2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops

Ensuring (-Availability in P2P Social Networks

Nashid Shahriar®, Shihabur Rahman ChowdhuryT, Mahfuza Sharmin®, Reaz Ahmed?,
Raouf Boutaba® and Bertrand Mathieu¥
* Dept. of Comp. Sc. and Engg., Bangladesh University of Engg. and Tech.
nshahriar@cse.buet.ac.bd

fDavid R. Cheriton School of Computer Science, University of Waterloo
{sr2chowdhury | r5ahmed | rboutaba}@uwaterloo.ca

§ Dept. of Computer Science, University of Maryland, College Park
msharmin@umiacs.umd.edu

1]Orange Labs, Lannion, France
bertrand2.mathieulorange.com

Abstract—Despite their tremendous success, centrally con-
trolled cloud based solutions for social media networking have
inherent issues related to privacy and user control. Alternatively,
a decentralized approach can be used, but ensuring content
availability will be the major challenge. In this work, we propose
a time based user grouping and content replication protocol that
exploits the cyclic diurnal pattern in user uptime behaviour to
ensure content persistence with minimal replication overhead.
We also introduce the concept of [-availability, and propose a
mechanism for ensuring the availability of at least 5 members
within a replication group at any given time. Simulation results
show that a 2-availability grouping policy delivers high content
persistence without incurring significant network and storage
overheads.

I. INTRODUCTION

Online Social Networks (OSNs) attract increasing numbers
of Internet users. According to Nielsen’s Social Media Report
2011 (http://cn.nielsen.com), around 80% of the active Internet
users visit one of the OSN sites. Popular OSNs (like Facebook
and Google+) provide free online storage for users to upload
and share their social content. Facebook is the largest online
social network with one billion active users. It maintains more
than 100 petabytes of online storage and stores more than 100
billion images.

Despite their tremendous success and apparently free ser-
vices, OSNs are imbalancing the Internet’s ecosystem in many
ways. First, an OSN provider stores its users’ social contents
in a cloud based storage under the control of a central
authority. This poses serious threats to user privacy and content
ownership. For example, many OSN sites use their users’ data
to feed the advertisement industry. Second, users have to obey
the restrictions imposed by the OSN sites (e.g., resolution and
format of uploaded content, storage limits ezc.). Third, users
cannot use their uploaded content across multiple OSN sites.
Finally, OSN providers rely on third party content distribution
networks (CDNSs) for load distribution and low latency access
across the globe. This aggravates the privacy concerns, since
users’ contents are now being cached at third party locations.

These drawbacks of the current OSN sites have motivated
the research community to investigate the possibility of a peer-

to-peer (P2P) architecture for a decentralized OSN [1], [2], [3].
However, as addressed by these research efforts, a decentral-
ized OSN solution inherits a very challenging problem from
P2P storage systems: how to ensure 24X7 content availability
with minimal replication overhead. Most of the proposals in
P2P networks continuously maintain a fixed number of replica
to ensure a content’s availability. A few P2P approaches ([4],
[5], [6]) use time-based replication strategy, where a peer’s
daily uptime behavior is utilized to place and reuse content
replicas across its online sessions.

In this work, we propose S-DATA (Structured approach for
Diurnal Availability by Temporal Assemblage), a time based
grouping and content replication protocol that exploits the
cyclic diurnal availability pattern in user uptime behavior as
observed in [7]. We store and replicate content within small
user groups where users have complementary online patterns
and assign the task of indexing group information and content
meta information at more stable computing nodes. In order
to ensure high availability and low latency access across a
geographically distributed setting, we introduce the concept of
(-availability, i.e., at least 5 members of a replication group
will be online at any given time. To the best of our knowledge,
this is the first attempt to introduce the notion of S-availability.
The aforementioned group formation problem is challenging
due to three constraints. First, group size should be as small
as possible. Second, [-availability should be ensured. Third,
the group formation process should be globally optimized and
should not incur significant network overhead.

