PolicyCop: An Autonomic QoS Policy
Enforcement Framework for Software Defined
Networks

Md. Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, and Raouf Boutaba
David R. Cheriton School of Computer Science, University of Waterloo

[mfbari| sr2chowdhury |

Abstract—Network management is becoming increas-
ingly challenging with the relentless growth in network
size, traffic volume, and the diversity in QoS requirements.
Traditionally, the concept of predefined Service Level
Agreements (SLAs) has been utilized to establish QoS
parameters. However, state-of-the-art technologies in this
area are both proprietary and inflexible. To this end,
Software Defined Networking (SDN) has the potential to
make network management tasks flexible and scalable,
and to provide an open platform to encourage innovation.
In this paper, we present PolicyCop — an open, flexible,
and vendor agnostic QoS policy management framework
targeted towards OpenFlow based SDN. PolicyCop pro-
vides an interface for specifying QoS-based SLAs and
enforces them using the OpenFlow API. It monitors the
network and autonomically readjusts network parameters
to satisfy customer SLAs. We present experimental re-
sults to demonstrate PolicyCop’s effectiveness in ensuring
throughput, latency, and reliability guarantees.

I. INTRODUCTION

Network management systems are becoming more
complex and sophisticated in order to support con-
tinuously evolving online applications and their QoS
requirements. A wide variety of online and real-time
applications, like video streaming, video—on—demand,
online interactive gaming, video conferencing, virtual
collaborative environments efc. have emerged over the
last decade. These applications impose diverse QoS
requirements on latency, throughput, error-rate, jitter,
and redundancy. In addition, the relentless growth in
network size, sophistication and geographic span have
lifted the network management challenges to the next
level. The convergence of these services impose strict
performance isolation with stringent and fine-grain con-
straints on the underlying switching fabric. As a direct
consequence, network management systems are con-
tinuously challenged to satisfy these ever increasing
requirements while adhering to the resource constraints.

Traditionally, the concept of predefined Service
Level Agreements (SLAs) has been utilized to establish
QoS parameters for traffic management. Usually, each
SLA consists of a set of Service Level Objectives

r5ahmed |

rboutabal] @uwaterloo.ca

(SLOs). Network managers use the SLOs to derive
network level policies, which are in turn translated into
device level primitives (e.g., forwarding rules, queue
configurations, packet dropping rate, traffic shaping
policies, efc.). Policy-based QoS management is a well
investigated topic in network management. A good
number of research works have proposed autonomic
policy based management systems [12, 24, 28, 29, 32].
However, most of these approaches are based on either
DiffServ [1] or MPLS-DiffServ [25], which come with
a number of problems. Firstly, they offer static traffic
classes with a coarse granularity of QoS levels. Sec-
ondly, they require installation of specialized software
or hardware components in the network. Automation
approaches based on specialized policy specification
languages like Ponder [28, 29] can be applied to other
QoS techniques like MPLS-TE. However, this kind of
methods require proprietary policy servers and policy
configuration agents to be deployed on network devices.

Recently Software Defined Networking (SDN) has
emerged as a promising approach for providing flex-
ible network programmability. It facilitates dynamic
configuration, operation and monitoring of a network.
SDN proposes to separate the network’s control plane
from the data plane and provide a single system im-
age of the control plane to the data plane [13, 15].
However, the controller itself can be implemented as
a distributed [11, 17, 18, 22, 30] system. This sepa-
ration enables rapid network application development.
OpenFlow [9] has become the de facto standard of
communication between the control and data planes.
The control plane provides a rich northbound API and a
global view of the network, which provides the network
operator a programmatic and elegant way of dynam-
ically implementing a wide-range of network policies
(e.g., fault-tolerance, accounting, routing, security, efc.)
and rapidly deploy new services.

In this paper, we present the design and implemen-
tation of PolicyCop, an autonomic QoS policy enforce-
ment framework based on SDN. PolicyCop provides
an interface for specifying QoS policies and exploits
the northbound API of SDN controller to enforce

them. PolicyCop also takes advantage of the control
applications to monitor the compliance of the policies
and autonomically adapts the control plane rules with
changing traffic conditions.

