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Abstract—Virtualized data centers host multiple applications
with distinct objectives in a shared infrastructure. Accommo-
dating several dynamic applications in virtual data centers is
a challenging task for cloud providers. Current provisioning
solutions focus on a limited set of objectives that may not be suited
for the increasing number of applications deployed in data centers
everyday. In this paper we propose an adaptive provisioning
architecture for virtualized data centers based on allocation
paradigms. A paradigm translates high-level application goals to
objectives, allocator instances, and actions that actually provision
customized virtual infrastructures to applications. A paradigm
policy language is defined to express the relationship between
paradigms, objectives, and actions. A performance evaluation of
the proposed approach considers four main aspects: acceptance
ratio, provisioning cost, and CPU and link utilization. Simulation
results show that our proposal is able to select the most appro-
priate set of allocation actions based on the particularities of the
applications.

I. INTRODUCTION

Modern data centers are aggregates of computing, stor-
age, and networking resources deployed to support compute-
intensive applications and large-scale storage. Companies such
as Google, Amazon, Facebook, and Microsoft rely on data
centers to support a variety of services such as Web search, e-
mail, social networking, and e-commerce. With the increasing
popularity of cloud computing, data centers become even
more important by forming the core of advanced cloud en-
vironments. Since building and maintaining large data center
architectures is expensive, cloud platforms such as Amazon
EC2 [1] and Windows Azure [2] offer data center resources to
external customers to run a variety of applications. By leasing
physical infrastructure to external customers, infrastructure
providers (InPs) encourage the development of novel services
and, at the same time, generate revenue to cover deployment
and operation costs of data center infrastructures.

To allow multiple customers (or tenants) to share a data
center, infrastructure providers rely on virtualization technolo-
gies (e.g., VMWare, Xen, QEMU) to build virtual infrastruc-
tures (VIs) composed of logical instances of physical resources
(e.g., servers, network, storage). The provisioning of VIs must
consider requirements of both infrastructure providers and
tenants. While the main objective of infrastructure providers
is to generate revenue by accommodating a large number
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of VIs, tenants, in their turn, have specific needs, such as
guaranteed bandwidth among virtual machines, load balancing,
and high availability. Inefficiencies in the provisioning process
can lead to disastrous consequences for infrastructure providers
including reduced number of tenants, money penalties when
SLAs are not satisfied, and low utilization of the physical
infrastructure.

Current cloud provisioning systems allow tenants to select
among different resource configurations (e.g. CPU, memory,
disk) to build a VI. The tenant is the main responsible for
choosing the resources that will better fit his/her applications.
The infrastructure provider, in turn, either allocates resources
for the VI on the physical data center or rejects the allocation if
there are not enough resources to satisfy the tenant’s request.
Infrastructure providers run allocation algorithms to find the
best way to map virtual infrastructures onto the physical sub-
strate according to well-defined objectives, such as minimizing
the allocation cost, reducing energy consumption, or maxi-
mizing residual capacity of the infrastructure. Mapping virtual
to physical resources is commonly referred to as embedding
and has been extensively studied in the context of network
virtualization [3] [4] [5].

The main limitation of current resource allocation schemes
in the context of virtualized data centers is that the specifics
of the applications to be deployed over a VI are commonly
ignored in the provisioning process. Infrastructure providers
do not know in advance which applications tenants will deploy
over a VL. In a typical IaaS (Infrastructure as a Service) model,
if the provisioned VI is not able to achieve the desirable
performance, tenants are encouraged to acquire additional
resources from infrastructure providers. While the “pay-as-
you-go” model [6] for cloud computing works for most appli-
cations, there are specific requirements that cannot be satisfied
only by adding more resources to a VI. For example, business-
critical applications (e.g., ticket reservation, order processing)
may require that VM replicas are placed in distinct locations
(i.e., different physical servers). On the other hand, network-
sensitive applications benefit if VMs are placed in a single
machine, to avoid network bottlenecks.