In contrast to the existing time-based P2P replication ap-
proaches, S-DATA has two advantages. First, it utilizes a struc-
tured Distributed Hash Table (DHT) for ensuring globally opti-
mal availability groups. This ensures higher system availability
without generating high network traffic for group formation.
Second, S-DATA can ensure (-availability, as opposed to the
1-availability provided by the existing approaches.

We organize the rest of this paper as follows. We start
with a discussion of the related works on decentralized social
networks and P2P availability in Section II. Then we provide a
conceptual overview of S-DATA (Section III) followed by the

978-0-7695-5023-7/13 $25.00 © 2013 IEEE 150

|IEEE
@) computer
DOI 10.1109/ICDCSW.2013.91 Soclef

ty

protocol details (Section IV). We also simulate the availability
architecture to show its performance (Section V). Finally
we conclude with some future directions of our work (Sec-
tion VII).

II. RELATED WORKS

A. Decentralized Online Social Networks

A number of recent research efforts strive to decentralize
storage and control in OSNs. These efforts have been moti-
vated by the limitations posed by the centralized architecture
of current OSNs [8]. However, one of the main challenges that
need to be addressed before these systems can be deployed is
ensuring high availability of the shared content. PeerSon [1],
SafeBook [9], Persona [10], and SuperNova [3] are some
of the prominent proposals of decentralized OSNs. They
recognize the problem of ensuring 24/7 content availability
over a geographically distributed user base as one of the
key challenges in deploying decentralized OSNs. However,
PeerSon, SafeBook and Persona have not particularly focused
on the replication schemes fundamental for increasing content
availability. SuperNova allows users to select a number of
other users it trusts (storekeepers) to replicate a part of its
contents and serve it in its absence. In contrast to S-DATA,
this replication scheme does not take into account the uptime
distribution of the other users when choosing them as replicas.

B. Time Based Replication in P2P Network

A number of approaches to improve availability in P2P
storage systems can be found in the literature [11]. However,
only a few approaches focus on increasing content availability
using a time-based replication strategy. In [4], we proposed
the DATA protocol that constructs replication groups using
complementary availability patterns of peers through a gossip
based routing technique. In S-DATA, we improve over the
DATA protocol in terms of the availability of the replication
groups and network overhead. Moreover, we introduce of the
concept of (-availability, whereas DATA targets to ensure 1-
availability. The redundancy group based approach proposed by
Schwarz et al. [12] tries to improve availability by utilizing the
cyclic behaviour of geographically distributed peers. Song et
al. [13] proposed a probabilistic model for time-based replica
placement in P2P networks using a DHT. They use one hop
flooding to find the peers with the most dissimilar availability
pattern, while we use a DHT for this purpose and improve
significantly on network bandwidth consumption. Rzadca et
al. [6] proposed to represent peer availability as a function
of discrete time to minimize the number of replicas. They
represent availability by a set of time slots in which a peer is
available with certainty, i.e., using discrete on-off availability.
In contrast, we represent availability by historical probabilities
at discrete time slots. Moreover, their model only targets to
ensure 1l-availability across time slots, whereas we formulate
the concept of [3-Availability to provide better reliability.

III. CONCEPTUAL OVERVIEW
A. Architecture

As depicted in Fig. 1, S-DATA architecture revolves around
three conceptual components: replication group, Group Index
Overlay (GIO) and Content Index Overlay (CIO). Replication
groups provide a persistent storage by exploiting users’ diur-
nal uptime-behavior, GIO maintains availability information
for individual users and user groups, while CIO retains an
indirect mapping from content name to content location. In
the following we explain each of these three components. In
this work, we use the terms peer and user interchangeably.

Replication group : In S-DATA, users are clustered into
small groups based on their diurnal availability pattern. Within
a replication group, users have mutually exclusive uptime with
little overlap. In a replication group with S-availability, it is
ensured that at least members from that group will be online
at any given time. All members within a group replicate each
others content and serve as proxies for off-line members of
that group.

