ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP

DEWS: A Decentralized Engine for Web Search

Reaz Ahmed*, Md. Faizul Bari*, Rakibul Haque*, Raouf Boutaba*, and Bertrand Mathieu®
*David R. Cheriton School of Computer Science, University of Waterloo
{r5ahmed | mfbari | mShaque | rboutaba}@uwaterloo .ca
TOrange Labs, Lannion, France
bertrand2.mathieufRorange—-ftgroup.com

Abstract—Contemporary Web search is governed by centrally
controlled search engines, which is not healthy for our online
freedom and privacy. A better solution is to enable the Web to
index itself in a decentralized manner. In this work we propose a
decentralized Web search mechanism, named DEWS, which en-
ables existing webservers to collaborate with each other to build
a distributed index of the Web. DEWS can rank search results
based on query keyword relevance and relative importance of
webpages. DEWS also supports approximate matching of query
keywords in web documents. Simulation results show that the
ranking accuracy of DEWS is very close to the centralized case,
while network overhead for collaborative search and indexing is
logarithmic on network size.

I. INTRODUCTION

Internet is the largest knowledge base that mankind has
ever created. Autonomous hosting infrastructure and voluntary
contributions from millions of Internet users have given the
Internet its edge. However, contemporary Web search services
are governed by centrally controlled search engines, which
is not healthy for our online freedom due to the following
reasons. A Web search service provider can be compromised
to evict certain websites from the search results, which can
reduce the websites’ visibility. Relative ranking of websites
in search results can be biased according to the service
providers’ preference. Moreover, a service provider can record
its users’ search history for targeted advertisements or spying.
For example, the recent PRISM scandal surfaced the secret
role of the major service providers in continuously tracking
our web search and browsing history.

A decentralized Web search service can subside these prob-
lems by distributing the control over a large number of network
nodes. No single authority will control the search result. It will
be computed by combining partial results from multiple nodes.
Thus a large number of nodes have to be compromised to bias
a search result. Moreover, a user’s queries will be resolved by
different nodes. All of these nodes have to be compromised
to accumulate the user’s search history.

A number of research works ([1], [2], [3]) and implemen-
tations (YacYwww-vacy-net Eapgowww-farco.comy haye focused
on distributed Web search and ranking in peer-to-peer (P2P)
networks. These approaches have two potential problems in
common: (a) lookup overhead: number of network messages
required for index/peer lookup is much higher in P2P networks
compared to a centralized alternative, (b) churn: maintaining
a consistent index in presence of high peer churn is not

254

feasible. Thus, those solutions have issues with performance
and accuracy requirements.

In this paper we take a very different approach to decen-
tralized web indexing and ranking. Instead of relying on an
overlay of regular Internet users, we build an overlay between
webservers. We exploit the stability in webserver overlay to
heavily cache links (network addresses) that we use as routing
shortcuts. Thus we achieve faster lookup, lower messaging
overhead, and higher ranking accuracy in search results.

The rest of this paper is organized as follows. First we
present the DEWS architecture in §II. Then we validate the
concepts presented in this work through extensive simulations
and present the results in §III. We present and compare with
the related works in §IV. Finally, we conclude with future
research directions in §V.

II. SYSTEM ARCHITECTURE

We have used Plexus protocol [4] to build an overlay
network between the webservers participating in DEWS. Since
the webserver overlay is fairly stable, each webserver caches
links (network addresses) to other servers. This link caching
reduces network overhead during the indexing and routing
processes. On top of the overlay topology we maintain two
indexes for distributed ranking (§II-A1) and keyword search
(§II-A2), respectively. Functionally DEWS is similar to a cen-
tralized search engine. It generates ranked results for keyword
search (§II-B1). From now on we use the terms webserver and
node interchangeably.

Plexus is a unique Distributed Hash Table (DHT) technique
with built-in support for approximate matching, which is not
easily achievable by other DHT techniques. Plexus routing
scales logarithmically with network size. Plexus delivers a high
level of fault-resilience by using systematic replication and
redundant routing paths. Because of these advantages we have
used Plexus protocol to build the webserver overlay. Here,
we summarize the basic concepts in Plexus followed by the
proposed extensions.

