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Abstract—Traditional intrusion detection systems (IDSs) work
in isolation and are not effective to detect unknown threats.
An intrusion detection network (IDN) is a collaborative IDS
network intended to overcome this weakness by allowing IDS
peers to share detection knowledge and experience, and hence
improve the overall accuracy of intrusion assessment. However,
malicious insiders and free riders may compromise the efficiency
of IDNs. In this work, we design a collaborative IDN system
and particularly focus on four research problems, namely, trust
management, collaborative intrusion decision, resource manage-
ment, and collaborators selection. We evaluate our design in
terms of several desired properties such as efficiency, robustness,
scalability and incentive-compatibility.

Index Terms—Intrusion detection, collaborative networks, net-
work security and network management.

I. INTRODUCTION

In recent years network intrusions have become a severe
threat to the privacy and safety of computer users. Each year
billions of malicious cyber attacks are reported [9], [21].
Attacks are becoming more sophisticated and stealthy, driven
by an “underground economy” [10]. Attacks from the Internet
are usually accomplished with the assistance of malicious
code (a.k.a. malware), such as worms, viruses, Trojan horses,
or Spyware. The consequences of large scale attacks can be
disastrous. An example is the Conflicker worm which infected
more than 3 million Windows servers from year 2008 to
2009, with an estimated economic loss of $9.1 billion [7].
Recent intrusion attacks compromise a large number of hosts
to form botnets [20]. Hackers aim not only at harvesting
private data and identity information from compromised nodes,
but also use the compromised nodes to launch attacks such as
distributed denial-of-service (DDoS) attacks.

As a counter measure, Intrusion Detection Systems (IDS) are
used to identify intrusions by comparing observable behavior
against suspicious patterns. IDSs can be categorized into host-
based IDSs (HIDSs), which monitor the activities of one
computer by tracking system files and logs, and network-based
IDSs (NIDSs), which monitor network traffic from/to one or
a group of computers. Examples of IDSs include antivirus
software [5], Snort [4], Bro [1], tripwire [6], and OSSEC [3].

Traditional IDSs monitor computer activities on a single
host or network traffic in a sub-network. They do not have a
global view of intrusions and are not effective in detecting
fast spreading attacks. Therefore, they are not effective in
detecting unknown or new threats. In turn, they can achieve
better detection accuracy through collaboration. The emer-
gence of standard information models and communication
protocols, such as the Intrusion Detection Message Exchange

Format (IDMEF) [2], provides a mean for different IDSs to
communicate with each other directly. Accordingly, IDSs are
able to exchange information to improve intrusion detection
accuracy. An Intrusion Detection Network (IDN) is such a
collaboration network allowing IDSs to exchange information
with each other and to benefit from the collective knowledge
and experience shared by others. IDNs enhance the overall
accuracy of intrusion assessment as well as the ability to detect
new intrusion types.

There are two types of IDNs in the literature: information-
based and consultation-based. In an information-based IDN,
nodes share observations and detection knowledge with other
nodes in the network, such as suspicious new attacks. This
type of IDNs is effective in detecting fast spreading attacks
such as worms. However, it may generate large communication
overhead and all exchanged information may not be useful
to others. In a consultation-based IDN, when an IDS detects
suspicious activities but does not have enough confidence to
make a decision, it may send consultation requests to others
in the network. Feedback from the collaborators can be used
to make a final decision whether it is an intrusion or not.
Consultation-based IDNs have much less communication over-
head, are more effective in terms of communication efficiency,
and are the focus of our work.

An IDN is an effective way to improve intrusion detection
accuracy. However, to minimize the impact of malicious
insiders, it is important to evaluate the trustworthiness of
collaborators, and this can be done through test messages. Test
messages are “bogus” consultation requests used to measure
the trustworthiness of others. They are difficult to distinguish
from real consultation requests. The tester node knows the
true diagnosis result of the test message and uses the received
feedback to derive a trust value for the testee node. This
technique can discover inexperienced and/or malicious nodes
within the collaboration network.