In this paper we address the problem of provisioning
VIs considering multiple (possibly conflicting) application
requirements to define how virtual resources are mapped in the
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data center. Adaptive, application-driven resource provisioning
allows multiple tenants and a large diversity of applications to
efficiently share a data center infrastructure. To enable such
flexible resource allocation, we propose a provisioning frame-
work for virtualized data centers that allows tenants to express
high-level requirements for the requested VIs, which ultimately
influence how VIs should be allocated in the physical substrate.
The proposed provisioning approach is based on the concept of
allocation paradigms. A paradigm defines a set of objectives,
which, in turn, is associated with the high-level goals of the
applications. An objective is realized through a set of allocation
actions performed by an independent allocator entity per VI.
Based on the performance achieved by applications running
inside a data center, an active paradigm may need to be
changed in order to meet requirements of all applications. A
paradigm can also be modified to adapt to new applications
arriving or old ones leaving the data center.

This research is conducted in the context of the SAVI
(Smart Applications on Virtual Infrastructure) initiative [7],
particularly in theme 5 (SAVI Application-Platform Testbed).
One of the main objectives of this research theme is to design
the control and management planes of a wide-scale testbed
and to define strategies to guide resource allocation in large
heterogeneous infrastructures composed of integrated wire-
less/optical access, smart converged edge, wide-area network
connectivity, and data centers to support multiple advanced
applications and future Internet alternatives.

The rest of this paper is organized as follows. Proposals
from the literature related to multi-objective adaptive resource
provisioning are discussed in section II. In Section III, a con-
ceptual architecture of a paradigm-based provisioning system
for virtualized data centers is described, including its basic
concepts, main components, and a strategy to map application
objectives to paradigm actions. Simulation results to evaluate
the proposed paradigm-based provisioning approach are pre-
sented in section IV. Finally, we conclude the paper with final
remarks and directions for future work in Section V.

II. RELATED WORK

Multi-objective resource allocation in clouds has been
an extensive research topic. Several research have proposed
optimization models to find efficient mappings considering re-
quirements of several applications running in the cloud. Other
work focus on machine learning techniques to dynamically
adjust resource allocation in clouds. In this section, we present
the most relevant research carried out so far.

DynaQoS [8] proposes an extended self-tuning fuzzy con-
troller (STFC) as the basis of a QoS provisioning framework
for cloud environments that is able to support adaptive multi-
objective allocation and service differentiation. DynaQoS is
structured in two main layers. The first layer is composed
of a set of STFCs (one per objective) and the second layer
combines the requests from multiple STFCs and generates a
single output to a cloud management system that is responsible
for actually perform/modify resource allocation. However,
DynaQoS is mainly focused in offering different performance
levels in terms of response time. Also, there is limited flexi-
bility for the customer to specify how resources are allocated.

iBalloon [9] uses a reinforcement learning scheme for self-
adaptive VM provisioning. In iBalloon, each VM requests
adjustments in its capacity in terms of CPU, memory, and
I/0, enabling a distributed capacity management framework.
The architecture of iBalloon is composed of three main com-
ponents: host-agent, responsible for allocating resources to
the VMs of a physical server; app-agent, which collects real-
time information about application performance; and decision-
maker, which performs automatic capacity adjustment through
a reinforcement learning agent placed at each VM. The main
limitation of iBalloon is that it is restricted to the capacity
management of VMs and neither consider other resources such
as virtual links and storage, nor supports other operations
that can help improving application performance (e.g., VM
migration).

To cope with the volatility of cloud environments and
reduce the resource provisioning time when a burst of requests
arrives, Islam et al. proposes a prediction model to proactively
scale resources to accommodate future requests [10]. The
predictive model is based on machine learning techniques such
as Neural Network and Linear Regression, and sliding window
technique. The disadvantage of the prediction model proposed
by Islam et al. is that it considers only one type of application
(e-commerce) and there is no clear evidence on how the pre-
diction model would perform for several applications having
variable workloads. Besides, resource scale up is realized by
increasing the number of VMs and there is no fine adjustment
on the capacity of a single VM. Furthermore, the model only
considers CPU to make a decision and ignores other types of
resources, such as storage and network.