A. Indexing Architecture

Metrics used for ranking web search results can be broadly
classified into two categories: a) hyperlink structure of the
webpages, and b) keyword to document relevance. Techniques
from Information Retrieval (IR) literature are used for measur-
ing relevance ranks. While link structure analysis algorithms
like PageRank [7] is used for computing weights or relative

CNSM Mini-Conference Paper

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP

significance of each URL. In the following, we present a
distributed mechanism that uses both of these measures for
ranking search results. The same ranking mechanism can be
used to consider other factors for ranking like user feedback.

In this work we assume that each Webserver will advertise
its websites to the DEWS indexing structure. Alternatively, a
distributed crawler can be deployed in each webserver that
will crawl the webservers not participating in DEWS.

1) Hyperlink Index: Algorithms for computing webpage
weights based on hyperlink structure are iterative and require
many iterations to converge. In each iteration webpage weights
are updated and the new weights are propagated to adjacent
URLSs for computation in the next iteration. To implement such
ranking mechanisms on websites distributed across an overlay
network, we need to preserve the adjacency relationships in
hyperlink graph while mapping websites to nodes. If hyper-
linked websites are mapped to the same node or adjacent nodes
then network overhead for computing URL weights will be
significantly reduced. Unfortunately, there exists no straight
forward hyperlink structure preserving mapping of the Web to
an overlay network.

In DEWS, we retain the hyperlink structure as a virtual
overlay on top of Plexus overlay. We use a standard shift-add
hash function (fi(-)) to map a website’s base URL, say u;,
to a codeword, say c; = h(u;). Then we use Plexus routing
to lookup 3(u;), which is the node responsible for indexing
codeword ¢, (Fig. 1(a)). For each outgoing hyperlink, say
u;, of u; we find the responsible node S(u;) in a similar
manner. During distributed link-structure analysis 5(u;) has
to frequently send weight update messages to /3(u;;). Hence
we cache the network address of node 3(u;) at node S(u;),
which we call a soft-link. Soft-links mitigate the network
overhead generated from repeated lookups during PageRank
computation.

The index stored in [(u;) has the form < wuy,w;, {<
wit, B(ui) >} >, where w; is the PageRank weight of ;.
w; is computed as w; = (1 —n) +n> 7, Tty Here, 7
(usually 0.85) is the damping factor for PageRank algorithm.
{uit} is the set of webpages linked by w; and L(u;) is the
number of outgoing links from webpage w;;.

Each node periodically executes Algorithm 1 to maintain
the PageRank weights updated in a distributed manner. To
communicate PageRank information between the nodes, we
use a PageRank update message containing the triplet <
Ug, Ui, % >, where node /3(us) sends the message to node
B(u;), and % is the contribution of u, towards PageRank
weight of u;. Each node maintains a separate message queue
(Qu,;) for each website (u;) it has indexed. Incoming PageRank
messages are queued for a pre-specified period of time and
is used to compute the PageRank for each webpage. If the
change in newly computed PageRank value is greater than a
pre-defined threshold #, PageRank update messages are sent
to S(u;) for each hyperlinked website w;;.

2) Keyword Index: We use Plexus to build an inverted
index on the important keywords for each webpage. This index
allows us to lookup a query keyword and find all the webpages

Algorithm 1 Update PageRank

255

1: Internals:
Qu,;: PageRank message queue for u;
L(u;): Number of outlinks for u;
w;: PageRank weight of wu;
7: Damping factor for PageRank algorithm
6: Update propagation threshold

2: for all URL w; indexed in this node S(u;) do
3 temp < 0

4 for all < ug;,u;, % >€ Qy, do

5: temp < temp + WH)

6: end for :