The rest of the paper is organized as follows. First
we discuss our motivation in Section II, then we present
related work on policy based QoS management in
Section III. Next we describe the architecture of Policy-
Cop in Section IV. We present experimental evaluation
results in Section V to demonstrate the effectiveness of
PolicyCop and finally, we conclude with some future
research directions in Section VII.

II. MOTIVATION

Providing appropriate QoS to user traffic is primarily
related to managing routing mechanisms, metric, and
protocol updates. It may seem that the management of
routing has been completely automated. But in reality,
network routing is not automated despite a plethora
of protocol and software. Establishing and maintaining
routes still remains one of the most challenging aspects
of network management [31]. Typical routing protocols
running on a collection of distributed switches or routers
can present obstacles when a manager needs to override
the choices made by the protocol. PolicyCop coupled
with the flexible programmability features offered by
SDN, enables the network manager to describe his
requirements as high level network-wide policies, which
are implemented, monitored, and enforced by Policy-
Cop. Now, instead of running a distributed routing
protocol that is hard to control, the switch forwarding
table can be populated by the SDN controller based on
the high level policies defined by the network manager.
The advantages offered by PolicyCop over traditional
autonomic QoS frameworks are described below:

e Per flow control and dynamic flow aggregation:
Traditional QoS architectures aggregate traffic
based on the Type of Service (TOS) field in
IPv4 packets, or the Class of Traffic field in
IPv6 packets. However, OpenFlow permits us
to provide per flow QoS control in a scalable
and flexible manner.

o Flexible programming model: PolicyCop has a
layered architecture and the APIs between the
layers are defined using JSON based RESTful
API. This enables the option for using different
programming languages in different layers in
the framework. A network administrator can
introduce new modules at any layer in Policy-
Cop to deploy new services as long as these
modules implement the standard APIs defined
by PolicyCop.

e Dynamically configurable traffic classes: Diff-
Serv and MPLS-DiffServ offer a predefined
number of traffic classes. In contrast, PolicyCop
can define new traffic classes at runtime without

requiring to bring down any network device or
service.

e Reduced operational overhead: Traditional
QoS services require a number of concurrent
protocols to run for performing tasks like rout-
ing, MPLS label exchange, resource reserva-
tion, etc. This problem is well known as the
Protocol Clutter problem. PolicyCop avoids
this issue by mediating all communication be-
tween network services and network devices
over the OpenFlow protocol. PolicyCop ex-
ploits this feature to bring a new genre of
services for a network operator, e.g., an operator
can use PolicyCop to offer a combination of
guaranteed QoS for VoIP traffic and best effort
service for HTTP traffic to the same customer.

e FEase of deployment: PolicyCop can be de-
ployed in a network consisting of switches
from different vendors as long as all switches
support the same OpenFlow version. It does not
require any software or hardware modifications.
Its components can be deployed on the same or
different physical machines based on scalability
requirements.

III. RELATED WORK

Various policy enforcement frameworks have been
proposed for adaptive and autonomic service manage-
ment in QoS enabled networks [10, 28, 29]. Most of
the existing works target inflexible QoS architectures
like DiffServ or MPLS-DiffServ, which lack broader
network picture, reconfigurability, and adaptivity [23].
Our work aims at bringing together the flexible pro-
grammability and monitoring capabilities of SDN with
autonomic policy-based service management to enable
a network operator to provide better service offerings.

The IETF policy working group has proposed a
QoS management framework using the X.500 directory
where policies are represented as if~then—else rules [10].
However, the network level policies cannot be directly
mapped to devices. This mapping functionality has
to be done by relay nodes. Moreover, the interaction
between the application and the network policy have
been ignored. In [28, 29] the authors propose a pol-
icy automation framework based on Ponder (a policy
specification language). However, it requires specialized
policy servers and installation of additional software
modules in the network devices.

DiffServ based policy adaptation frameworks are
introduced in [12, 24, 32]. DiffServ provides a fixed
number of pre—configured traffic classes, which cannot
be used in practice due to the ever changing nature
of traffic. Moreover they require custom scripts to
be downloaded to network devices to adapt to traffic
conditions. During this download time, devices cannot
provide regular traffic forwarding functionality.

