αRoute: A Name Based Routing Scheme for Information Centric Networks

*David R. Cheriton School of Computer Science, University of Waterloo
+Orange Labs

Presented By: Shihabur R. Chowdhury
Outline

- Background
 - Information Centric Networks (ICN)
 - Challenges in ICN
- Contribution Summary
- \textit{\textalpha}Route DHT
 - Partitioning
 - Routing
 - Mapping
 - Content Lookup
- Conclusion
Information Centric Networking (ICN)

- Also known as “Content Centric or Content Based Networking”, “Named Data Networking” etc.
- Contents are communication endpoints rather than hosts
- Host to content binding is transparent to the end users

Why ICN?

- Internet usage is becoming more “content oriented” rather than “host oriented”
 - More video streaming traffic than ssh traffic
- Efficient content distribution is through ad-hoc patches
 - CDN, P2P file sharing etc.
 - Little knowledge about the underlying network
Related Works

- TRIAD proposed to avoid DNS lookup and use object names to route to object sources [2000]
- DONA improved on TRIAD and proposed a secure and hierarchical name based routing architecture [2007]
- Named Data Networking project at PARC initiated to develop a protocol specification for ICN [2009]
- A number of projects are working on different ICN architectures
 - PSIRP, 4WARD, SAIL, COMET, PURSUIT, NetInf, CONVERGENCE
Challenges in ICN

- **Content Naming**
 - How to uniquely and securely assign identifiers to contents?

- **Routing**
 - How to route content request based on content names?

- **Routing Scalability**
 - Routing table size
 - $O(n)$ is very expensive, $n \sim 10^{12}$ (even more).
 - Content names are hard to aggregate
 - Network traffic
 - How to efficiently serve content requests?
Contribution Summary

- We address the routing scalability issue in ICN
- We propose αRoute, a name based Distributed Hash Table (DHT) to route based on content names
- αRoute provides
 - Logarithmic routing table size and content lookup hops
- We also propose an algorithm for mapping αRoute to a physical network
Three important issues in a DHT design

- How to **partition** the name (or key) space among the DHT nodes?
- How to **route** a get or put query between the DHT nodes?
- How to **map** a logical DHT overlay topology to the underlying physical network?
\textbf{\textit{\textalpha{}Route: Partitioning}}

We treat the names as unordered set of alphanumeric characters

- `book1.pdf` => `{b, o, k, 1, p, d, f}`

We build a partitioning tree

- Each level takes partitioning decisions based on presence/absence of a subset of characters

The final partitions are mutually exclusive
αRoute: Partitioning (cont..)

- A subset of the alphabet, S_i, is assigned at each level i
- Example: Initially we have only one node and a partitioning set $S_1 = \{r, c\}$

\[S_1 = \{r, c\} \]
αRoute: Partitioning (cont..)

- There are $2^{|S_i|}$ possible character presence combination at each node at level i.
- Each character presence combination may form the edges to nodes in level $i + 1$.
 - The root has at most $2^2 = 4$ children.
 - We assign another partitioning set, $S_2 = \{e\}$ to level 2 nodes.

\[S_1 = \{r, c\} \]

\[S_2 = \{e\} \]
Each node in level 2 has at most $2^1 = 2$ children
For $S_3 = \{k, t\}$, each node in level 2 will have at most $2^2 = 4$ children
And so on
αRoute: Partitioning (cont..)

- Leaf nodes are labeled with concatenation of all the labels on root to leaf path
- These concatenated labels represent a partition
- Labels of the leaf nodes are assigned to the DHT nodes

\[
S_1 = \{r, c\} \\
S_2 = \{e\} \\
S_3 = \{k, t\}
\]

Names that have c and k but not r, e and t

Diagram:
- \(\bar{r}c\)
- \(\bar{e}\)
- \(\bar{k}\)
- \(\bar{r}c\bar{e}\bar{k}\bar{t}\)
αRoute: Partitioning (cont..)