CloudOpt [11] is an optimization framework that combines
bin-packing, network flows, and mixed integer programming to
find efficient applications deployments in the cloud. The goal
of CloudOpt is to minimize the cost and energy consumption
of an application deployment, offer differentiated performance
regarding response time, deploy multiple replicas of processes,
and satisfy both CPU and memory constraints. Despite its
benefits, CloudOpt lacks important features required in modern
data center networks, such as bandwidth guarantees and it does
not consider other performance metrics rather than response
time.

Frincu and Craciun [12] propose a genetic scheduling algo-
rithm for multi-objective application mapping in multi-cloud
environments. The goal is to map applications considering four
main aspects: low application running cost, high scalability,
load sensitivity, and fault-tolerance. Although, genetic algo-
rithms are well-known for solving multi-objective problems,
they usually need a considerable time to converge. For long
running applications, such as Web 2.0 applications, solutions
based on genetic algorithms achieves acceptable performance.
However, in cloud environments short-lived applications are
constantly deployed and genetic algorithms may not be the
best option for resource allocation.

Current research in adaptive resource allocation in the
context of virtualized clouds allow application deployments
considering multiple objectives and use different strategies to
offer service differentiation. However, previous work share
a number of limitations: 1) VMs (and physical servers) are
mainly the only type of resource considered in the resource
allocation process, network and storage related constraints are
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usually ignored and both play a key role in the performance
achieved by applications running in the cloud [13]; 2) response
time is the main performance metric considered, different
applications can have other requirements that are better defined
by other metrics (e.g., throughput, availability); 3) allocation
algorithms do not allow the human administrator to change the
allocation process on-the-fly. This flexibility is important to
allow resource provisioning systems to adapt to the dynamics
of cloud environments, without having to perform a full
reconfiguration, which would be very costly.

III. ADAPTIVE PROVISIONING BASED ON ALLOCATION
PARADIGMS

In this section we present the conceptual architecture of an
adaptive provisioning system based on allocation paradigms.
We first present the basic concepts that are used in the proposed
architecture. Next, the architecture itself of the provisioning
system is described. We then describe a methodology to map
application high-level goals to allocation paradigms and a
policy language used to describe allocation paradigms.

A. Basic concepts

A paradigm defines how VIs are allocated in the physical
data center. Each paradigm comprises a set of objectives asso-
ciated with application requirements. An objective is derived in
actions, which, in turn, allocate individual VI resources. The
main concepts of the paradigm-based provisioning approach
are described below.

e Paradigm: a paradigm P represents a group of ob-
jectives (O1,0a,...,0,,) that are considered in the
provisioning of VIs;

e  Objective: an objective O is a single high-level goal
requested by the application owner in the provisioning
of VIs, such as “low latency”, “resiliency”, or “load

balancing”;

e Action: an action A is a single operation executed to
achieve an objective O. Examples of individual actions
include create VM, migrate VM, install data plane,
and increase bandwidth of a virtual link;

e  Window: a window W is a set of allocation Actions
(A1, As, ..., Ay) executed sequentially according to
an objective O. A paradigm P is thus realized by a
set of windows (Wi, W, ..., W,,) associated with the
objectives (01, Oa, ..., O,,) of the paradigm;

e  Allocator: an allocator Alloc executes provisioning
of VIs through an allocation window W defined by
an objective O. There is one allocator Alloc entity
associated with each objective O of a paradigm P.

Objectives can be dynamically added or removed from
a paradigm. When provisioning VIs, each objective O is
translated into a list of actions (A;, Ag, ..., A,,) that will be
executed sequentially within a window W. Objectives reflect
distinct allocation policies that coexist together, a characteristic
which is not fully supported by current provisioning solutions.
Several objectives can be combined together in the provision-
ing of a VI. The choice for specific allocation actions depends
on the characteristics of the applications to be deployed over

the requested VI, on the paradigm P that is currently active,
and on the current configuration of the physical substrate (e.g.,
available servers/links). Figure 1 depicts the main concepts of
our paradigm-based adaptive provisioning system.

Objective 1
Allocator 1 E:}[ Action ]—>[ Action ]—) [ Action ]
L Window 1 !