Group index overlay : It has two functions. First, during
group formation, it works as a distributed agent for match-
making users with partial complementary uptime behavior.
Second, it acts as an indirection structure during content
lookup. Initially each user advertises his availability pattern
as a bit-vector to this overlay. During group formation, users
willing to form a group search for other users (or groups)
having complementary uptime behavior. We use Plexus [14]
as the indexing and routing protocol for GIO. To the best of our
knowledge, Plexus is the only Distributed Hash Table (DHT)
technique that supports approximate bit-vector matching in an
efficient manner. At any given time, Plexus maps a group ID
to one (or [3) online user from that group.

Content index overlay : This overlay can be implemented us-
ing any DHT-technique depending on the application-specific
requirements. It maps a content name to a group ID. In order
to search and download a content, a user will first search
the CIO and discover a group ID. Then it will lookup the
group ID in the GIO and find the location (IP:port) of an alive
user currently hosting that content and download it. Mapping
a content name to a group ID, instead of directly mapping
to a user ID incurs an additional lookup. But, this lookup is
necessary for dynamically associating a content name to the
currently online user hosting that content.

B. Availability Vector

The traditional definition of availability is simply measured
by the fraction of time a user is online [15] within a certain
time period. If a user joins and leaves m times during a period
of T hours, and every time remainsm up for ¢ hours, then its
availability can be computed as, @ According to Yang
et al. [16] this formula does not take into account the diurnal
availability pattern in user uptime behaviour.

In this work, we divide 24-hours of a day in K equal-length
time-slots w.r.t. GMT+0, and estimate the probability of a user
being online in each time-slot based on its historical behavior.

151

Group Index A Offline peer

/A Online peer
) ;0 Super peer
2\ Content Index o

I\ 3 \,' Replication
\ (any DHT)

group

. lookup(grouplD)

1. lookup(content-name)
— peer IP:port

— grouplD

3. Content access

persistent content

Fig. 1. Conceptual Architecture of S-DATA

Thus the availability of a user, say x, is defined as A, =
{az1,Gz2y vy Quky ooy K}, Where A, is the K-dimensional
availability vector for user z, and a,j is the probability of
user x being online in slot k.

IV. S-DATA PROTOCOL DETAILS
A. Terminology

In S-DATA we use four indexes (see Table I) for group
formation and content lookup. Z, represents an indexing node
in GIO which is responsible for storing the ID of e (ID.),
where e can be a user or a group. Z. works as e’s proxy
for meta-information exchange. For user, say z, Z, stores an
M, record, which contains the availability vector (A,), ID
(ID;) and network location (Loc,) for x, as well as the
group ID (IDg,) and index location (Zg,) for z’s group
G,. For a group G, Zg contains index record Ng, which
contains group availability vector (A¢), group ID (I D¢), and
for each member x of G, its ID (I D,), index location (Z,)
and network location (Loc,). To enable approximate matching
between users’ and groups’ availability vectors, we maintain
V. indexes that contain availability pattern (S., explained in
Section TV-B1), availability vector (A.), ID (I D.) and index
location (Z.) for e. V. is stored in all nodes Lg_ within a
pre-specified Hamming distance from S,. Finally, for content
lookup another set of indexes (XC,,) is maintained in CIO. For
each keyword w attached to a content, an index (/C,,) is stored
in CIO at node 7,,, which is responsible for keyword w. KC,,
retains the content’s ID (/Dgy,.), other keywords describing
the content ({w;}), group ID (I D¢) and index location (Zg)
of the group that hosts the content.

TABLE I
LIST OF INDEXES IN S-DATA

Name Overlay Indexed information

My GIO/Z, < Ag,IDg, Locy,IDg, ,Lg, >

Na GIO/Zg < Ag,IDg,{< IDg,Z,Locy > |z € G} >
Ve GIO/Ls, | < Se, Ae,IDe,Le >

Kuw CIO/ T <ID¢,Tq,IDjoc, {w;i|w; € doc} >

B. Indexing Availability Information

To cluster users in globally optimized replication groups,
we need to index each user’s availability information (V,) to

152

GIO. This indexing process involves two steps: i) encoding
availability vector (A.) to bit-vector (S.) and ii) advertise-
ment using Plexus protocol. These steps are explained in the
following.