In our work, we focus on the design of a consultation-based
IDN. As shown in Figure 1, a consultation-based IDN is an
overlay network of collaborating IDSs. IDSs from different
vendors are connected in a peer-to-peer manner. Each IDS
selectively maintains a list of collaborators (acquaintances) to
consult with. IDSs may choose to collaborate with other IDSs
with which they have had good experience in the past. An
IDS can send consultation requests to ask for diagnosis from
its collaborators when it can not make a confident decision.
Feedback from collaborators are then integrated to make a
final decision.

Building an effective IDN is a challenging task. For exam-



Fig. 1. The Overlay Design of a Collaborative Intrusion Detection Network
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Fig. 2. CIDN Architecture design

ple, adversaries may compromise some IDSs in the network
and then leverage the compromised nodes to send false infor-
mation, or even attack others in the network, which can com-
promise the efficiency of the IDN. It is, therefore, important for
an IDN to detect and isolate malicious insiders. Another chal-
lenge is how to make efficient intrusion detection assessment
based on the collective diagnosis from other IDSs. Appropriate
selection of collaborators and incentive-compatible resource
management in support of IDSs interaction with others are
also key challenges in IDN design.

Some previous IDS networks such as DOMINO [22],
DShield [19], and NetShield [8], focus on the architecture
design of the IDS network where nodes share intrusion in-
formation to prevent fast spreading attacks. However, they do
not address the problems of malicious insiders or free-riders.
IDNs such as ABDIAS [17] use a simple majority voting to
exclude suspicious nodes, as well as to make collaborative
intrusion decisions. However, this simple design can be easily
evaded or even taken advantage of by colluding attackers.

To achieve efficiency, robustness, and scalability, we pro-
pose an IDN architecture (see Figure 2) which includes several
key components, namely, intrusion detection system, mediator,
communication overlay, trust management, acquaintance man-
agement, resource management, and feedback aggregation.
The mediator is the component which helps different IDSs
to communicate with each other. It translates consultation re-
quests and consultation feedbacks into a common protocol and
data format understood by different IDSs. The communication
overlay is the component which handles all communications
with other peers in the collaborative network. It enables IDSs
from different vendors to communicate through a common
protocol.

In the following sections, we describe the design of these
four essential IDN components, namely, trust management,
feedback aggregation, resource management, and acquaintance
management, which also constitute the core contributions of
the thesis.

II. TRUST MANAGEMENT FOR IDN

In a distribute IDN, malicious (or malfunctioning) IDSs can
degrade the performance of others by sending false intrusion

assessments. To protect an IDN from malicious attacks, it
is important to evaluate the trustworthiness of participating
IDSs. However, the trust model itself may also be the target
of malicious attacks, robustness is a desired feature of the
trust management scheme in collaborative intrusion detection
networks. In this section, we introduce a fully distributed
Bayesian trust model which is scalable, robust, and efficient
for intrusion detection networks.

A. Dirichlet-based Trust Model for IDN
Bayesian statistics provide a theoretical foundation for

measuring the uncertainty in a decision that is based on a
collection of observations. We are interested in knowing the
distribution of satisfaction levels of the answers from each
peer IDS and, particularly, using this information to estimate
the satisfaction level of future consultations. For the case
of a binary satisfaction level {satisfied,¬satisfied}, a Beta
distribution can be used as appeared in [23]. For multi-valued
satisfaction levels, Dirichlet distributions are more appropriate.

A Dirichlet distribution [18] is based on initial beliefs about
an unknown event represented by a prior distribution. The
initial beliefs combined with collected sample data can be
represented by a posterior distribution. The posterior distri-
bution well suits our trust management model since the trust
is updated based on the history of interactions.