There has been also some work in the SDN realm
related to policy management. However, most of these
works focus on either static [20] or dynamic [16, 19, 21]
checking for policy rule installation in network devices.
To the best of our knowledge this is the first work that
explores autonomic QoS policy enforcement framework
in the realm of SDN.

IV. PROPOSED FRAMEWORK

As depicted in Figure 1(a), PolicyCop’s architecture
is organized in three planes: data plane, control plane,
and management plane. The data plane (Section IV-A)
consists of OpenFlow enabled switches. The control
plane (Section IV-B) contains one or more OpenFlow
controller(s). We have developed a few control applica-
tions that provide different control functions to the man-
agement plane. The management plane (Section IV-C)
is divided into two components: (i) Policy Validator, and
(i1) Policy Enforcer. The former monitors the network
to detect policy violations and the later adapts control
plane rules based on current network conditions and
policies.

A. Data Plane

In this work, we are assuming that the underlying
network is built from OpenFlow enabled switches. In
this section we provide an overview of the QoS related
features in OpenFlow protocol that we have used.

OpenFlow API: OpenFlow defines a traffic flow
as a sequence of packets having the same 12-tuple
containing switch ingress port, Ethernet MAC addresses
(source and destination), Ethernet type, VLAN id,
VLAN priority, IP addresses (source and destination), IP
protocol, IP Type of Service (ToS) bits, and TCP/UDP
ports (source and destination). These fields either con-
tain exact values or wildcards to match a set of values.
The OpenFlow specification also provides standardized
APIs for the controller to manage the data plane switch-
ing fabric. Each switch connects to the controller over a
secure TCP channel. The controller uses the OpenFlow
API to install traffic forwarding rules in the switches’
flow tables, discover network topology, monitor flow
statistics, and track device up/down status.

QoS features: Starting from OpenFlow Specifi-
cation 1.0 [6], packets belonging to a flow can be
enqueued in a particular queue of an output port. The
queue can be configured through standard protocols like
SNMP, CLI and NetConf [3]. Controllers can query
configuration and statistics parameters from the existing
queues. These switches can rewrite the IP ToS field in
the IP header, which can be used to implement QoS
mechanisms like DiffServ [1]. Support for rewriting the
Explicit Congestion Notification (ECN) bits has been
incorporated since OpenFlow version 1.1.0 [7].

Open Networking Foundation (ONF) has created an
auxiliary protocol called OF-Config [5] to support con-
figuration of various features of an OpenFlow switch.

OF-Config can be used to configure the minimum and
maximum transmission rates of a queue in an OpenFlow
switch. According to OpenFlow specification 1.2 [8],
an OpenFlow controller can also read these rates from
a switch. The most recent QoS related additions in
OpenFlow are meter tables and meter bands, which
can be used to limit the transmission rate of an output
port. A meter band specifies a transmission rate and
an actions set to be performed once the specified rate
has been exceeded. Meter tables are used to store a
collection of meter bands. Multiple meter bands can
be associated with a single flow entry. Based of the
transmission rate of the flow(s) matching this entry one
or more meter band action(s) can be triggered.

In terms of monitoring, an OpenFlow controller can
query a switch for statistics at different aggregation
levels: table, flow, port, and queue. Table level statistics
provide information regarding an entire flow table. Flow
level statistics provide information about a particular
flow, e.g., how many bytes were matched against this
flow, how many packets were forwarded, how many
packets were dropped, how many errors occurred, du-
ration for which this flow entry was active etc. Port
level statistics provide more specific information about
a particular port. Queue level statistics provide informa-
tion about how many bytes and packets were enqueued
at a particular queue attached to a particular output
port, how many packets were dropped, duration for
which this queue was active etc. In OpenFlow specifi-
cation 1.3.0, support for querying meter level statistics
was also added. Meter level statistics contain similar
information e.g., how many bytes and packets were
forwarded, duration of this meter efc. To summarize,
OpenFlow provides extensive support for configuring
and monitoring QoS related features that can be used
to overcome un-necessary complexities introduced by
distributed routing and traffic engineering mechanisms.