1) Availability Vector Encoding: It can be easily seen that
the availability vector A; is a K-dimensional vector of uptime
probabilities, whereas the advertisement (or query) patterns
in a Plexus network built on an < n,k,d > code are n-bit
values. Hence, we need a means to encode a K -dimensional
availability vector into an n-bit pattern.

In this work we have used K = 24 slots for availability
vector. While for Plexus implementation, we have used the
< 24,12,8 > Extended Golay Code Ga4. Trivially, we can
directly encode each probability value a;; in A; to one-bit
in the 24-bit advertisement (or query) pattern. We can use a
threshold, say 6, and can set the k-th bit of the 24-bit encoded
pattern to 1 if a;; > 6. Unfortunately, this encoding will incur
significant information loss and will degrade approximate
matching performance in Plexus network.

Instead, we use a better encoding scheme based on the ob-
servation that consecutive values in the availability vector are
usually similar in magnitude. To exploit this observation, we
average the probability values in two adjacent slots and obtain
a 12-dimensional availability vector A = {Gi1, dsa, . .. di12},
where G;; is computed as d;; = w Now, we
encode each ¢;; into two bits in the 24-bit advertisement
pattern as follows. d,; is encoded to 00 if d;; is less than 3.
If d,; is between % and % then the encoding is 01. Otherwise,
G;; is greater than % and is encoded to 11. This encoding
reflects the numeric distance in d;; to the Hamming distance
in advertisement patterns.

2) Advertisement: An advertising user, say
first computes the n-bit advertisement pattern, say
Sz, as explained above. Then z sends the tuple
< 8;,A:,ID,, Loc,, D¢, ,Zc, >, to Z,. If x has
not formed a group then IDg, and Zg, will be empty.
Upon receiving the advertisement message Z, computes the
codewords within a pre-specified Hamming distance from S,
and uses Plexus routing to route and index the advertisement
(V) to the nodes (Lg,) responsible for these codewords.

z,

C. Group Formation

This process lies at the core of S-DATA protocol. Our target
is to cluster users into groups in such a way that the group
sizes are minimal and at any given time at least 5 > 1 users
from a group are online with the highest possible probability.

The most challenging part of this process is to relay group
formation messages between users that may not be simultane-
ously online. To this end, we use GIO as a message relay.
Fig. 2 presents a sequence of message exchanges between
indexing nodes in GIO and users x and m while forming a
1-availability group G. It is worth noting that z and m are not
online simultaneously and hence they have no direct message
exchange. The group formation process is composed of the
following three steps:

1y

2)

3)

z Ir Lg /Ls, Im Ia La
Find S
Find S,
8 Ly 7777
M
z match m
O
2| |Invite m |with M,
g R S B >
g Best invitee so|far m
=]
update |Loc,,
[Group formaion | tatong M)
Best
updaleMgc invitee x
. ! Ng
with IDg,Zg| [*=9--- >
dvert.|V
LAYl YE _
update | Loca
1Dc.Iq
update |Loca
updates from m
- -=) —
Plexus unicast Plexus multicast Direct link
Fig. 2. Sequence diagram shows group formation of x with m
Invitation : We assume that on average a user will be

online for L time-slots on a daily basis. It will be the
responsibility of a user to maintain 3 users in its group
during the L-slots it is online and the next L-slots. To
find a suitable user that can improve group’s availability
for the next L-slots, user z computes an availability
pattern S‘m. Sw has bits ¢t + L to ¢t + 2L — 1 set to
1, assuming that the availability pattern S, of user z
has bits t to t + L — 1 set to 1. Once S, is computed,
user x forwards it to Z,. Z, uses Plexus multi-cast
routing to find the users (Lg) in GIO responsible for
indexing user/group availability records (V,) similar to
S‘w. From the availability records (V,) returned by Z,,
user x selects the most appropriate user, say m, that has
minimum Hamming distance from S, and maximizes
its group availability. User x locates the indexing node
(Z,,,) for m using Plexus routing and sends an invitation
request to Z,, that includes the V), record.