T

Objective 2
Allocator 2 ﬂ:}[ Action ]—>[ Action ]—> [ Action ]
L Windlow2 |

Objective N
Allocator N I}:}[ Action ]—>[ Action ]—, [ Action ]
L Window N |

Fig. 1. Allocation paradigms, objectives, and actions

During the operation of a virtualized data center, the current
allocation paradigm may need to be modified or another
paradigm may need to be selected to adapt the provisioning
process to other types of VI requests or to changes in the
physical substrate (e.g., new resources that became available
after a VI has expired). The decision to switch to another
allocation paradigm depends on the effectiveness of the current
active one. The effectiveness of an allocation paradigm can be
defined in terms of the performance achieved by the appli-
cations running over a VI. For example, if a VI is requested
to be used by applications requiring ‘load balancing’ (e.g.,
Web application) and the current paradigm does not include a
corresponding objective, the VI can actually be deployed on
a single physical resource, thus reducing the scalability of the
application.

It is important to notice that several allocation windows
can run in parallel under the same paradigm. In addition,
there are three possible ways a window can be associated
with a VI. The first and simplest way is to define a separate
allocator Alloc for each VI. In the first approach, only one
objective is considered in the provisioning (or adjustment)
of a VI. The second approach is to use multiple allocators
(Allocy, Alloca, ..., Allocy,) for a single VI. Using multiple
allocators allow diverse objectives to be considered in the
provisioning of a VI and, consequently, applications with
distinct requirements end up sharing the same VI. The third
and last approach is to dedicate one allocator for multiple VIs.
A single allocator is useful when similar VIs sharing the same
objective need to be managed. Figure 2 illustrates these three
allocation approaches.

The motivation behind the use of paradigm windows is
to allow the rapid adaptation of a underway allocation to the
dynamics of cloud environments. Allocation windows allow,
for example, the mapping of virtual machines to be modified
on-the-fly to select a physical server that turned out to be a
better mapping option for a given objective (e.g. reduce number
of active physical servers) and that was not available at the time
of the first mapping. In most embedding solutions, mapping
cannot be changed on the fly, even if appropriate resources
become available during the allocation process. The size of the
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Fig. 2. Allocation approaches

paradigm window influences both the ability of an allocation
to rapidly adapt to the dynamics of a data center and the
signaling overhead required in the selection of the actions of
a window, which in the end reflects in the provisioning time.
A large paradigm window requires fewer turns to allocate a
whole virtual infrastructure, but it is unlikely to take advantage
of a better allocation strategy that becomes available. On the
other hand, a small paradigm window is more adaptable to
dynamic environments like cloud data centers, at the price of
higher overhead, which can result in high provisioning times.

Allocation paradigms are not restricted to the initial pro-
visioning of a VI. When a previously allocated VI needs to
be adjusted to host new applications or to cope with changes
in the high-level goals specified by the application provider,
the paradigm performs the necessary actions to reconfigure the
VI. For example, if the application provider wants to deploy
a new network-sensitive application that is not supported by
the active paradigm (because a corresponding objective is not
included), a paradigm change is performed to include the new
objective (e.g., low latency). The actions of the subsequent
allocation windows will reflect the new objective and perform
the required actions to modify the previously allocated VI.

B. Conceptual architecture and components

The conceptual architecture of a paradigm-based provision-
ing system is depicted in Figure 3. The system is structured in
four main layers: Application Layer, Operator Layer, Service
Layer, and Infrastructure Layer. The application layer is the
entry point for application providers to request VIs from the
InP. In the operator layer, InP operators can define paradigms,
objectives, and associated actions. The service layer imple-
ments the core logic of the system and comprises allocation
and monitoring services. The infrastructure layer consists of
a set of resource agents that are responsible for device-level
resource management. The resource agents also collect device
status data that is forwarded to the upper layers.