Let X be the discrete random variable denoting the satis-
faction level of the feedback from a peer IDS. X takes values
in the set X = {x1, x2, ..., xk} (xi ∈ [0, 1], xi+1 > xi) of
the supported levels of satisfaction. Let ~p = {p1, p2, ..., pk}
(
∑k
i=1 pi = 1) be the probability distribution vector of X ,

i.e. P{X = xi} = pi. Also, let ~γ = {γ1, γ2, ..., γk} denote
the vector of cumulative observations and initial beliefs of X .
Then we can model ~p using a posterior Dirichlet distribution
as follows:

f(~p|ξ) = Dir(~p|~γ) =
Γ(
∑k
i=1 γi)∏k

i=1 Γ(γi)

k∏
i=1

pi
γi−1, (1)

where ξ denotes the background knowledge, which in here is
summarized by ~γ.

The expected value of the probability of X to be xi given
the history of observations ~γ is given by E(pi|~γ) = γi∑k

i=1 γi
. In
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order to give more weight to recent observations over old ones,
we embed a forgetting factor λ in the Dirichlet background
knowledge vector ~γ as follows:

~γ(n) =

n∑
i=1

λti × ~Si + c0λ
t0 ~S0 (2)

where n is the number of observations; ~S0 is the initial
beliefs vector. If no additional information is available, all
outcomes have an equal probability making S0

j = 1/k for
all j ∈ {1, .., k}. Parameter c0 > 0 is a priori constant,
which puts a weight on the initial beliefs. Vector ~Si denotes
the satisfaction level of the ith evidence, which is a tuple
containing k − 1 elements set to zero and only one element
set to 1, corresponding to the selected satisfaction level for
that evidence. Parameter λ ∈ [0, 1] is the forgetting factor. A
small λ makes old observations quickly forgettable. Parameter
ti denotes the time elapsed (age) since the ith evidence ~Si was
observed. Let ∆ti = ti − ti+1.

After a peer receives the feedback for a consultation request,
it assigns a satisfaction value to the feedback. This satisfaction
value is assigned with one of the satisfaction levels in the
set X = {x1, x2, ..., xk} that has the closest value. Each
satisfaction level xi also has a weight wi.

Let puvi denote the probability that peer v provides answers
to the requests sent by peer u with satisfaction level xi. Let
~puv = (puvi )i=1...k |

∑k
i=1 p

uv
i = 1. We model ~puv using

Equation 1. Let Y uv be the random variable denoting the
weighted average of the probability of each satisfaction level
in ~puv .

Y uv =

k∑
i=1

puvi wi (3)

The trustworthiness of peer v as noticed by peer u is then
calculated as:

Tuv = E[Y uv] =

k∑
i=1

wiE[puvi ] =
1

γuv0

k∑
i=1

wiγ
uv
i (4)

where γuvi is the cumulated evidence that v has replied to u
with satisfaction level xi. The variance of Y uv is equal to
(superscript uv is omitted for clarity).

We evaluated our proposed trust model using a simulated
IDS network. Figure 3 shows the average trust values of the
30 IDSs with different expertise levels in the network. The
trust values converge after 30 days of simulation and the actual
expertise levels of the peers are able to be effectively identified
by our trust model.

We also simulated the situation where a malicious peer
first gains a high trust value and then suddenly starts to act
dishonestly. Figure 4 shows the trust value of the betraying
peer before and after the launching of the betrayal attack when
respectively using Duma et al., our DSOM model [11] and
our Dirichlet models [12] [14]. For the Duma et al. model,
the trust value of the malicious peer slowly drops after the
betrayal attack. The trust value of the betraying peer drops
much faster with the DSOM model, while the fastest rate is
observed when using our Dirichlet-based model.

Figure 5 shows the success rate of peer u in detecting
intrusions. We notice that both the DSOM model and the
Duma et al. model cannot effectively detect intrusions when
the majority of peers are malicious. Our Dirichlet-based model
shows superior efficiency in intrusion detection even in the
situation of a dishonest majority.
B. Summary of Contribution

We proposed a fully distributed Bayesian trust management
model that is robust, scalable, and suitable for distributed
IDS networks. This trust model provides not only the trust
estimation, but also the confidence in the estimation. The
forgetting factor parameter is used to balance the learning
speed and the stability of the trust value. The full result is
published in [12] and [14]. The contributions of this work are
two folds: 1) the application of trust modeling in the intrusion
detection field, with a model that is robust to insider attacks
and scalable to large network sizes. 2) the introduction of
Dirichlet density functions in the trust modeling field, which
allows the tracking of confidence levels in the estimation of
trustworthiness of IDSs.