7 wi? <= (1 —n) 4+ n * temp

8: if |w?" —w;| > 0 then

9: w; — wiew

10: for all out link u;¢ from u; do

11: send PageRank message < u;, wit, % > to B(uit)
12: end for

13: end if

14: end for

containing that keyword by forwarding the query message to
a small number of nodes. Suppose, K;*¥ = {k;;*} is the
set of representative keywords for u;. For each keyword k;;”
in K;°, we generate kfjmp by applying Double Metaphone
encoding [8] on kirjep . Double Metaphone encoding attempts
to detect phonetic (‘sounds-alike’) relationship between words.
Motivation behind adapting phonetic encoding is twofold: 1)
any two phonetically equal keywords have no edit distance
between them, ii) phonetically inequivalent keywords have
less edit distance than the edit distance between the original
keywords. In both cases, Hamming distance between encoded
advertisement and search patterns is lesser than that of the
patterns generated from original keywords. This low Ham-
ming distance increases the percentage of common codewords
computed during advertisement and search, which eventually
increases the possibility of finding relevant webpages.

The process of generating keyword index is depicted in
Fig. 1(a). To generate advertisement or query pattern P;;
from keyword k;;”, we fragment k;;" into k-grams ({k;;"})
and encode these k-grams along with k;l]'-'"’p into an b-bit
Bloom filter. We use this Bloom filter as a pattern F;; in
FS and list decode' it to a set of codewords, (,(P;;) =
{cklex € C N (Pyj,cr) < p}, where (,(-) is a list decoding
function and p is list decoding radius. Finally, we use Plexus
routing to lookup and store the index on A;;* at the nodes
responsible for codewords in (,(P;;). The index for k;;* is a
quadruple < ki, iz, ui, B(u;) >, where 7;; is a measure of
semantic relevance of k7" to u;. We use (k;;") to represent
the set of nodes responsible for k;;”. Evidently, (k;;") =
lookup(Cp(BF({k:jep} U {kg]mp}))), BF(-) represents Bloom
filter encoding function.

We use Vector Space Model (VSM) for computing relevance
of keyword k" to URL w;. In VSM, each URL wu; is
represented as a vector v; = (741, . . ., Tig), Where r;; represents
the relevance of the term or keyword &;;” in u;, and g is the

IList decoding is the process of finding all the codewords within a given
Hamming distance from a (advertisement or query) pattern

CNSM Mini-Conference Paper

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP

Base URL [k;'}f’? 1
hash hiu;) DMP, n-gram
' Bloom-filter
d d | o . I
codeword | @ta Fi; Hp) fuip)w f(1)
Plexus| Routing List decoding {\ 4 , 2
\ 4

1
1

codewords | (,(1%;) Nobo
1

outing N

Plexus

Website 31}
index node |7

2 P S I
ity "'l._”f'.:I B

prapy ’ N
(k) s
Ty ,

¢ 6 Yy
WD) Ky W)

(b) Softlink structure

~

(a) Indexing process in DEWS

Fig. 1. Softlink computation in DEWS

number of representative keywords in u;. The relevance weight
7, of the j*" keyword is computed as tf (k") * idf (k7).
Here, term frequency tf (k::;p) is the number of occurrences
of k;;” in webpage w;, while inverse document frequency
idf (k;;*) is computed as idf (k;;") = log w(kL:;p) Here, U
is the total number of webpages and 1/’(’%;) is the number of
webpages containing keyword k" t f (kifp) is a measure of
the relevance of k;;” to u;, while idf (k;;*) is a measure of
relative importance of k; ;¥ w.r.t. other keywords. idf is used
to prevent a common term from gaining higher weight and a
rare term from having lower weight in a collection.

Computing t f(k;;") for each keyword k;;” € K[from
u; is straight forward and can be done by analyzing the
webpages in u;. For computing idf (k;;”) we need to know U
and 9 (k;;”). Now, all webpages containing keyword ;" are
indexed at the same node. Hence, 1 (k;;”) can be computed
by searching the local repository of that node. However, it is
not trivial to compute U in a purely decentralized way. Instead
we use the total number of indexed URLs in a node in place
of U as advocated in [9].