The application provider requests virtual resources from the
physical infrastructure to build VIs using an API supported

(Application Layer )

API

v

Application provider

Operator Layer v

Paradigm
»  Management

Subsystem

InP operator \

Service Layer

Monitoring
Service

Allocation
Service

Resource agents ]

Infrastructure Layer
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Fig. 3. Architecture of a paradigm-based provisioning system

by the InP. The InP operator defines paradigms using a
Paradigm Management System (PMS). The PMS allows InP
operators to create new objectives, define the set of allocation
actions available to an objective, and determine the current
active paradigm. The Allocation Service (AS) is composed of
allocation instances that are responsible to deploy the active
paradigm and execute allocation actions. The AS supports
two operation modes: system-driven or human-driven. In the
system-driven mode, the AS automatically determines the set
of allocation actions to be executed during the next paradigm
window. In contrast, the human-driven mode requires the InP
operator to explicitly select the actions to be performed in the
window. The Monitoring Service (MS) provides updated status
of the applications running on the physical substrate to the InP
operator to the AS component. The monitored data collected
by the MS is used in AS system-driven mode to determine the
next set of allocation actions. Similarly, the InP operator can
use the information provided by the MS to manually decide
upon the actions to be included in the subsequent window.

C. Mapping application goals to paradigms

The choice of a paradigm by the InP operator is influenced
by the requirements of the customers of the physical infrastruc-
ture (i.e., application providers). However, in virtualized data
centers, InP operator has no means to know in advance which
applications will run in his/her infrastructure. Application
providers usually request a number of virtual resources (e.g,
VMs) with specific capacities (e.g., high memory, large disk
space) and do not specify particular performance objectives.
Thus, specific requirements of the application(s) running in
a virtualized data center are not considered in resource al-
location. Such application-driven provisioning can ultimately
improve the overall performance of the services running in
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a VI. For example, a VI hosting services that need high
reliability can be duplicated, while virtual resources running
applications requiring low response times can be placed close
to one another.

The application provider must express the requirements of
the applications that will be deployed in his/her VI to allow InP
operators to change between allocation paradigms and choose
the best one. To enable such application-oriented adaptive
allocation we argue that the interface between application
providers and InP operators should be extended to allow the
specification of high-level objectives that need to be fulfilled
by the virtual infrastructure. The high-level objectives defined
by the application provider will be mapped to the paradigm ob-
jectives and actions, which, in turn, actually allocate resources.

In our solution, the application provider can choose among
a set of predefined high-level goals those that better fit
the application(s) he/she wants to deploy in a VI. The ap-
plication provider can specifically select, for example, “re-
silience”,“processing”, and “reserved”, among all available
goals, to build a VI able to support applications requiring
high availability, high computations, and exclusivity over the
physical resources, respectively. With this information, the InP
operator selects the most appropriate allocation paradigm to
satisfy the goals defined by the application provider. If there
is no paradigm suitable to handle a specific set of goals,
the InP operator will have to either create a new one by
defining a policy to allow the system to automatically define
the best allocation actions (system-driven mode) or define the
allocation actions manually (user-driven mode).

D. Paradigm policy specification

As a part of our paradigm-based provisioning system, we
have developed a policy language to allow InP operators to
specify the relationship between paradigms, objectives, and
allocation actions. Although there are many policies available
[14] designed for a variety of purposes, none of them define
adequate constructs to allow InP operators expressing alloca-
tion paradigms. Our paradigm policies are used by the PMS to
automatically define the allocation actions in the system-driven
mode. The main constructs of our paradigm-policy language
are described below and an example of paradigm policy is
given in Figure 4.

e objective: an objective o defines a customized allo-
cation objective for a paradigm p. Each objective o
has a corresponding window attribute w specifying the
identifier of the allocation window hosting the actions
(a1, as, ..., a,) associated with the objective;

e action: an action a specifies an individual allocation.
Each action a is defined by an identifier, a list of
conditions (cy, ca, ..., ¢;,) that trigger the action, and
an operation that actually implements the action, such
as SelectServer or MoveToServer that are used to
place or migrate a VM to a given physical server,
respectively;

e window: a window w is a logical structure hosting
actions that are executed sequentially. A window w
has a size attribute that defines the number of actions

that are executed before the next scheduling. A win-
dow also defines the order on which the actions are
verified in each turn.