III. FEEDBACK AGGREGATION

In a distributed IDN, IDSs can make intrusion decisions
based on collected feedback from collaborators. The feedback
quality on test messages in the past can be used to evaluate
the importance of the current feedback. We derive a decision
on whether to raise an alarm or not based on the feedback
from a set of collaborators. A false positive decision may cost
human resources to investigate it, while a false negative may
cause damage to the system. If the decision system is over
sensitive then it may bring high false positive alarms, while a
conservative decision system may result in high missing rate
on intrusions. In this section, we introduce a Baysian decision
model which leverages the trade off between false positives
and false negatives to find a decision which yields a minimal
cost in term of false decisions.
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A. Bayesian Decision Model

We formulate the feedback aggregation problem as a
Bayesian optimization problem. Consider a set of nodes N
connected to a network, which can be represented by a graph
G = (N , E). The set E contains the undirected links between
nodes, indicating the acquaintances of IDSs in the network.

Let Yi := [Yj ]j∈Ai
be an observation vector of an IDS i that

contains the feedback from its peers in the acquaintance list
Ai. For the convenience of presentation, we drop the subscript
i in the notations appearing later in this section. Suppose node
i receives a list of diagnosis results y = {y1, ...,y|A|} from its
acquaintances, where yj ∈ {0, 1}, j = 1, 2, · · · , |A|. yj = 1
means that the j-th acquaintance suggests an intrusion related
to the alert, whereas yj = 0 indicates no intrusion related to
the alert. Our goal is to decide whether the system should raise
an alarm to the administrator based on the current feedback.

A node receives a feedback vector y from its acquaintances.
Let random variable X ∈ {0, 1} denote the scenarios of
“no-attack” or “under-attack”. The probability of a host IDS
being “under-attack” given the diagnosis results from all
acquaintance IDSs can be written as P[X = 1|Y = y]. Using
Bayes’ Theorem, we have
P[X = 1|Y = y] =

P[Y = y|X = 1]P[X = 1]

P[Y = y|X = 1]P[X = 1] + P[Y = y|X = 0]P[X = 0]
.

Assume that the acquaintances provide diagnoses indepen-
dently and their false positive (FP) and true positive (TP) rates
are known; the above equation can be further written as
P[X = 1|Y = y] =

π1
∏|A|
k=1 T

yk

k (1− Tk)1−yk

π1
∏|A|
k=1 T

yk

k (1− Tk)1−yk + π0
∏|A|
k=1 F

yk

k (1− Fk)1−yi

,

where π0 = P[X = 0], π1 = P[X = 1], and π0 + π1 = 1,
are the prior probabilities of the scenarios of “no-attack” and

“under-attack”. Tk and Fk are the true positive rates and false
positive rates of acquaintance k respectively. yk is the k-th
element of vector y.

We use a random variable P to denote the conditional
probability P[X = 1|Y = y]. Then P takes a continuous
value over domain [0, 1]. We denote by fP (p) the probability
density function of P .

Let Cfp and Cfn denote the marginal cost of a FP decision
and a FN decision. We define a decision function δ(y) ∈
{0, 1}, where δ = 1 means raising an alarm and δ = 0 means
no alarm. Then, the Bayes risk can be written as,

R(δ) =

∫ 1

0

(Cfp(1− x)δ + Cfnx(1− δ))fP (x)dx

= CfnE[P ] + δ(Cfp − (Cfp + Cfn)E[P ]), (5)

where fP (p) is the density function of P . To minimize the
risk R(δ), we need to minimize δ(Cfp − (Cfp + Cfn)E[P ]).
Therefore, we raise an alarm (i.e. δ = 1) if E[P ] ≥ Cfp

Cfp+Cfn
.

