have also conducted experiments to examine
the impact of prediction horizon K on the solution opti-
mality and convergence rate. Figure 8 suggests that longer
prediction horizon can improve convergence rate. However,
it does not imply that longer prediction horizon is desirable.
Figure 9 shows that long prediction horizon can worsen
the solution quality. In particular, setting K = 2 achieves
lowest cost for this scenario. Through many experiments,
we have found that the optimal prediction horizon length
is highly dependent on the accuracy of prediction model
for both demand and resource price. For instance, we have
simulated a scenario where the both demand and price
are constant over time (See Figure 10), which is easy to
predict. In this case, indeed solution quality improves with
the length of prediction horizon. On the other hand, when
both demand and resource prices are highly volatile, a
simple prediction scheme (AR in our case) is not accurate
and hence a long prediction horizon will actually hurt the
algorithm performance. It is part of our future work to find
more accurate demand and price prediction model for cloud
prediction environments.

VIII. CONCLUSION

Large-scale online service providers have been increas-
ingly relying on geographically distributed cloud infrastruc-
tures for service hosting and delivery. In this paper, we have
presented a framework for the dynamic service placement
problem based control- and game- theoretic models. In
particular, we have presented a solution that optimizes the
desired objective dynamically over time according to both
demand and resource price fluctuations. We have considered
the case where multiple service provider compete for rev-
enue in a dynamic manner, and have shown that there exists
a socially optimal Nash equilibrium solution. In addition, we
have analyzed the impact of various factors on the quality
of the Nash equilibrium solution.

There are several directions that we would like pursue in
the future. First, we would like to extend our framework
to find a practical resource allocation mechanism that also
takes into account the goal of the infrastructure providers.
Second, we would like to study more realistic scenarios
where number of servers can only take integer values.
This is particularly important for small scale data centers.
In this case, the MPC control framework would involve
mixed integer programming (MIP) at each stage, which can
be NP-hard to solve. Finding an efficient approximation
algorithm for this problem would be an interesting direction
to pursue in the future. Another direction of future work
is to design practical learning algorithms for SPs to find
the best-case Nash equilibrium solution. We need to take
into account the differences in rationality, intelligence and
information among the players and show how these practical
factors lead to different equilibrium outcomes [36].
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