HSU_LB_LCC {

objective HighServerUtilization {
action HSU-CreateVMl ({

conditions = {Num_Allocated VMs = 0, VMs_toAllocate > 0}
operation = {SelectServer : random(all)}

)

action HSU-CreateVM2 {
conditions = {Num_Allocated VMs > 0, VMs_toAllocate > 0}
operation = {SelectServer : lowest residual capacity(all)}

)
action HSU-MigrateVM {
conditions = {VMs_toAllocate = 0}
operation = {MoveToServer : lowest residual capacity(all)}
)
window HSU {
size = 5
order = {HSU-CreateVMl, HSU-CreateVM2, HSU-MigrateVM}
}
}
objective LoadBalancing {
action LB-CreateVMl (HSU-CreateVM1)
action LB-CreateVM2 {
conditions = {Num_Allocated VMs > 0, VMs_toAllocate > 0}

operation = {SelectServer : highest residual capacity(all)}
}
action LB-CreateVLl {
conditions = {Num Allocated VLs = 0, VLs_toAllocate > 0}
operation = {SelectPath : shortest path(all)}

}
action LB-CreateVL2 {
conditions = {Num_Allocated VLs > 0, VLs_toAllocate > 0}
operation = {SelectPath : highest residual capacity(all)}
}
window LB (
size = 3
order = {LB-CreateVMl, LB-CreateVM2, LB-CreateVLl, LB-
CreateVL2}
}
}
objective LowCommunicationCost {
action LCC-CreateVMl (HSU-CreateVM1)
action LCC-CreateVM2 ({
conditions = {Num Allocated VMs > 0, VMs_toAllocate > 0}
operation = {SelectServer : closest server(all)}
}
action LCC-MigrateVM ({
conditions = {VMs_toAllocate = 0}

operation = {MoveToServer : closest server(all-used)}
}
window LCC {

size = 4

order = {LCC-CreateVMl, LCC-CreateVM2, LCC-MigrateVM}

Fig. 4. Example of paradigm policy

In addition to the main constructs, the paradigm policy
language defines a set of auxiliary functions to support the
main constructs. The auxiliary functions provide updated
information about the physical infrastructure and underway
requests. Such functions can also refer to individual allocation
actions (e.g., VM creation, VM migration). A list of the
auxiliary functions of our policy language is given below. The
functions provided here are used for a proof of concept. They
can, however, be easily extended to include other operations.

o  Num_Allocated_VMs: returns the number of already
allocated VMs of a given VI request;

e  VMs_ToAllocate: returns the number of remaining
VMs of a given VI request that was not yet allocated;

e UnusedServers: returns the number of physical servers
that do not host a VM of a given VI request;

e  UnusedLinks: returns the number of physical links that
do not host a VL of a given VI request;

o SelectServer: maps a VM to a physical server;

e MoveToServer: migrates a VM from a physical server
to another;

e  SelectPath: maps a VL to a physical link;
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e  random: returns a random server;

e  Jowest_residual_capacity: returns the server with the
lowest residual capacity in terms of a given resource
(e.g., CPU, memory, disk) or a combination of the
available resources;

e  highest_residual_capacity: returns the server with the
highest residual capacity in terms of CPU, memory,
or disk;

e qall: returns all available servers and links of the
physical substrate;

e used_servers: returns all servers used to host VMs of
a given VI request;

e used_links: returns all links used to host VLs of a
given VI request;

e closest_server: returns the closest server to a given
one in terms of number of hops;

e  shortest_path: returns the shortest physical path for a
VL of a given VI request.

In the paradigm policy example of Figure 4 there are
three defined objectives : HighServerUtilization, LoadBalanc-
ing, and LowCommunicationCost. The HighServerUtilization
objective tries to map all VMs to the smallest number of
physical servers. If there is not enough capacity to map all
VMs of a VI in a single physical server, the AS component
finds the physical server with the lowest residual capacity.
In contrast, the LoadBalancing objective spreads the virtual
resources (i.e., VMs and VLs) among all available physical
servers and links. The LowCommunicationCost object is very
similar to the HighServerUtilization objective, except that
LowCommunicationCost tries to keep VMs of the same VI
close to one another, even if they are not sharing the same
physical server.