Group formation : Upon becoming online m updates Z,,
with its new network location (Loc,,). In response Z,,
sends all the invitations ({V.}) for m that have been
accumulated during m’s offline period. Among these
invitations, m selects the best candidate x. If x is already
a member of an existing group then m simply joins the
group otherwise it creates a new group G. To create
or update the group index in GIO, m may require to
transmit three messages: a) if m created a new group,
then it has to update the M, record in Z, so that x can
learn about GG upon returning; b) m has to index (Vg) to
all nodes (L) within a certain Hamming distance from
Sa; ¢) finally, m stores the group index Ng to Zg.
Participation : During its next online session user x will

update [, with its new network location Loc,. If the
previous invitation from = was honored by m then I,
responds with the newly formed group’s information (
ID¢ and Zg). « updates Zg with its location informa-
tion Loc, and Zs responds with any update from m or
other members of GG. On the other hand, if the invitation
from x was not accepted by m, then x has to restart the
group formation process with the next best matching
user, other than m.

The above described process of forming 1-availability group
can be easily extended to construct 3-availability groups. Two
modifications in Step 1 of the above process are required. First,
x should be the highest ID user among the online members
of its group (G). Second, x should send invitations to 8 — f
users simultaneously, where f is the number of users in x’s
group who will be online in the L-time slots following the
online period of x.

D. Group Maintenance

The diurnal availability pattern of a user may change over
time. In such a situation a user, say x, may want to change
its group. Group changing involves leaving the current group
and joining a new group. The process of joining a group has
been described in Section I'V-C. To leave its current group G,
user x has to update two nodes in GIO. First, z has to remove
its index information from NGZ record, which is stored at
node Zg, . Second, z has to clear the IDg_ and Zg, fields in
M, record, which is stored in Z,. It should be noted that we
use soft-state registration for advertising V,, records to Lg, .
Hence, the V, records will be automatically removed from the
nodes in Lg,, if x does not re-advertise before the previous
advertisement expires.

E. Content Indexing and Lookup

1) Content Indexing: Traditionally a content in a P2P net-
work is tagged with a set of descriptive keywords, (w € {w;}).
These keywords are used to locate the node (.7,,) in CIO for
storing the KC,, record. While advertising a content a user, say
2, may or may not be a member of a replication group. If x
is a member of a replication group, say G, then IDg_ and
I, are stored in ICy, record, otherwise I D, and 7, are used.
However, IC,, is not updated when x forms a group. Rather,
K. is updated in a reactive manner during content lookup.
This process is described in the following.

2) Content Lookup: A query for keyword w will be routed
to J, using the routing protocol in CIO. Based on the
information found in XC,,, the query will be forwarded to either
Z¢, if the content host = has formed a group and KC,, has been
updated, or the query will be forwarded to Z,. In a regular
scenario, the query will be forwarded to Zg, and the location
Locy of the currently alive user y in G, will be returned to
the querying user via J,,. On the other hand, if = has formed
a group but K, has not been updated, then 7, will contact
7., which will respond with ID¢_ and Z¢g_. Accordingly, J,,
will update /C,, for future references. Finally, 7., will contact

153

Zg, to obtain the location (Locy) of the currently active user

() in Gy.

V. PERFORMANCE EVALUATION

We used the Peersim [17] simulator for implementing S-
DATA protocol on a Plexus network deployed using the
Extended Golay Code Ga4 as described in Section III-A.
Our simulation is focused on the following aspects: first, we
measure the network overhead of our grouping protocol and
compare it with other grouping approaches, i.e., random, un-
structured, and centralized grouping approaches (Section V-A).
Second, we show the advantages of [-availability in terms of
fault resilience along with the associated network and stor-
age overheads (Section V-B). We use Pareto distribution for
generating the availability vectors based on the observations
in [18]. We design the simulations around GIO and replication
groups, and deliberately omit to simulate CIO, since it is out
of the scope of this work.