B. Control Plane

The control plane consists of one or more OpenFlow
controller(s) and a set of controller applications that
implement different network functions, e.g., admission
control, device tracking, statistics collection, routing etc.
These functions are implemented as pluggable software
modules on-top of the OpenFlow controller, which
typically provides either a RESTful or language specific
API (henceforth referred as North Bound API or NB-
API). The management plane uses these control applica-
tions to implement policy validation and enforcement.
The management plane translates high-level network-
wide policies to low-level rules, called control rules
in the rest of this paper. Control rules can be used by
an SDN controller to compute the FIB entries (or flow
entries) for each network device.

PolicyCop requires four control applications and a
database for storing control rules. These components are
explained in detail below:

.| Monitor Network
ettt traffic statistics
\PolicyCop
1
Management Plane l
Policy Enforcer Policy Validator Check
Topology Policy | Autonomic Action Event b policy
Manager Adaptation [Handler Reprovision
u; 3 Event resources
on Types 7'y
v v

[Resource} [Resource }‘. —— e Policy
Manager Provisionin, N Checker Monitor
g g Policy DB Adapt to
NB API policy
3
Admission Routin Device Statistics Check EV‘f“t
Control g Tracker Collector Rule DB event type classifier
SDN Controller Manager
I~ - takes
Control Plane ¢
action
OpenFlow L
@ @ _| Forward to
Data Plane "] Manager

(a) Architecture

Fig. 1. PolicyCop architecture and workflow

Admission Control: This application receives re-
source provisioning requests from the management
plane and decides whether to accept or reject the re-
quest. It uses the SDN controller’s NB-API to provision
the requested resources in network devices. The NB-
API can be used to reserve network resources like
queues, flow-table entries, bandwidth, efc. If the net-
work devices have adequate resources then the resources
are provisioned and the application accepts the request
from the management plane, otherwise the request is
rejected.

Routing: The routing application determines path
availability. It calculates route(s) based on the control
rules in Rule DB. Suitability of a route to serve a request
is determined by network topology and a collection of
performance metrics like latency, throughput, error-rate,
jitter and redundancy. The management plane collects
these data using the Statistics Collector and Device
Tracker applications.

Device Tracker: This application tracks the
up/down status of network switches and their ports
by listening to the asynchronous status messages ex-
changed between the OpenFlow controller and switches.
The data collected by this application helps the manage-
ment plane to maintain a global view of the network.

Statistics Collector: This application uses a mix of
passive and active monitoring techniques to measure dif-
ferent network metrics, like bandwidth usage, residual
capacity and number of dropped packets, at different
aggregation levels, e.g., per flow, per switch port/link,

(b) Workflow

per user, efc. It also measures per flow latency, error—
rate and jitter by inserting packet probes [26] in the
network. We have developed a monitoring framework
for SDN, which provides a clean an flexible way of
writing monitoring applications that require such statis-
tics in different aggregation levels [14].

Rule DB: The management plane translates high-
level network-wide policies to control rules and stores
them in the rule DB. The controller and other control
applications (e.g., routing) use these rules to compute
the flow table entries for each switch.

C. Management Plane

PolicyCop’s principle functionality is delivered by
the management plane. PolicyCop consists of two com-
ponents: (i) Policy Validator, and (ii) Policy Enforcer.
These two components comprise a feedback loop for
enforcing SLAs. The Policy Validator monitors the
network to detect policy violations, while the Policy
Enforcer adapts control plane rules based on network
conditions and high-level policies. A network manager
can specify network-wide policies that are stored in
the Policy DB, which is a general purpose database
for storing policies. It can be implemented using an
LDAP server, a NoSQL key-value store, or a relational
database. Management plane components are explained
in detail below:

1) Policy Validator: The policy validator com-
ponent periodically collects network traffic data and
detects policy violations. In case of a violation, it for-
wards an action request to either the autonomic policy

adaptation module or the network manager based on
the violation type. This component consists of three
modules, which are explained below:

Traffic Monitor: This module collects the active
policies from Policy DB, and determines appropriate
monitoring interval, network segments and metrics to be
monitored. Based on traffic characteristics, monitoring
data might be collected more frequently from some
switches compared to the others. This module utilizes
the statistics collector application to collect data.

Policy Checker: The objective of this module is
to identify policy violations. This module collects data
from both the Policy DB and Traffic Monitor. It then
analyzes the collected data to identify policy violations
and forwards them to the Event Handler.

