RevMatch: An Efficient and Robust Decision Model for Collaborative Malware Detection

Carol Fung, Disney Lam, and Raouf Boutaba Virginia Commonwealth University and University of Waterloo

Outline

- Introduction
- Related Work
- RevMatch Model
- Evaluation
- Conclusion

Introduction

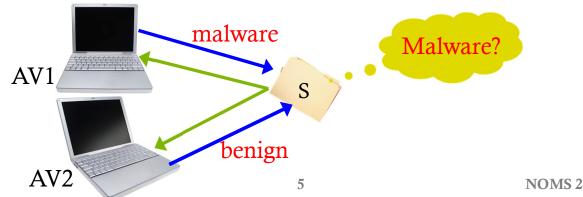
- Millions of new unique malware instances appear every year
- 560 million victims per year (2012)
- Annual economy lost US \$110 billion (2012)
- Malware consequences:
 - Botnets (BredoLab, conficker, etc.)
 - Attack others, such as spamming and DDoS attacks
 - Spamhaus attack (2013)

Collaborative Malware Detection

- Anti-virus software (AVs) are commonly used for malware detection
 - Signature-based, behavior-based, heuristic-based, and reputation-based
- Most AV vendors do not share knowledge with each other
- Collaborative malware detection allows and encourages anti-viruses to share knowledge to improve accuracy
 - E.g., CloudAV
 - Challenge: Collaborative decision model

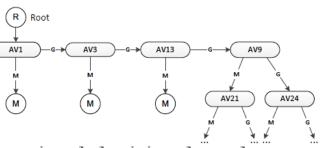
Problem Statement

- A suspicious file S is sent to multiple AVs for scanning
- Collected results are either malware (1) or benign-ware (0) from each AV
- Given that we have the detection results of some malware scanners on a set of known malware and benign-ware, we need to decide whether the file S is malware or benign-ware?



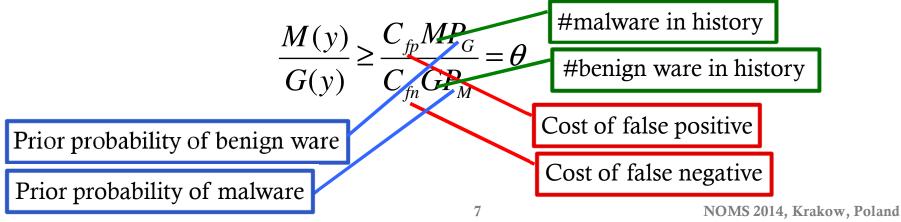
Related Work

- Static Threshold
 - Simple average compared to a fixed threshold
- Weighted Average
 - Weighted average compared to a fixed threshold
- Decision Tree
 - Machine learning approach
- Bayesian Decision
 - Compute probability of malware and optimal decision based on cost of false positive and false negative
 - The assumption is that all AVs are independent



RevMatch Model

- Check the labeled history to find the number of malware M(y) and benign ware G(y) with the same scanning results
 - y is the scanning results vector from all AVs
- If $M(y)+G(y) \ge \tau$
 - We raise malware alarm if

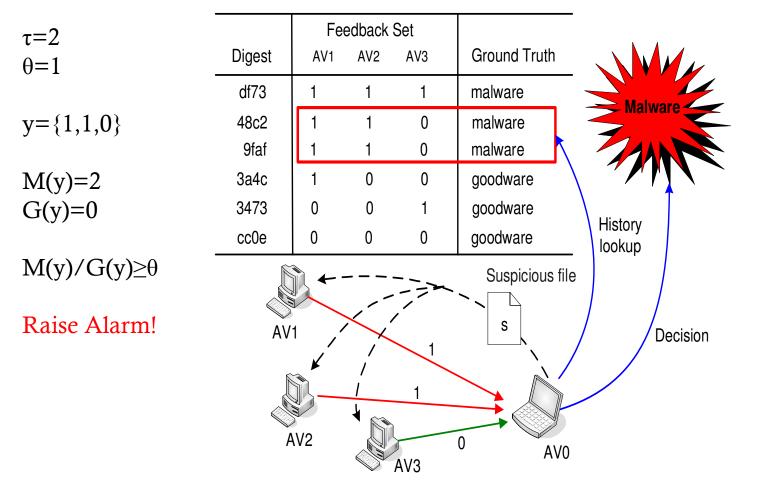


Decision Model (con.)