PageRank for URL w; is computed and maintained in
node /3(u;), while the computed PageRank value w; is used
in nodes ~(k;;"), where a representative keyword &;;* for
webpage u; is indexed. The Web is continuously evolving and
PageRank for the webpages are likely to change over time. As
a result, storing PageRank weight, w; to the nodes in ~v(k;;")
will not be sufficient; we have to refresh it periodically. To
reduce network overhead, softlink to 5(u;) are stored in nodes
v(k;;"). This softlink structure between nodes 3(u;), B(wit)
and 7(k;;?) is presented in Fig. 1(b).

rep

3) Advertising Websites: The pseudocode for advertising
a webpage is presented in Algorithm 2. As discussed in the
previous two sections, we maintain two sets of indexes for
a webpage: a) using site URL w; and b) using representative
keywords K} ”. In lines 3 to 8 of Algorithm 2, we compute the
index on w;, which involves computing the softlinks (3(u;;))
for each outgoing hyperlinks from w,; and storing in node
B(u;). In lines 9 to 18, we compute the indexes on ;¥ and
advertise the indexes to the responsible nodes.

256

Algorithm 2 Publish webpage

1: Inputs:
u;: URL of the webpage to be advertised
2: Functions:
h(u;): hash map u; to a codeword
¥r(P): {cklex € CAI(Pyck) <t}
lookup(cy,): Finds the node that stores cy,
3: B(ui) + lookup(h(u;))
4: for all out-link u;; of {u;} do
50 Bluit) < lookup(h(uit)))
6: end for
7
8
9

: w; 4+ initial PageRank of u;

:ostore < ug, wi, {wit, B(uie)} > to node B(u;)

1 KIP « set of representative keywords of u;
10: for all kirfp in 7P do
11: kfjmp “— DoubleMetaphoneEncode(k:jep)

12: P;j < BloomPFilter Encode({k;s"} U {k?ij})

13: rij + relevance of k:?p to u;

14: for all ¢, in (,(P;;) do

15: v < lookup(cy)

16: store < k:;p, Tij, wi, B(us) > to node v
17: end for

18: end for

B. Resolving Web Query

1) Search and Ranking: To resolve Web queries in DEWS,
we breakdown the query into subqueries — each consisting
of a single query keyword, say ¢;. Similar to the keyword
advertisement process explained in §II-A2, we compute the
Double Metaphone (i.e., qldmp), k-gram ({¢}), and encode
them in a Bloom filter P;. Then we use the Plexus protocol to
find the nodes responsible for storing the keywords similar to
q and retrieve a list of triplets like {< wu;, w;,ry >}, which
gives us the URLs (u;) containing query keyword ¢; along with
the link structure weight (w;) of u;, and semantic relevance of
q to u;, i.e., 7. Now, the querying node computes the ranks
of the extracted URLs using the following equation:

rank(u;) = Z Z G- w; + (1= p) - ry) (1)
Q. ug

In Equation 1, x4 is a weight adjustment factor governing the
relative importance of link structure weight (w;) and semantic
relevance (r;;) in the rank computation process. While 9,; is a
binary variable that assumes a value of one when webpage u;
contains keyword ¢; and zero otherwise. While the implication
of simply summing w; and r;; together is not obvious, similar
approaches were proposed in [10]. Although we can devise
complicated ways to combine these two measures together, a
simple summation suffices to achieve the desired effect. The
query process in DEWS is explained in Algorithm 3.

III. EVALUATION

In this section, we present the simulation results to validate
the proposed concepts. We use the following metrics for this
evaluation: routing hops, indexing overhead, convergence time,
network message overhead, and ranking accuracy. For our
simulations we have varied the number of URLs, number of
queries, number of nodes, number of keywords, edit distance
between advertised and query keywords efc.