Event Handler: This module examines the violation
events. It uses a pre-specified list of “Event Types” to
determine the severity of a violation event. Depending
on the event type, an action request is either forwarded
to the network manager for manual action or to the
policy adaptation module for autonomic action.

2) Policy Enforcer: The objective of this compo-
nent is to re-provision network resources to adhere
to the network-wide policies once the policy validator
component detects a policy violation. The policy en-
forcer consists of the following four modules:

Topology Manager: This module collects data from
the device tracker application in the control plane. It
maintains a complete view of the network, which is
used by the policy adaptation modules to make resource
re-provisioning decisions.

Resource Manager: This module keeps track of
currently allocated resources in the network using the
admission control and statistics collector control appli-
cations. The data collected by this module can be used
by other modules to make informed decisions when re-
configuring the network.

Policy Adaptation: The policy adaptation module
consists of a set of Policy Adaptation Actions (PAAs).
PAAs are distinguished by the type of metric that has
been violated. A separate PAA is designed for handling
each type of policy violation. For example, latency
violation and throughput violation events are handled by
separate PAAs. Table I shows the functionality of some
example PAAs. The PAAs are pluggable components
and the network manager can specify them though
PolicyCop’s programming interface.

Resource Provisioning: This module re-provisions
network resources when a policy violation occurs. The
policy adaptation module invokes this module, and pro-
vides necessary details for provisioning. The resource
provisioning module either allocates more resources or
releases existing ones or both based on the violation
event. The policy adaptation module also provides data

regarding the QoS nobs to be tuned, and where these
changes should be applied.

The process workflow in PolicyCop is shown in Fig-
ure 1(b). The traffic monitoring module collects network
statistics through the statistics collector application in
the control plane. This data is used by the policy checker
module to detect policy violations. If no violation is
detected then the policy validator just keeps monitoring
the network without taking any action. If a violation is
detected then the event is forward to the event handler
module. The event handler examines the violation event
and forwards it either to the network manager or to
the policy adaptation module. If the event requires
manual intervention, then the network manager chooses
appropriate actions based on the event, its corresponding
data, and current network condition. On the other hand,
if the event can be handled by the autonomic handler
in the policy adaptation module, the violation event
is directly forwarded to the policy adaptation module.
This module determines the appropriate action based
on the event type, current network topology, resource
allocation, traffic condition and informs the resource
provisioning module to reallocate network resources.
The resource provisioning module makes the appro-
priate changes in the network devices to enforce the
contracted policy.

V. EXPERIMENTAL EVALUATION

We deployed a test network consisting of five Open
vSwitches [4] (OVS) and four hosts. Each OVS runs
on a separate physical machine. OVS switches are
inter-connected using GRE tunnels. Link bandwidth and
delay are simulated using the Linux tc command. All
OVSs are controlled by a Floodlight controller [2] as
shown in Figure 2(a). The hosts run iperf servers and
clients to generate traffic. We performed two experi-
ments for demonstrating how PolicyCop reacts to link
failure and policy violation related to throughput. In this
section, we present the obtained results.

Link failure: For this experiment, we started six
TCP flows between each pair of physical hosts: HI to
H2, H1 to H3, H1 to H4, H2 to H3, H2 to H4, and
H3 to H4. Three flows passed through the link S3-S5:
H1-S1-S5-S3-H3, H2-S2-S3-S5-H4, and H3-S3-S5-H4.
Bandwidth requirements of these flows are 100 Mbps,
150 Mbps, and 240 Mbps, respectively. Now, after 15
seconds we physically disconnected the link S3-S5,
which dropped the throughput to zero (see Figure 2(b)).
PolicyCop detected this event as the three flows men-
tioned above triggered violations. These events were
handled by the policy adaptation module and the three
flows were re-routed though alternative links. H1-S1-
S5-S3-H3 was re-routed through H1-S1-S2-S3-H3, H2-
S2-S3-S5-H4 was re-routed through H2-S2-S3-S4-H4,
and finally H3-S3-S5-H4 was re-routed through H3-S3-
S4-S5-H4.