The paradigm policy language is flexible to allow InP
operators to describe customized objectives and actions tai-
lored for a variety of VI requests and associated applications.
Embedding algorithms and heuristics can be directly translated
into objectives and actions. In addition, the paradigm policy
language can be easily extended to support other types of
constructs and functions. Paradigm policies are used by the
AS to automatically schedule actions during the provisioning
of a VI (system-driven).

IV. EVALUATION

In this section we describe the evaluation scenario and
associated results. The goal of this evaluation is to quantify the
benefits of our proposed paradigm-based adaptive provisioning
approach in terms of acceptance ratio, provisioning cost, and
resource (CPU and link) utilization when multiple objectives
are considered in VI provisioning.

A. Simulation scenario

We have adapted the discrete-event simulator used by
Chowdhury et al. [3] [15] to implement the core logic of the
paradigm-based VI allocation. The ViNE-Yard simulator was
adapted for convenience purposes. It has classes to represent

both the physical substrate and virtual requests, and comes
with a workload generator. New classes to represent paradigms,
objectives, and actions were created and the mapping methods
were replaced by the ones defined in the paradigm policies.
The physical substrate is represented by a VL2-based [16]
topology, which is a well-know data center topology. The
physical topology is composed of 24 servers, 22 switches,
and 72 links. Bandwidth capacity of links varies according to
the type of switch used: 1000 bandwidth units for ToR (7op-
of-Rack) switches, and 10000 for aggregate and intermediate
switches. Server CPU and storage capacities are uniformly
distributed between 50 and 100.

Similar to Chowdhury et al. [3], VI requests arrive in
a Poisson process with an average rate of 4 VNs per 100
time and an average duration of 1000 time units, exponen-
tially distributed. The number of VMs of each VI request
is randomly defined by a uniform distribution between 2
and 10. CPU requirements of VMs are uniformly distributed
between 0 to 20, and the bandwidth requirements of virtual
links are uniformly distributed between O to 50. We have
defined three main objectives to compose allocation paradigms:
HighServerUtilization (HSU) and LoadBalacing (LB), detailed
in Section III-D, and a Random objective, which tries to map
all VMs randomly. The window size is 1 for all paradigms,
which means that one action of each objective of a paradigm
is executed in each turn.

B. Performance metrics

We have defined four metrics in our evaluation. Acceptance
ratio is the number of VI requests that are accepted over
the total number of requests. Provisioning cost is defined
in terms of allocated resources and calculated using the
model of Chowdhury et al. [3]. CPU utilization and link
utilization reflect the average usage of individual servers
and links over their total capacity. For each experiment,
we evaluate 3 paradigms composed of one single objective
(HSU, LB, and Random), reflecting the operation of current
provisioning approaches, and a paradigm combining the
HSU and LB objectives. Figures 5(a) to 5(d) summarize the
obtained results. Each experiment was repeated 30 times with
a confidence level of 95%.

C. Acceptance ratio

The average acceptance ratio over time is shown in Figure
5(a). The LB objective achieves very high acceptance ratio
indicating that distributing VMs over the substrate is better
than concentrating requests in a limited subset of nodes. Such
behavior can be explained by the fact that LB always try to find
the resources with highest residual capacity, which increases
the chances of a successful mapping. Randomizing resource
allocation also results in high acceptance ratio, comparable
to LB. On the other hand, HSU has the worst performance
among all paradigms because HSU, in contrast to LB, looks
for the nodes with the lowest residual capacity in order to
reduce the number of used resources (i.e., minimize resource
fragmentation). The side effect is that such nodes run out
of capacity very quickly, reducing the mapping possibilities.
However, when HSU and LB objectives are combined under
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Fig. 5.

the same paradigm, the acceptance ratio improves consid-
erably, achieving similar performance to LB and Random
objectives.

D. Provisioning cost

The average cost of provisioning a VI in terms of allocated
resources is depicted in Figure 5(b). Here, LB and Random ob-
jectives result in higher provisioning costs compared to HSU.
The reason is twofold. First, since LB and Random objectives
accept more requests, the number of allocated resources is also
higher. Second, LB and Random objectives use more resources
when provisioning a single VI (because virtual resources tend
to be spread) and more links are allocated. In HSU, in turn,
because multiple VMs of the same VI are mapped to a smaller
subset of available servers (some can even share the same
server), the number of used links is minimized, reducing the
overall cost of the VI. Again, when HSU and LB are combined,
the provisioning cost approximates to the ones achieved by LB
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and Random.