Let τ =
Cfp

Cfp+Cfn
be the threshold. If E[P ] ≥ τ , we raise

an alarm, otherwise no alarm is raised. This decision rule can
be written as follows:

δ =


1 (Alarm) if E[P ] ≥ τ ,

0 (No alarm) otherwise.
(6)

We evaluate our Bayesian decision making approach using a
simulated IDN. Figure 6 shows the cost comparison between
our Bayesian decision model and the other two commonly
used models, i.e., simple threshold model and weighted aver-
age model. The average cost yielded by Bayesian aggregation
remains the lowest among the three under all threshold set-
tings. The costs of the weighted average aggregation and the
simple average aggregation are close to each other. Figure 7
shows the comparison of three different aggregation models in
terms of their FP, FN, and cost. We notice that the weighted



average model has significant advantage in the FP, FN rates
and cost compared to the simple average model. The Bayesian
aggregation model has a higher FP and a lower FN compared
to the other two models. However, its cost is the lowest among
the three. This is because the Bayesian model leverages FP and
FN to minimize the overall cost of false decisions.

B. Summary of Contribution

We proposed a Bayesian decision feedback aggregation,
which helps in deciding whether to raise an alarm or not
based on the past experience and the current diagnosis results
from collaborators. Both false positive decision cost and false
negative decision cost are taken into account. Compared with
other approaches such as the simple average and the weighted
average aggregation, our approach reduces the overall cost of
false decisions. The detailed description of this contribution
was published in [13].

IV. RESOURCE MANAGEMENT IN COLLABORATION

In a distributed IDN, an IDS may receive requests from
different peers for consultation. Responding to those requests
requires a certain amount of computing resources, such as
CPU, memory, and network bandwidth. An IDS may have
a limited resource budget to assist other IDSs in the network
and cannot satisfy all the requests. An IDS may also free-ride
the system or send false intrusion assessments. Therefore, an
effective resource allocation scheme is needed for an IDS to
decide its response level to requests from neighboring IDSs.
A. Incentive-Compatible Resource Allocation

We consider an IDN with N peers or nodes. We denote the
set of nodes by N = {1, 2, · · · , N}. The set of neighbor nodes
of peer u is denoted by N d

u . We can represent the topology
of an IDN by a graph G := (N , E), where E is the set of
(u, v) pairs in the network. We use rvu to denote the units
of resource that node u should allocate in order to serve v
with full satisfaction. The minimum acceptable resource from
u to v is mvu. Note that rvu,mvu are chosen by node v and
informed to node u during negotiation and this negotiation
happens in the beginning of the process. Let puv ∈ R+ be
the resource that u allocates to v, for every u, v ∈ N . The
parameter puv is a decision variable of peer u and is private
information determined by u and can be measured by v. To
satisfy neighbor v, node u should allocate resource to v over
the interval [mvu, rvu].

In this system model, we assume that for each node, the
trust values of neighbors are given. Let Tuv ∈ [0, 1] be the
trust value of peer v assessed by peer u, representing how
much peer u trusts peer v. The allocated resource puv from
peer u to v is closely related to the trust value Tuv .

Each peer maximizes its effort to help its neighbor nodes
under its capacity constraint Cu, which is dependent on its own
resource capacity. Then, resource allocation should satisfy the
following capacity constraint:∑

v∈Nd
u

puv ≤ Cu, for all u ∈ N . (7)

We introduce a utility function for each peer to model the
satisfaction level of neighbors. The utility function Suv is
given by

Suv =
ln
(
α puv−mvu

rvu−mvu
+ 1
)

ln(α+ 1)
, (8)

where α ∈ (0,∞) is a system parameter which controls the
satisfaction curve and the term ln(α + 1) in the denominator
is the normalization factor. The function Suv is a concave
function on its domain under the condition α > 1.