SLA Parameter

PAA Functionality

Packet loss

Modify queue configuration or reroute to a better path

Throughput Modify rate limiters to throttle misbehaving flows
Latency Schedule flow though a new path with less congestion and suitable delay
Jitter Reroute flow though a less congested path

Device Failure

Reroute flows though a different path to bypass the failure

TABLE L

FUNCTIONALITY OF SOME EXAMPLE POLICY ADAPTATION ACTIONS (PAAS)

100

150 pRavispAN I eA M k‘

- Floadhg\\
Controller

Throughput (Mbps)

AltoHZ ——
H2 to H4 e
300 H3 to H4

100
50 20
0

80

60

40

Throughput (Mbps)

Po-0-0-0-0-6-0-0-0-0

H3 H2 Time (second)
(b) Effect of link failure

(a) Experimental setup

Fig. 2. Throughput and bandwidth usage

Throughput: In this experiment, we started two
flows with soft QoS guarantee (QG-I and QG-II) from
HI to H3 along path H1-S1-S5-S3-H3 at epoch 1s
(Figure 2(c)). The maximum capacity of each link is
capped at 100 Mbps using the Linux fc command. QG-I
and QG-II were transmitting at 60 Mpbs and 30 Mbps,
respectively. To introduce interference we started two
misbehaving flows: MB-I from H2 to H4 at time 5s
along path H2-S2-S1-S5-H4 with a duration of 6s and
MB-II from H4 to H2 along the same path at time 10s
with a duration of 10s. MB-I and MB-II transmit at
50 Mbps and 70 Mbps, respectively. The throughput of
these four flows are shown in Figure 2(c). When MB-I
started at 5 ms, the throughput of both QG-I and QG-II
degraded. This was detected by PolicyCop at the 10th
second (as the monitoring interval was set to 5s) and
MB-I was rerouted though S2—-S3-S4-S5 and QG-I and
QG-II returned to their expected throughput. However,
MB-II started at 10s, again reducing the throughout of
QG-I and QG-II. This event was detected by PolicyCop
and MB-II was rerouted to restore the throughput of
QG-I and QG-I

For our current experiments we have considered
simple policy adaptation algorithms as outlined in Ta-
ble I. From the results presented above, we can see that
PolicyCop can detect policy violations and quickly react
to overcome the problem.

VI. ACKNOWLEDGEMENT

This work was supported by the Natural Science and
Engineering Council of Canada (NSERC) in part by
the NSERC Discovery program and in part under the
Smart Application on Virtualized Infrastructures (SAVI)
NSERC Strategic Network.

0 5 10 15 20 25
Time (second)

(c) Flow throughput

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design of Poli-
cyCop, an autonomic QoS policy enforcement frame-
work for SDN. To the best of our knowledge, this
is the first attempt towards an autonomic QoS man-
agement framework for SDN. We have demonstrated
the effectiveness of PolicyCop through a working im-
plementation and a set of representative experiments
in real network. PolicyCop’s capability in autonomic
adaptation of simple QoS specifications is well reflected
in the experimental results.

The next step in our work is to complete the design
and implementation of all the components of PolicyCop,
streamline the interfaces between different components,
provide a full-fledged collection of controller applica-
tions on top of an SDN controller, and experiment on an
OpenFlow testbed we have developed [27]. We envision
that our work will produce a generic collection of
control applications while creating an abstraction layer
on top of the control platform for rapid development of
network applications that rely on high level primitives.

REFERENCES

[1] DiftServ: RFC 4594. http://tools.ietf.org/html/rfc4594.

[2] Floodlight openflow
http://www.projectfloodlight.org/floodlight/.

[3] Network Configuration
http://datatracker.ietf.org/wg/netcont/.
[4] Open vSwitch, An
http://openvswitch.org/.
[S] OpenFlow Management and Config-
uration Protocol (OF-Config) 1.1.1.
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow-config/of-config-1-1-
1.pdf.

[6] OpenFlow Specification 1.0.
documents/openflow-spec-v1.0.0.pdf.

controller.
(NetConf).
Switch.

Open Virtual

http://www.openflow.org/

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

OpenFlow Specification 1.1.0.
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf.