- What if $M(y)+G(y) < \tau$?
 - We perform feedback relaxation: move the feedback from least competent AVs until the number matching samples exceedsτ
- Therefore, we need to sort the level of competence of all participating AVs
 - We use the metrics of 1-FN-FP=TP-FP

Example

Labeled history for AV0



NOMS 2014, Krakow, Poland

History Maintenance

- Use files with ground truth to obtain labeled history
- Detection results where the ground truth are revealed later can also be used as labeled history
- Enforce minimum time gap Δt for history updates with the same detection results
 - E.g., if the last update of $\{1,0,0,malware\}$ is at time 0 then $\{1,0,0,malware\}$ at time Δt -1 will not be recorded in history
 - Prevent from manipulated history poisoning

DATA SETS

Dataset ID	Dataset description	Samples	Year	Malware alarm rate
S 1	Old malware	58,730 2	008–2009	84.8%
S 2	New malware	29,413 2	011–2012	59.5%
S 3	Hybrid malware	50,000 2	009–2012	69.7%
S4	Goodware (SourceForge)	56,023	2012	0.3%
S5	Goodware (Manual)	944	2012	7.9%
S 6	Hybrid Goodware	5,000	2012	1.6%

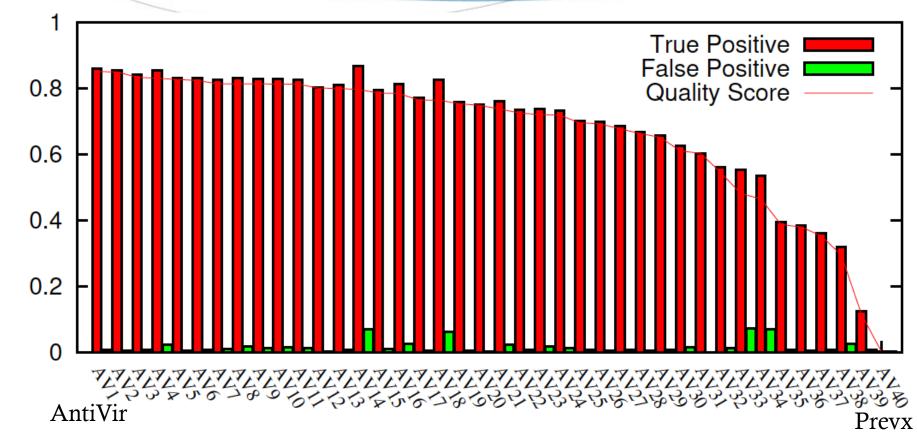
CW-Sandbox and Offensive-computing \prod_{11}^{11}

List of Anti-viruses

AhnLab-V3	Comodo	Jiangmin	Rising
AntiVir	DrWeb	K7AntiVirus	Sophos
Antiy-AVL	Emsisoft	Kaspersky	SUPERAntiSpyware
Avast	eSafe	McAfee	Symantec
AVG	eTrust-Vet	Microsoft	TheHacker
BitDefender	Fortinet	NOD32Norman	TrendMicro
ByteHero	F-Prot	nProtect	VBA32
CAT-QuickHeal	F-Secure	Panda	VIPRE
ClamAV	GData	PCTools	ViRobot
Commtouch	Ikarus	Prevx	VirusBuster