$S_1 = \{r, c\}$

$S_2 = \{e\}$

$S_3 = \{k, t\}$

Responsible for names
Matching the pattern $\bar{r}cekt$
αRoute: Routing

Requests `rocket.jpg`

`rocket.jpg` does not match pattern. Where to forward?
αRoute: Routing (cont..)

- Each node has a set of logical neighbors
- Neighbor list of a leaf node is determined by taking all possible character presence combination of each sub-label from root to node path

\[S_1 = \{ r, c \} \]
\[S_2 = \{ e \} \]
\[S_3 = \{ k, t \} \]
αRoute: Routing (cont..)

- If a leaf node corresponding to a pattern does not exist then select the leaf node having longest matched prefix with the pattern’s representative string.

S_1 = \{r, c\}

S_2 = \{e\}

S_3 = \{k, t\}

- Logical node (no physical existence)
- Indexing node (DHT nodes)

\(\bar{r}c - \bar{e} - k\bar{t}\)	\(rc - \bar{e} - k\bar{t}\)
\(\bar{r}c - \bar{e} - k\bar{t}\)	\(r\bar{c} - \bar{e} - k\bar{t}\)
\(\bar{r}c - \bar{e} - \bar{k}t\)	\(\bar{r}c - e - k\bar{t}\)
\(\bar{r}c - \bar{e} - \bar{k}t\)	\(\bar{r}c - \bar{e} - k\bar{t}\)
\(\bar{r}c - \bar{e} - k\bar{t}\)	\(\bar{r}c - \bar{e} - \bar{k}t\)
αRoute: Routing (cont..)

$S_1 = \{r,c\}$

$S_2 = \{e\}$

$S_3 = \{k,t\}$

Logical node

Indexing node

Logical link

Physical link
\textbf{αRoute: Mapping}

- αRoute DHT nodes have almost equal number of logical neighbors.
 - i.e., overlay graph is regular
- Underlay graph is the Internet graph (AS level). It is reported to be power law distributed.
- Underlay graph nodes have tier ranking.
- Embedding a regular overlay graph on a power law distributed graph is hard.
αRoute: Mapping (cont..)

- Mapping Algorithm
 - Initiated by a central naming authority, similar to ICANN in current Internet naming.
 - The partition tree, T is initially grown based on some corpus.
 - The partitioning sets at each level are selected based on character frequency in the corpus.
 - The central authority assigns partitions to Tier-I ASs only.
\(\alpha \text{Route} : \) Mapping (cont..)

- Initially the tree is grown to support the number of Tier-I ASs only.
- Partitions are assigned to Tier-I ASs along with possible next levels of extensions.
αRoute: Mapping (cont..)

- Tier-I ASs extend their partition with additional levels in the tree
- The extended partitions are assigned to Tier-II AS.

```
Tier-1

Tier-2

Tier-I

Tier-II

Tier-III
```

- **Logical node**
- **Indexing node**
\textbf{\textit{\textcolor{red}{αRoute}}: Mapping}

- Conflict Resolution

\[\overline{rc} - \overline{e} - k\overline{t} \]

\[\overline{rc} - \overline{e} - kt \]

\[rc - e - k\overline{t} \]
αRoute: Content Lookup

A node, \(n \), receives a content request.

The content name is transformed to matching pattern, \(p \).

\[p = rcekt \]

\(n \) looks up in routing table to find a pattern \(q \) that has longest prefix match with \(p \).

Content is in \(r \).

\(n \) forwards \(p \) to a node \(m \), responsible for pattern \(q \). Forwarding continues until destination is found or

Request is redirected to the content’s actual location.

\(m \) contains an index, indicating the content’s actual location.
Routing in the Internet based on content name is challenging due to the large volume of contents.

Proposed \(\alpha\text{Route}\), a name based DHT that can route using content names.

\(\alpha\text{Route}\) provides guaranteed content lookup using logarithmic size routing table.

Also proposed a mapping algorithm that maps the DHT to physical network and assigns loads to network elements proportionally to their capacity.
Questions?
$S_1 = \{r, c\}$

$S_2 = \{e\}$

$S_3 = \{k, t\}$

Diagram:
- Logical node (no physical existence)
- Indexing node (DHT nodes)