CNSM Mini-Conference Paper

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP

Algorithm 3 Query

Input:
Q: set of query keywords {q;}
T': Most relevant T webpages requested
Internals:
p: Weight adjustment on link-structure vs relevance
p: list decoding radius
& < empty associative array
for all ¢; € Q do
qup « Double M etaphone Encode(q;)

Py < BloomFilter Encode({q;} U {q"™"})
for all ¢;, € listDecode,(P;) do
n < lookup(ck)
for all {< w;,w;,ry >} € n.retrive(q;) do
Elui].value <+ Elui].value + p-w; + (1 —p) -1y
end for
end for
end for
sort £ based on value

return top 7" u; from &

A. Simulation Setup

We have used the “Web Track™ dataset from LETOR
3.0 [11] for our experiments. The dataset is composed of
the TREC 2003 and 2004 datasets, which contain a crawl
of the .gov domain done on January, 2002. There are a
total of 1,053,110 webpages and 11,164,829 hyperlinks in the
collection. The collection contains three search tasks: topic
distillation, homepage finding, and named page finding. For
computing the PageRank of the webpages in the dataset we
are using the “Sitemap” of the .gov collection. Representa-
tive keywords are extracted by parsing the meta-data files
associated with each query file. We have developed a cycle-
driven simulator. In each cycle, each node in the simulated
network processes its incoming messages and routes to the
destinations specified in the messages using the Plexus routing
algorithm presented. We used the second-order Reed Muller
code, RM(2,6) for implementing Plexus.

B. Routing Performance

In this section we evaluate advertisement and indexing
behavior of DEWS.

1) Scalability: Fig. 2(a) presents the average routing hops
per advertisement for different network sizes. We can infer
the following from this curve: firstly, average hops for adver-
tisement do not increase significantly with increased network
size. And second, URL advertisement requires more hops than
keyword advertisement. The reason behind this behavior can
be well-explained from Fig. 1(b). For advertising a URL, say
u;, we have to lookup S(u;:) for each out link of w;. On the
other hand, while advertising the keywords in K} “? we lookup
B(u;) once and use it for every keyword k;;” € K;”. Hence
the higher cost for URL advertisement.

2) Effectiveness of Softlink: In this experiment (Fig. 2(b)),
we measure the impact of softlinks on query resolution. We
conducted this experiment in a network of 50K nodes and
measured average routing hops with different numbers of
simultaneous queries. Average hops for resolving a query
decreases whith increase query rate due to an increased level

257

50 ——————
Without soft-links —a—
Using soft-links —e—

Modified Plexus in DEWS: URL —e—
Modified Plexus in DEWS: Keyword —a—
lexus: URL ——

s Plexus: Keyword —s— |

ao/ 4\\%
20//’—i | |

e N
of . e

Average hops
Average hops
©

0 0
10000 20000 30000 40000 50000 60000 10 2 30 40 50 60 70 80 90 100
Number of nodes Number of queries (thousands)

(a) Advertisement scalability (b) Query routing efficiency

Fig. 2. Routing efficiency

of message aggregation at each hop. It can also be noticed that
softlinks reduces the average number of hops significantly.
3) Index Overhead: We present the average number of
indexed URLs and softlinks per node in Figures 3(a) and
3(b), respectively. It is evident from Fig. 3(a) that the average
number of indexed URLs varies linearly with the number
of URL advertisements for a fixed network size. In turn,
Fig. 3(b) presents that the average number of softlinks per
node decreases with increased network size when the number
of advertised URLs is fixed. These curves demonstrate the
uniform distribution of URL indexes and softlinks over the
nodes. Moreover, the number of indexed URLs and softlinks
become almost double in presence of replication. The reason
behind this behavior can be explained from the replication
policy in Plexus, where the node responsible for codeword cj
maintains a replica of its indexes to the node responsible for
codeword ¢i. Here, ¢ is the bit-wise complement of cy.

600

with replica [Total 10k URLS] —e—
with out replica [Total 10k URLs] —&—

With replica [10k nodes] —e—
with out replica 10k nodes] —a—

25 4 500

400 |

300

1+ 200
05 / 100

0 L L L L L L L L 0 L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 5000 10000 15000 20000 25000
Number of URLs

(a) URLs per node
Fig. 3.
C. Ranking Performance

Avg indexed URLs
o
Avg indexed soft-links

Number of nodes

(b) Softlinks per node
Index overhead

Here, we measure the accuracy (§III-C1) and convergence
time (§III-C2) of distributed ranking as presented in §II-A.

