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Introduction

� Millions of  new unique malware instances appear every year

� 560 million victims per year (2012)

� Annual economy lost US $110 billion (2012)

� Malware consequences:

� Botnets (BredoLab, conficker, etc.)

� Attack others, such as spamming and DDoS attacks

� Spamhaus attack (2013)

NOMS 2014, Krakow, Poland3



Collaborative Malware Detection

� Anti-virus software (AVs) are commonly used for malware 
detection

� Signature-based, behavior-based, heuristic-based, and 
reputation-based

� Most AV vendors do not share knowledge with each other

� Collaborative malware detection allows and encourages 
anti-viruses to share knowledge to improve accuracy

� E.g., CloudAV

� Challenge: Collaborative decision model
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Problem Statement
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� A suspicious file S is sent to multiple AVs for scanning

� Collected results are either malware (1) or benign-ware (0) from 
each AV

� Given that we have the detection results of  some malware 
scanners on a set of  known malware and benign-ware, we need to 
decide whether the file S is malware or benign-ware?
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Related Work

� Static Threshold

� Simple average compared to a fixed threshold

� Weighted Average

� Weighted average compared to a fixed threshold

� Decision Tree

� Machine learning approach

� Bayesian Decision

� Compute probability of  malware and optimal decision based on 
cost of  false positive and false negative

� The assumption is that all AVs are independent
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RevMatch Model

� Check the labeled history to find the number of  malware 
M(y) and benign ware G(y) with the same scanning results

� y is the scanning results vector from all AVs

� If  M(y)+G(y) ≥τ

� We raise malware alarm if  
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Decision Model (con.)

� What if  M(y)+G(y) <τ?

� We perform feedback relaxation: move the feedback from least 

competent AVs until the number matching samples exceedsτ

� Therefore, we need to sort the level of  competence of  all 

participating AVs

� We use the metrics of  1-FN-FP=TP-FP
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AV1       AV2        AV3 Ground Truth

df73           1            1            1           malware

48c2           1            1            0           malware

3a4c           1            0            0           goodware

cc0e           0            0            0           goodware

3473           0            0            1           goodware

9faf           1            1            0           malware
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History Maintenance

� Use files with ground truth to obtain labeled history

� Detection results where the ground truth are revealed later 

can also be used as labeled history

� Enforce minimum time gap ∆t for history updates with the 

same detection results

� E.g., if  the last update of{1,0,0,malware} is at time 0 then 

{1,0,0,malware} at time ∆t-1 will not be recorded in history

� Prevent from manipulated history poisoning
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Evaluation Data Set
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List of  Anti-viruses
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List of  AVs from VirusTotal



Comparison of  AVs
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AntiVir Prevx



Comparison of  Accuracy
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1-FN-FP

Tested on S3 + S6 and 10-fold cross-validation
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Figure: Quality score of  all models with different Cfn
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Figure: Quality score versus the number of  attackers



Performance Comparison
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Robustness

� History poisoning attack

� An malicious AV knows a type of  zero-day attack and can 

accurately detect the attack while others cannot

� The malicious AV creates many malware records where only itself  

can detect it

� Afterwards the AV suddenly reports benign-ware to be malware

� Defense

� Enforce minimum history update gap ∆t to prevent from quick 

history poisoning

� Files are only sent for scanning if  anormalies are detected
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Conclusion and Future Work

� Proposed RevMatch: a new decision model for collaborative 
malware detection

� Proposed evaluation metrics to compare with other models

� Higher accuracy, flexibility, partial feedback tolerance, and 
robustness against insider attacks

� Improve the feedback relaxation algorithm

� Improve the run-time efficiency
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