E. CPU and link utilization

Figure 5(c) depicts the average CPU utilization over time
achieved by the four paradigms. As expected, HSU achieves
the highest CPU utilization, since it attempts to increase
server utilization mapping VMs on the servers with the lowest
residual capacity. LB and Random, in turn, go on the opposite
way by choosing resources with high residual capacity and
low utilization. It is possible to observe that LB has a big
influence in the combined (HSU+LB) paradigm compared to
HSU because CPU utilization values are closer to the ones
achieved by LB than to the ones obtained when HSU is applied
isolated.

Finally, the average link utilization over time is illustrated
in Figure 5(d). As stated before, HSU tends to use less links
when provisioning VIs, which explains why HSU has the low-
est link utilization. By using less links, VIs provisioned with
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HSU are “cheaper”, as discussed in the cost comparison. The
Random objective has slightly superior performance compared
to LB and HSU+LB. The similarity between link utilization
achieved by both LB and HSU+LB confirms again that LB
dominates over HSU, even in the combined paradigm.

FE Summary

Considering the presented results, it is possible to conclude
that HSU is better suited for bandwidth-limited scenarios and
useful to allocate VIs hosting network-sensitive applications.
HSU uses less links, reducing the occurrence of bottlenecks
in the network. On the other hand, LB is appropriate for best-
effort scenarios and for VIs that need high availability (i.e.,
VIs hosting critical applications) because resources are spread
over the network. LB also results in increased revenue for InPs,
since more VIs are allocated when LB is employed (isolated or
combined). When HSU and LB are used together, provisioned
VIs share characteristics of both objectives, although LB has
a larger influence on the achieved performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a provisioning framework
based on the concept of allocation paradigms that enables
adaptive allocation in virtualized data centers. Our proposal
allows tenants to express high-level requirements for their VIs,
which are used by InP operators to define how a VI is allocated
on the physical substrate. Furthermore, multiple objectives can
be considered when allocating a single VI, enabling multi-
tenancy and allowing a large number of diverse applications
to coexist in a virtualized data center infrastructure. We have
evaluated our proposal in terms of acceptance ratio, provision-
ing cost, and resource utilization.

Simulation results shows that our proposed paradigm-based
adaptive VI enables distinct allocation methods with different
objectives to coexist under a single framework. Furthermore,
using combined objectives in the same paradigm allows a VI
to host diverse applications having different requirements. We
could also identify a tradeoff between resource utilization,
acceptance ratio, and the provisioning cost of VIs. For ex-
ample, HSU offers the lowest VI provisioning cost but poor
acceptance ratio of VI requests. In contrast, LB and Random
improve acceptance ratio at the cost of more expensive VIs.
HSU has high CPU utilization and low link utilization what
makes paradigms using HSU suited for applications having
strict constraints regarding bandwidth and latency (e.g., mul-
timedia). On the other hand, LB facilitates the deployment
of applications that benefits from load balancing (e.g, critical
applications, MapReduce). Randomization is able to achieve
performance comparable to the LB objective.

A limitation of the proposal is the fact that there is no
control over the objectives included in a paradigm. Since the
effectiveness of an allocation paradigm depends on the choices
performed at the application layer, the framework cannot
predict the performance achieved by the applications before
deployment. However, the framework is flexible enough to
allow the definition of new allocation paradigms more suitable
to a given setting. Besides, at this point, our simulator is not
able to classify the paradigms in advance because it would
required some feedback from the application provider.

As future work, we intend to evaluate a prototype of
the paradigm-based provisioning system in the SAVI testbed,
which is currently under development. In addition, we also
plan to study the impact of varying paradigm parameters
(e.g., paradigm window size) in order to find a better balance
between multiple objectives involved in VI provisioning. A
model for computation within a VI to compare the effective-
ness of different allocation paradigms in terms of application
performance will also be considered in future evaluations.
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