1) Accuracy: We use Spearman’s footrule distance” to mea-
sure the accuracy of distributed PageRank algorithm in DEWS.
Fig. 4(a) presents Spearman’s footrule distances between dis-
tributed PageRank in DEWS and centrally computed PageR-
ank for top-20, top-100, and top-1000 results. We advertised
10K URLSs on a network of 50K nodes and PageRank update

2For two ordered lists o1 and o2 of size k each, Spearman’s footrule

k N .
distance is defined as F'(o1,02) = M where o1 (z) and
o2(i) are the positions of URL ¢ in o1 and o2, respectively. If a URL is
present in one list and absent in the other, its position in the latter list is
considered as k+1. Lower footrule distance implies better ranking accuracy.

CNSM Mini-Conference Paper

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP

interval was set to 2 cycles. It is evident from Fig. 4(a) that
Spearman’s footrule distance drops significantly for the first 60
cycles due to rapid convergence in our distributed PageRank
algorithm. PageRank values become almost constant after 120
cycles. It should also be noted that the Spearman’s footrule
distance becomes around 0.1 after 100 cycles. It indicates that
the distributed PageRank weights become very close to the
centrally computed PageRank weights.

2) Convergence: In this experiment we measure conver-
gence time (in number of cycles) and network overhead (in
number of messages) for the distributed ranking algorithm in
DEWS. We performed this experiment on a network of 50K
nodes and observed convergence behavior w.rt. the number
of advertised URLs. We used a value of 0.0001 for ¢ — the
update propagation threshold (see Algorithm 1) and varied the
update propagation interval from 1 to 3 cycles. We assume
that the distributed ranking algorithm has converged when the
PageRank weights converge for every URL.

It can be seen from Fig. 4(b) that the number of cycles
to converge does not increase significantly as the number of
advertised URL increases. On the other hand, convergence
time reduces as update propagation interval is reduced from
3 cycles to 1 cycle. Obviously this reduction in convergence
time is achieved at the expense of increased network overhead
as can be seen in Fig. 4(c). As the update propagation
interval increases, each node gets enough time to accumulate
all incoming PageRank weights and the computed PageRank
weight converges faster (see §II-Al).

D. Search Performance

1) Flexibility and accuracy: DEWS provides flexible
search with partially specified or misspelled keywords. We
indexed 10K URLs and the associated keywords in networks
of different sizes. We generated 10K queries from randomly
selected indexed keywords by varying edit distances from 1
to 3. Average recall rate remains constant at 100%, 98%, and
87% for edit distances 1, 2 and 3, respectively. Recall rate is
lower for higher edit distances because the Hamming distance
between advertisement and query patterns is proportional to
the edit distance between advertisement and query keywords.

100 — ——— k-gram &R dmp BEER k-gram+dmp £2Z2

Recall

=1 —8—
=2 —o—
=3 —a—
1

coa

0 P Y h
10 20 30 40 50 60 70 80 90 100 1 2 3
Number of nodes (k)

(a) Precision
Fig. 5.

(b) Impact of DMP and k-grams
Search performance in DEWS

Fig. 5(a) presents the average precision of search results for
10K queries in networks of different sizes. From this graph,
it is observed that precisions remain constant at 92%, 88%,
and 76% for edit distances 1, 2, and 3, respectively. Precision

258

becomes lower when edit distance increases because many
irrelevant webpages are included in the search results.

Notably, the results in Fig. 5 affirm that precision and recall
are independent of network size and only depend on edit
distance between advertisement and query keywords. DEWS
achieves a recall rate of 98% and a precision of 88% for
queries with edit distance two from the original keywords.
However, recall and precision of search results drop to 87%
and 76%, respectively for edit distance three. Hence, we can
expect to achieve very good precision and recall for partially
specified or misspelled keywords within edit distance 2.