List of AVs from VirusTotal

Comparison of AVs

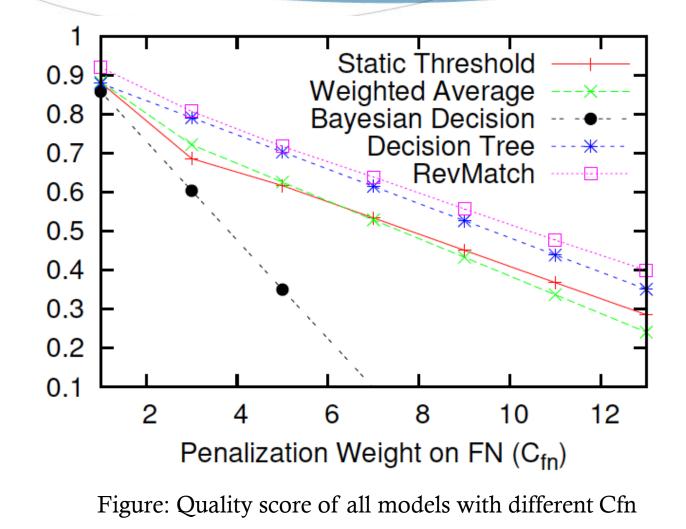


Rate/Score

NOMS 2014, Krakow, Poland

Method	True Positive	True Positive False Negative		Quality Score	
	TP	FN	FP	1-FN-FP	
Static Threshold	0.903	0.097	0.022	0.881	
Weighted Threshold	0.908	0.092	0.025	0.883	
Decision Tree	0.956	0.044	0.077	0.879	
Bayesian Decision	0.871	0.129	0.013	0.858	
RevMatch	0.927	0.073	0.007	0.920	
Best Single AV	0.859	0.141	0.008	0.851	

Tested on S3 + S6 and 10-fold cross-validation



NOMS 2014, Krakow, Poland

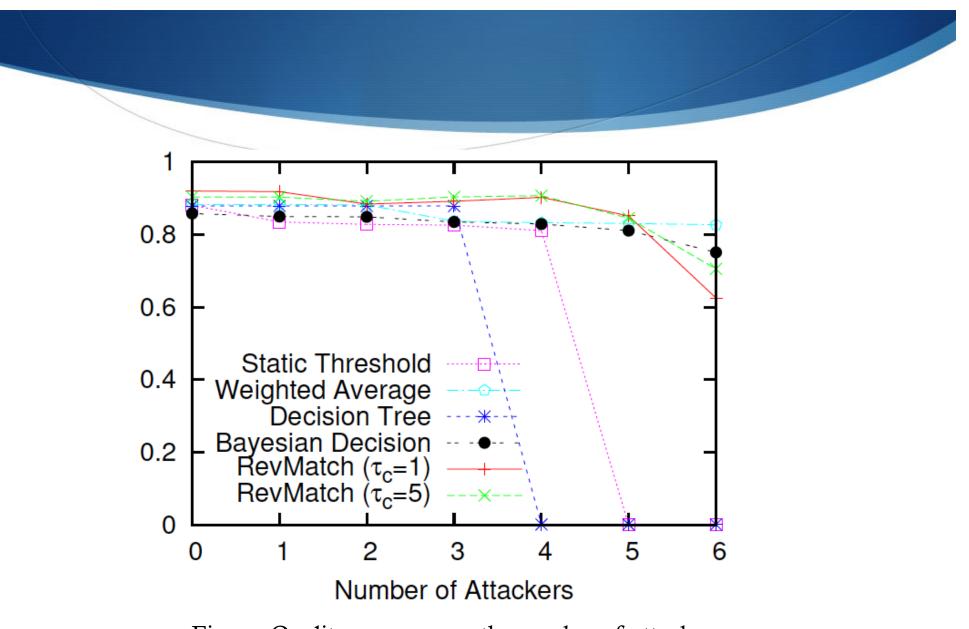


Figure: Quality score versus the number of attackers

Decision Model	Decision	Runtime	Attacker	Partial	Flexi-
	Quality	Runtime	Tolerance	Feedback	bility
Static Threshold	medium	fast	4 attackers	no	yes
Weighted Average	medium	fast	5+ attackers	yes	yes
Decision Tree	medium	fast	3 attackers	no	no
Bayesian Decision	low	fast	5+ attackers	yes	yes
RevMatch	high	medium	5+ attackers	yes	yes

Robustness

- History poisoning attack
 - An malicious AV knows a type of zero-day attack and can accurately detect the attack while others cannot
 - The malicious AV creates many malware records where only itself can detect it
 - Afterwards the AV suddenly reports benign-ware to be malware
- Defense
 - Enforce minimum history update gap Δt to prevent from quick history poisoning
 - Files are only sent for scanning if anormalies are detected

- Proposed RevMatch: a new decision model for collaborative malware detection
- Proposed evaluation metrics to compare with other models
- Higher accuracy, flexibility, partial feedback tolerance, and robustness against insider attacks
- Improve the feedback relaxation algorithm
- Improve the run-time efficiency

Thank You