OpenFlow Specification 1.2. https://www.opennetworking.org/
images/stories/downloads/specification/openflow-spec-
v1.2.pdf.

OpenFlow Specification 1.3.0.
https://www.opennetworking.org/images/stories/downloads/
specification/openflow-spec-v1.3.0.pdf.

N. Badr, A. Taleb-Bendiab, and D. Reilly. Policy-based
autonomic control service. In POLICY 2004, pages 99-102,
2004.

M. FE Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F.
Zhani, R. Ahmed, and R. Boutaba. Dynamic Controller Provi-
sioning in Software Defined Networks. In 9th IEEE/ACM/IFIP
International Conference on Network and Service Management
2013 (CNSM 2013), pages 18-25, Oct 2013.

S. Cabuk, C. I. Dalton, K. Eriksson, D. Kuhlmann, H. V.
Ramasamy, G. Ramunno, A.-R. Sadeghi, M. Schunter, and
C. Stiible. Towards automated security policy enforcement in
multi-tenant virtual data centers. Journal of Computer Security,
18(1):89-121, 2010.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker. Ethane: Taking control of the enterprise. In ACM
SIGCOMM Computer Communication Review, volume 37,
pages 1-12. ACM, 2007.

S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba.
PayLess: A Low Cost Netowrk Monitoring Framework for
Software Defined Networks. In 14th IEEE/IFIP Network
Operations and Management Symposium (NOMS 2014) (To
appear).

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, and S. Shenker. NOX: towards an operating system for
networks. ACM SIGCOMM Computer Communication Review,
38(3):105-110, 2008.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and
N. McKeown. Where is the debugger for my software-defined
network? In HotSDN 2012, pages 55-60, 2012.

S. Hassas Yeganeh and Y. Ganjali. Kandoo: a framework for
efficient and scalable offloading of control applications. In
Proceedings of the first workshop on Hot topics in software
defined networks, pages 19-24. ACM, 2012.

B. Heller, R. Sherwood, and N. McKeown. The controller
placement problem. In Proceedings of the first workshop on
Hot topics in software defined networks, HotSDN 12, pages
7-12, 2012.

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown,
and S. Whyte. Real time network policy checking using header
space analysis. In NSDI 2013, pages 99-112, 2013.

P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: static checking for networks. In NSDI 2012, pages
9-9, 2012.

A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
verifying network-wide invariants in real time. SIGCOMM
CCR, 42(4):467-472, Sept. 2012.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al.
Onix: A distributed control platform for large-scale production
networks. In OSDI, volume 10, pages 351-364, 2010.

F. Le Faucheur, W. Lai, et al. Requirements for support of dif-
ferentiated services-aware mpls traffic engineering. Technical
report, RFC 3564, July, 2003.

L. Lymberopoulos, E. Lupu, and M. Sloman. An adaptive
policy-based framework for network services management.
Journal of Network and systems Management, 11(3):277-303,
2003.

I. Minei. MPLS DiffServ-aware traffic engineering. Juniper
Networks, 2004.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk Jiri Navratil,
and L. Cottrell. pathChirp: Efficient Available Bandwidth
Estimation for Network Paths. In PAM 2003, Apr 2003.

A.R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R. Boutaba.
Design and Management of DOT: A Distributed OpenFlow
Testbed. In I4th IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS 2014) (To appear).

N. Samaan and A. Karmouch. An automated policy-based man-
agement framework for differentiated communication systems.
IEEE JSAC, 23(12):2236-2247, 2005.

S. Shanbhag and T. Wolf. Automated composition of data-path
functionality in the future internet. Network, IEEE, 25(6):8—14,
2011.

A. Tootoonchian and Y. Ganjali. HyperFlow: A distributed
control plane for OpenFlow. In Proceedings of the 2010 internet
network management conference on Research on enterprise
networking, 2010.

Z. Wang and J. Crowcroft. Quality-of-service routing for
supporting multimedia applications. Selected Areas in Com-
munications, IEEE Journal on, 14(7):1228-1234, 1996.

K. Yoshihara, M. Isomura, and H. Horiuchi. Distributed Policy-
based Management Enabling Policy Adaptation on Monitoring
using Active Network Technology. In DSOM, pages 265-277,
2001.