Fig. 5(b) shows the average recall rate of the search results
for 10K queries in a network of 100K nodes where the query
keywords have varying edit distances from the advertised
keywords. In this experiment we evaluate the impact of Double
Metaphone encoding (DMP) and k-grams decomposition (with
k=1) of query or advertisement keywords on recall. From this
figure, it can be observed that the best recall is achieved when
DMP encoding and k-grams decomposition are combined for
generating the advertisement and query patterns.

IV. RELATED WORKS

Integrated solution for distributed web search is not well in-
vestigated in literature, although there exists implementations
like YacY and Faroo. Both of these implementations use gossip
based index propagation and distributed crawlers. YacY uses
distributed PageRank, while Faroo relies on user feedback to
ranking search results. On the other hand, almost all research
works in this domain focus on distributed ranking. These
works can be classified in two broad categories: link structured
based ranking and semantic relevance based ranking.

Link structure analysis is a popular technique for ranking.
Google uses the PageRank [7] algorithm to compute page
weights that measure its authority-ship. Bender et al. [1] pro-
posed a distributed document scoring and ranking system that
focuses on correlation between query keywords that appear in
query logs. Sankaralingam et al. proposed a P2P PageRank
algorithm in [2], where every peer initializes a PageRank
score to its local documents and propagates update messages
to adjacent peers. DynaRank [3] works in a similar manner,
but only propagates update messages when the magnitude of
weight change is greater than a threshold value. In JXP [12],
each peer computes initial weights for their local pages using
standard PageRank and introduces the notion of ‘“external
world”, which is a logical node representing the outgoing and
incoming hyperlinks from the webpages stored in a peer. Each
time a peer meets with another peer, it updates knowledge
about its external world. Wang et al. used two types of ranks
for overall ranking: local PageRank computed in each peer
based on the standard Pagerank and ServerRank computed as
the highest local PageRank or sum of all the PageRanks of
a web server [13]. SiteRank [14] computes the rank at the
granulaity level of websites instead of web page level using
PageRank [7]. Fu proposed a mechanism to retrieve top-k
results from an unstructured peer-to-peer network by utilizing
query caching at each node in [15]. Richardson et al. showed

CNSM Mini-Conference Paper

300

100

Top-20 —5—
Top-100 —o—
Top-1000 —e— s |

08

200 |

150

100

Spearman’s footrule distance
Number of cycles to converge

0

Interval = 3 cycle —a—
Interval = 2 cycle —&—
Interval = 1 cycle —e—

| e

Interval = 3 cycles —#—
Interval = 2 cycles —&—
Interval = 1 cycle —e—

Avg messages

0 20 40 60 80 100 120 140
Number of cycles

(a) Spearman’s footrule distance

0 L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of URLs

(b) Convergence time

0 L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of URLs

(c) Network overhead

Fig. 4. Ranking performance

that rank accuracy can be significantly improved by replicating
a document at multiple peers based on the number of times
a document appears in the top-k results and the frequency of
queries for that document in [16], [17].

Another research trend is to use Information Retrieval
techniques such as VSM (Vector Space Model), which is
widely used in centralized ranking systems. However, com-
puting global weight (inverse document frequency or idf)
in a distributed systems is challenging. A random sampling
technique is used in [18] to compute approximate value of
tdf. In a DHT-based structured network, each keyword is
mapped to a particular peer and that peer can compute the
approximate value of idf [9]. A Gossip-based algorithm is
proposed in [19] to approximate both term frequency (¢ f) and
idf for unstructured P2P networks.

Existing distributed web searching and ranking techniques
do not use both structural and relevance ranking at the
same time. Ranking in these systems is based on incomplete
information. On the contrary, we use both link structure
weights and keyword relevance, and compute ranks utilizing
complete information. Thus, our ranking results closely match
the centrally computed ones.