Let Uu : RL(u,d)+ → R+ be the peer u’s aggregated altruistic
utility, where L(u, d) = card(N d

u ), the cardinality of the set
N d
u . Let the payoff function, Uu, for u be given by:

Uu =
∑
v∈Nd

u

wuvSuv, wuv = Tuv pvu, (9)

where wuv is the weight on peer v’s satisfaction level Suv ,
which is the product of peer v’s trust value and amount of
helping resource allocated to u. A higher weight is applied on
peer v’s satisfaction level Suv if peer v is better trusted and
more generous in providing help to u. In this system, each
peer u ∈ N in the IDN intends to maximize Uu within its
resource capacity. A general optimization problem (OP) can
then be formulated as follows:

max{puv,v∈Nd
u}

∑
v∈Nd

u
wuvSuv (10)

s.t.
∑
v∈Nd

u
puv ≤ Cu

mvu ≤ puv ≤ rvu,∀v ∈ N d
u ,

where Suv and wuv are given by (8) and (9), respec-
tively. Notice that this utility function incorporates incentive-
compatibility, since nodes with higher trust have higher weight
on their satisfaction level compared to others with lower trust.

Every peer in the network is faced with an optimization
problem (OP) to solve. We have N independent optimization
problems in the form of (OP) for each node. Hence, we can see
this as a multi-player game(GP) with payoff function Uu for
each peer u. In [25], [24], we prove this N-person game (GP)
admits a Nash Equilibrium (NE). We also develop an iterative
algorithm to calculate the NE centrally and we compare it with
the NE obtained by simulating the network.

Figure 8 shows the incentive-compatibility of the system
by varying the trust value of one participant. We see that the
resource received by a node increases with the trustworthiness
of the node, under different parameter α settings. We then fix
the trust values of all nodes to 1.0 and varying the resource
capacity of one peer from 3 to 30, we observe in Figure 9
that the amount of resource the peer receives is almost linearly
proportional to the resource it contributes to the others. The
above experimental results further confirm that our resource
allocation mechanism is incentive-compatible.

B. Summary of Contribution

We proposed an incentive-based resource allocation mecha-
nism, where the amount of resources that each IDS allocates to
assist its neighbors is proportional to the trustworthiness and
the amount of resources allocated by the neighbors to help this



IDS. The contributions of this work are: 1) A mechanism for
optimal resource allocation for each peer to maximize its social
welfare with a convex utility function; 2) An N -person non-
cooperative game model and an iterative primal/dual algorithm
to reach the Nash equilibrium; and 3) Incentive compatibility
and robustness that is derived from the resource allocation
scheme to tackle the “free-riders”, dishonest insiders, and DoS
attacks. The detailed description of these contributions have
been published in [25], [24].

V. ACQUAINTANCE LIST MANAGEMENT

It is intuitive that when an IDS consults more acquaintances,
it achieves higher accuracy and confidence in intrusion detec-
tion. However, more acquaintances results in higher mainte-
nance cost since the IDS needs to allocate resource for each
acquaintance. When an IDS decides how many acquaintances
to recruit, both the intrusion risk cost and the maintenance
cost (CPU, memory, and Bandwidth) should be taken into
account. When recruiting a node as an acquaintance does
not decrease the total cost, the node shall not be added into
the acquaintance list. However, how to select acquaintances
and how many acquaintances to recruit to achieve optimality
are crucial questions when building an efficient IDN. In this
work, we first define the acquaintance selection problem, then
devise a solution for finding the near-optimal combination of
acquaintances with respect to the overall cost.
A. Acquaintance Management Algorithm

Let Ai denote the set of acquaintances of IDS i. Let Mi(Ai)
be the cost for IDS i to maintain the acquaintance set Ai. In
practice, maintenance cost of acquaintances may not be neg-
ligible since acquaintances send test messages/consultations
periodically to ask for diagnosis. It takes resources (CPU,
bandwidth, and memory) for the IDS to receive, analyze the
requests, and reply with corresponding answers. The selection
of Mi(.) can be user defined on each host. We use Ri(Ai) to
denote the risk cost of missing intrusions and/or false alarms
for IDS i, given the feedback of acquaintance setAi. In the rest
of this section, we drop all subscript i from our notations for
the convenience of presentation. The risk cost can be expressed
as: R(A) = CfnP [δ = 0|X = 1]P [X = 1]