A. Grouping Efficiency

We perform the simulations in this section for an expected
uptime distribution L = 8 hours, and vary the network size
from 5000 to 30000 in steps of 5000. We compare S-DATA
with the following approaches:

o Unstructured: We use the gossip protocol as proposed in
[4] in this strategy, where users reply based on their local
knowledge for group formation.

e Random: In this strategy, a user randomly invites a
peer within two hop neighbourhood without using any
selection metric. The invited user then decides to accept
or deny the invitation according to a random toss.

e Centralized: In this scheme, a central entity (Oracle),
which can be a single cloud service provider, stores the
availability vectors for all users in the system. Alive users
communicate with the Oracle to select and invite the best
matching user. The Oracle chooses the best invitee, from
the invitations for each user and forms a group.

1) Network Overhead: Normalized Message Overhead
(NMO) is computed as the ratio of invitation count to the
number of successful replies. NMO represents the number of
requests required to successfully join a group. Fig. 3 shows
a lower NMO of S-DATA compared to that of the random
and unstructured approaches. The random and unstructured
methods flood the network with messages to find and invite
suitable users. On the other hand, the centralized approach
does not flood the network and only involves communication
between the users and the Oracle only. Therefore, it is used as a
baseline for comparing message overhead. Instead of flooding
the network, S-DATA uses Plexus to match suitable users. This
results in an NMO very close to that of the centralized case and
significantly lesser than that of the unstructured and random
cases.

B. Performance of S-DATA

We perform the simulations in this experiment for an
expected uptime distribution, . = 8 hours. We vary the

- 30 T T T T ; ;
s Central ——
£ o5 Structured
o Unstructured
O Random e
o 20
)}
(4}
@ 15
=
3 10 |
N
© L
e ° ‘
o {
Z 0 & ;
5k 10k 15k 20k 25k 30k
Network Size
Fig. 3. Normalized Message Overhead
L = 8hrs
1.2 T T T
Beta=1 xxxxx Beta=3 ¢
Beta =2 == Beta=4
11 F B
s] .
©
z
§ o9t]
@
0.8 I i
0.7

20K
Network Size
System Availability

Fig. 4.

network size from 5000 to 30000 in steps of 5000, and vary
B from 1 to 5.

1) System Availability: Fig. 4 presents the expected system
availability for different replication levels () and network
size. System availability increases with 5 as we have more
redundancy. The diminishing error bars for higher 5 implies
that more individual groups are achieving availability very
close to the system average. It is worth mentioning that a
significant improvement in system availability is achieved
when 3 rises from 1 to 2. But for higher 3, the increase is not
significant.

2) Mean Group Size: Fig. 5 shows the effect of changing
on the group sizes (|G|) while the network size was kept fixed
at 30000. Theoretically, group size (|G|) is proportional to (-
availability and inversely proportional to L. In other words, a
larger group is required to ensure higher [S-availability for a
given L. This relation is well reflected in the simulation.

3) Failure Resilience: We measure the failure resilience of
the groups by taking the percentage of groups having at least
one peer online during a time slot under different levels of
failure. We have conducted this simulation in a network of
30000 users. We simulate failure by making a user offline
during its expected online slot. Fig. 6 shows the effect of

154

Group size variation
40

" L=8hrs ——
35
30
25
20

15

Mean Group Size

10

2 3 4

B
Fig. 5. Mean Group Size
Failure Rate vs. System Availability (L = 8hrs)

100

* 0

95
90

85

80
75

70
65
60

20 30
Failure Rate
Fig. 6. Effect of Failure on System for Different 3

40

Avg. Percentage of Groups Alive in Any Slot

0 50

failure on system availability. We can see that with higher
values of /3 the curves are getting more flat. This confirms the
improvement in system availability with higher /5 values. For
a mean peer uptime of 8 hours it is possible to have more
than 93% of the groups online even under 50% failure rate,
with a 8 >= 3. As such an increase of /3 from 1 to 3 brings a
significant improvement in terms of the system’s availability.
However, for further increases in 5 the improvements are not
as significant.

The simulation results suggest that it is possible to achieve
high system availability without incurring significant overhead
in terms of messaging and convergence time for § = 2.
Therefore, 5 = 2 can be a good operating point for a user to
ensure high availability. Availability of popular contents can
be further increased by caching the contents at other users out
of the replication group.