V. CONCLUSION AND FUTURE WORK

In this work, we have presented DEWS - a self-indexing
architecture for the Web. DEWS enables webservers to col-
laboratively index the Web and respond to Web queries in
a completely decentralized manner. In DEWS we have the
provision for approximate matching on query keywords, and
distributed ranking on semantic relevance and link-structure
characteristics. As demonstrated by the experimental results,
network and storage overheads for achieving this decentraliza-
tion is not significant and the proposed framework scales well
with network size and the number of indexed webpages. In

intend to develop an improved ranking system where PageR-
ank weights will be influenced by the number of common
keywords between two pages. We expect this scheme to yield
semantically more accurate results.

REFERENCES

[1] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer, “P2P
content search: Give the web back to the people,” in IPTPS, 2006.

[2] K. Sankaralingam, M. Yalamanchi, S. Sethumadhavan, and J. Browne,
“Pagerank computation and keyword search on distributed systems and
p2p networks,” Journal of Grid Comp., vol. 1, no. 3, pp. 291-307, 2003.

[3] M. Kale and P. S. Thilagam, “DYNA-RANK: Efficient Calculation and
Updation of PageRank,” in /CCSIT, 2008, pp. 808-812.

[4] R. Ahmed and R. Boutaba, “Plexus: a scalable peer-to-peer protocol
enabling efficient subset search,” IEEE/ACM Trans. Netw., vol. 17, pp.
130-143, February 2009.

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422-426, July 1970.

[6] G. Cohen, Covering codes. North Holland, 1997, vol. 54.

[7]1 L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” Stanford Digital Library Technolo-
gies Project, Tech. Rep., 1999.

[8] M. R. Haque, R. Ahmed, and R. Boutaba, “Qpm: Phonetic aware p2p
searching,” in IEEE Peer-to-Peer Computing, 2009, pp. 131-134.

[9] Z.Lu, B. Ling, W. Qian, W. S. Ng, and A. Zhou, “A distributed ranking
strategy in P2P based IR systems.” in APWeb, 2004, pp. 279-284.

[10] M. Richardson and P. Domingos, “The Intelligent surfer: Probabilistic
Combination of Link and Content Information in PageRank,” in NIPS,
2001, pp. 1441-1448.

[11] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li, “LETOR: Benchmark
Dataset for Research on Learning to Rank for IR,” in LR4IR, 2007.

[12] J. X. Parreira and G. Weikum, “JXP: Global Authority Scores in a P2P

Network,” in 8th Int. Workshop on Web and Databases (WebDB), 2005.

Y. Wang and D. DeWitt, “Computing pagerank in a distributed internet

search system,” in Proc. VLDB, vol. 30, 2004, pp. 420-431.

[14] J. Wu and K. Aberer, “Using siterank for decentralized computation of

web document ranking,” in AH, 2004, pp. 265-274.

R. Fu, “The quality of probabilistic search in unstructured distributed

information retrieval systems,” Ph.D. dissertation, UCL, 2012.

S. Richardson and I. Cox, “Ranked accuracy and unstructured distributed

search,” in Advances in Information Retrieval, ser. Lecture Notes in

Computer Science. Springer, 2013, vol. 7814, pp. 171-182.

[17] ——, “Increasing ranked accuracy for unstructured distributed search
with dynamic replication,” in /EEE P2P, Sept 2013, pp. 1-5.

[13]

[15]

[16]

addition, the ranking accuracy of DEWS is comparable to the [18] V. Gopalakrishnan, R. Morselli, B. Bhattacharjee, P. Keleher, and
ranking accuracy of a centralized ranking solution. Compared A. Srinivasan, “Distributed ranked search,” in HiPC, 2007, pp. 7-20.
to a centralized solution, DEWS will incur some network %1 R. Neumayer, C. Doulkeridis, and K. Ngrvig, “A hybrid approach for
. . estimating document frequencies in unstructured p2p networks,” Inf.
overhead. In exchange DEWS will give us the freedom of Syst., vol. 36, no. 3, pp. 579-595, May 2011.
searching and exploring the Web without any control or
restrictions, as can be imposed by the contemporary search
engines.
The concepts presented in this work have been validated
with rigorous simulations and critical analysis of the simula-
tion results. As a next step, we intend to develop a DEWS
prototype that can be deployed on a real network. We also
ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 259 CNSM Mini-Conference Paper