+ CfpP [δ = 1|X = 0]P [X = 0]

where Cfn, Cfp denote the marginal cost of missing an
intrusion and raising a false alarm, respectively. P [X = 1] =
π1, P [X = 0] = π0 are the prior probabilities of under-attack
and no-attack, where π0 +π1 = 1. The above equation can be
further written as:

R(A) =
∑

y∈{0,1}|A|

min{Cfnπ1
∏
i

T yii (1− Ti)1−yi , (11)

Cfpπ0
∏
i

F yii (1− Fi)1−yi}

where Ti, Fi are the TP rate and FP rate of acquaintance
i respectively. ∀y ∈ {0, 1}l|δ(y) = 1 refers to all the
combinations of decisions which cause the system to raise
an alarm and vice versa.

Our goal is to select a list of acquaintances from a list of
candidates so that the overall cost R(A)+M(A) is minimized.
We formulate the problem as follows:

Given a list of acquaintance candidates C, we need to find
a subset of acquaintances A ⊆ C, such that the overall cost
R(A) +M(A) is minimized.

To solve this optimization problem, the brute force method
is to examine all possible combinations of acquaintances and
select the one which has the least overall cost. However, the
computation complexity is O(2n). It is not hard to see that
the order of selecting acquaintances does not affect the overall
cost. Since in most circumstances there is no particular need
to select the optimal list of acquaintances and a near-optimal
solution is sufficient. We can use a heuristic approach to find
an acquaintance set which achieves satisfactory overall cost
with much less computation complexity.

In our proposed algorithm [15], a greedy approach is used
where an IDS always select other IDSs to join which bring the
lowest overall cost. We also propose a distributed algorithm for
the IDS to select and manage acquaintances and a consensus
protocol to deal with the non-symmetric selection.

We evaluated our acquaintance selection algorithm using
a simulated IDN. Figure 10 and 11 are the comparison
results between brute force acquaintance selection and greedy
acquaintance selection. We can see that the brute force algo-
rithm performs slightly better with respect to acquaintance list
quality since the overall cost using its selected list is slightly
lower. However, the running time of the brute force method
increases significantly when the candidate set size exceeds
11, and continues to increase exponentially, while the greedy
algorithm shows much better run time efficiency.

B. Summary of Contribution

We proposed an acquaintance management algorithm which
can dynamically selects collaborators in any context setting
to obtain high efficiency at low cost. We also proposed an
acquaintance management algorithm to recruit and maintain
new candidates for collaboration. We showed empirically
that our acquaintance management algorithm achieves several
desired properties, such as efficiency, stability, and incentive-
compatibility. The detailed description of these contributions
have been published in [15], [16].

VI. CONCLUSION

Building an efficient, robust, and scalable IDN faces many
challenges. We first proposed an architecture design of a dis-
tributed IDN, which is based on a peer-to-peer communication
overlay to allow efficient and scalable information exchange.
We then focused on four important research problems in
this context, namely, trust management, collaborative decision
making, resource management, and acquaintance management,
and provided solutions to each of them. We also studied several
desired properties of IDNs, such as robustness, scalability,
efficiency, incentive-compatibility, and fairness. We evaluated
the proposed solutions with respect to those desired properties
and compared them with existing ones in the literature.



VII. FINAL REMARKS

The thesis can be downloaded from http://cs.uwaterloo.ca/
∼j22fung/thesis.pdf. The work presented in this thesis has
received the IM 2009 Best Paper Award and the CNSM 2010
Best Student Paper Award.
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to incentive design in collaborative intrusion detection networks. In
Proceedings of the International Symposium on Game Theory for
Networks (GameNets), May, 2009.