VI. ACKNOWLEDGEMENT

This work was supported by the Natural Science and
Engineering Council of Canada (NSERC) under its Strategic
and Discovery programs.

VII. CONCLUSION

In this paper, we have introduced the [S-availability concept
and described an efficient grouping protocol (S-DATA), which

155

ensures data availability around the clock. Simulation results
show that the proposed S-DATA protocol ensures very high
availability of contents comparable to a centralized group
formation protocol. The simulation results also revealed that
ensuring 2-availability in replication groups can provide high
availability of contents and resilience to peer failure while
incurring low network overhead and convergence time. In
the future, we intend to deploy S-DATA on a real world
system and further investigate its performance for application
specific availability requirements. The success of S-DATA also
depends on the willingness and truthfulness of the peers.
Tackling the potentially malicious behaviour of peers and
security issues of group formation is another prospective
research issue we plan to investigate.

REFERENCES

[1] S. Buchegger, D. Schioberg, L.-H. Vu, and A. Datta, “Peerson: P2P
social networking: early experiences and insights,” in Proceedings of
SNS, 2009, pp. 46-52.

S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal, S. K.
Teh, R. Chu, B. Dodson, and M. S. Lam, “Prpl: a decentralized social
networking infrastructure,” in Proceedings of MCS, 2010, pp. 8:1-8:8.

R. Sharma and A. Datta, “Supernova: Super-peers based architecture for
decentralized online social networks,” in Proceedings of COMSNETS,
2012, pp. 1-10.

N. Shahriar, M. Sharmin, R. Ahmed, M. Rahman, R. Boutaba, and
B. Mathieu, “Diurnal availability for peer-to-peer systems,” in Proc.
CCNC, Las Vegas, Nevada, USA, Jan 2012.

S. Blond, F. Fessant, and E. Merrer, “Finding good partners in
availability-aware p2p networks,” in Proc. SSS, 2009.

K. Rzadca, A. Datta, and S. Buchegger, “Replica placement in p2p
storage: Complexity and game theoretic analyses,” in Proc. DCS, June
2010, pp. 599-609.

D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proc. IMC, 2006, pp. 189-202.

M. Marcon, B. Viswanath, M. Cha, and K. P. Gummadi, “Sharing
social content from home: a measurement-driven feasibility study,” in
Proceedings of NOSSDAV, 2011, pp. 45-50.

L. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving
online social network leveraging on real-life trust,” Communications
Magazine, IEEE, vol. 47, no. 12, pp. 94 —101, Dec. 2009.

R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin, “Per-
sona: an online social network with user-defined privacy,” in Proceedings
of the ACM SIGCOMM 2009 conference on Data communication, 2009,
pp. 135-146.

R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. H. Campbell, “A
survey of peer-to-peer storage techniques for distributed file systems,”
in ITCC (2), 2005, pp. 205-213.

T. Schwarz, Q. Xin, and E. Miller, “Availability in global peer-to-peer
storage systems,” in Proc. IPTPS, 2004.

G. Song, S. Kim, and D. Seo, “Replica placement algorithm for highly
available peer-to-peer storage systems,” in AP2PS, 2009, pp. 160-167.

R. Ahmed and R. Boutaba, “Plexus: a scalable peer-to-peer protocol
enabling efficient subset search,” IEEE/ACM Trans. on Networking
(TON), vol. 17, no. 1, pp. 130-143, Feb 2009.

R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker, “Total recall:
system support for automated availability management,” in Proc. NSDI,
2004.

Z. Yang, J. Tian, and Y. Dai, “Towards a more accurate availability evalu-
ation in peer-to-peer storage systems,” Intl. Journal of High Performance
Computing and Networking, vol. 6, no. 3/4, pp. 233-246, 2010.

A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,” in
Proc. of IEEE P2P, 2009, pp. 99-100.

F. Bustamante and Y. Qiao, “Friendships that last: Peer lifespan and
its role in p2p protocols,” in Web Content Caching and Distribution,
F. Douglis and B. Davison, Eds. Springer Netherlands, Sept. 2004, pp.
233-246.

[2]

[3]

[4]

[5]
[6]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

