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Abstract—Data communication is a significant component of
smart device energy consumption today, and is likely to increase
with the rising connectivity demands of today’s mobile appli-
cations. Wi-Fi is a major supporting technology and as such,
efficient energy management solutions are much needed. In this
paper, we detail the Wi-Fi energy consumption characteristics
and propose two energy saving schemes: packing and alignment,
implementable at the application layer. Our investigations also
reveal that these schemes are highly reliant on the network
metric - available bandwidth, which is not readily obtainable
on smartphones and existing wired solutions are ill-suited due
to the dynamics of the wireless environment, as well as the
energy constraint of mobile devices. Therefore, we propose a new
energy efficient bandwidth measurement tool called BreezChirp.
As validation, we implemented both BreezChirp and the Wi-
Fi management schemes on modern Andriod smartphones and
evaluated their performance through field experiments.
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I. INTRODUCTION

With the rise of smart devices, mobile data communication is
a rapidly growing business sector today. Anywhere anytime
data connectivity unfortunately comes at a cost: increased
energy consumption on a device with limited battery life.
Recent study [1] have shown that energy consumption due to
data communication is a significant portion of the smartphone
energy consumption. And this portion is likely to increase
with today’s growing mobile application connectivity. From a
communication technology point of view, Wi-Fi is currently a
preferred carrier of mobile data because of zero cost (consumer
incentive) and radio network load-shedding (provider incen-
tive). It then follows that efficient Wi-Fi energy management
is a very important practical problem for smart phones. As it
stands today, a mobile device’s Wi-Fi chipset comes with on-
state energy management scheme in the form of dual mode
switching: Power Save Mode (PSM) and Constantly Active
Mode (CAM). As documented in [2], PSM mode consumes
1/5 of the power compared to CAM mode, but has very
low transmission rate. The switching between PSM and CAM
modes is automatically trigged based on number of packets

transmitted per second. The switching delay is non-negligible
and can affect user experience depending on the data intensity
of the specific application. Thus far, vast majority of the energy
saving solutions in literature [3][4] try to keep the device in
PSM mode for as long as possible (PSM elongation) and are
implemented by modifying the signaling and packet scheduling
mechanism at the protocol level. These approaches have two
major shortcomings: one, protocol modification deviates from
standardization and is thus harder to implement and slower
to gain industry adoption; two, being application agnostic
hamstrings energy efficiency. For instance, today’s mobile data
traffic is typically a mixture of delay sensitive and delay
tolerant applications, the way their communication patterns
interleave to a large degree determines the energy consumption
rate for which the network layer has no influence on. Thus
in this paper, we take an application-centric stance to Wi-Fi
energy management. First we observe the key characteristics of
Wi-Fi energy consumption through experiment studies. Based
on our observations, we propose two real-time application level
energy saving schemes: application packing and application
alignment. The key idea is that by managing the application
transmission patterns based on their characteristics, we can
lower energy consumption rate without sacrificing application
performance and user experience.

Our investigation also reveal that these two schemes are
highly reliant on timely and accurate information about avail-
able bandwidth. Unfortunately accurate and energy efficient
bandwidth measurement for Wi-Fi is not readily available on
smartphones currently. For management purposes, Received
Signal Strength Indicator (RSSI), a physical layer attribute,
is a very poor bandwidth indicator. The main obstacle is that
active measurement is needed to obtain accurate bandwidth es-
timation, and the measurement duration required for precision
in Wi-Fi environment [5][6] is prohibitive in terms of energy
and communication overhead, and thus ill-suited for smart
devices. We therefore propose an energy efficient bandwidth
measurement tool called Battery Resource Efficient mEasure-
ment Solution (BreezChirp). BreezChirp is accurate, energy
efficient and implementable on smartphones. For validation,
we implemented both BreezChirp and our real-time energy
management schemes on modern smartphones and conducted978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



performance evaluation in real field experiments. We also
compare the performance of BreezChirp with pathChirp [7], a
well known bandwidth measurement tool for wired network.
Supported by BreezChirp, we show through field experiments
running popular mobile applications, how our energy manage-
ment schemes can significantly reduce Wi-Fi energy cost.

The main contributions of our work are: we studied Wi-
Fi communication characteristics and proposed real-time Wi-
Fi management solutions that are efficient and application-
centric; we developed BreezChirp Wi-Fi bandwidth measure-
ment tool that is energy efficient and accurate; our solutions
are fully implemented on smartphones and showed good
performance in real world usage scenarios.

The remainder of the paper is organized as follows. Section II
presents related works on mobile device energy management,
and active available bandwidth measurement techniques, and
we presents two Wi-Fi energy saving schemes for mobile
devices in Section III. In section IV, we study chirp more
closely and present BreezChirp. Section V reports on the
experiment results on BreezChirp, as well as the two energy
saving schemes. Section VI concludes the paper.

II. RELATED WORK

Network buffering has been proposed as an energy saving
solution. In [8], the authors proposed Catnap, which exploits
the bandwidth discrepancy between Access Point (AP) (low)
and mobile phone (high). They observed that slow speed
between AP and server force the client to be in active mode
longer than necessary while the residual Wi-Fi bandwidth is
high. They therefore introduced a proxy-based modification
to AP which serves as an external buffer to store data from
server to AP and then burst transmit them from AP to mobile.
The main drawbacks of this approach are: it requires proxy
on the AP, and such buffer exposes user data at unsecured
public locations; it assumes that wireless channel has higher
speed than wired part which is not always the case with public
Wi-Fi. Other schemes consider PSM elongation at the network
level. M-PSM [4] is such an enhancement in which additional
power-saving opportunities are leveraged by considering not
only user mobility but also traffic conditions. Unfortunately it
requires network protocol modification.

Active measurement of available bandwidth in literature gen-
erally uses one of two techniques: packet dispersion and self-
induced congestion. For packet dispersion technique, two or
more packets are sent back-to-back to estimate capacity of
a network path based on inter-packet arrival rate. pathrate
[9] is the most well-known representative tool utilizing this
technique. In presence of crossing traffics however, this tech-
nique becomes ineffective with high error rate. Furthermore,
it introduces significant communication overhead and has long
convergence time. On the other hand, self-induced congestion
relies on the fact that if the probing rate exceeds the avail-
able bandwidth, then the probe packets become queued, and
consequently the receiver observes elongated delay. Therefore,
with varying probing rate, estimate available bandwidth can be
obtained by detecting congestion at the receiver. The proposed
techniques in literature generally differ in the design of the
rate controller used for the probing packet train. For instance,
Pathload [10] uses constant bit rate of packet train, TOPP [11]

uses linearly increasing probing rate of packet pairs, while
pathChirp [7] uses exponentially increasing probing rate of
packet train. pathChirp has been shown to perform very well in
wired networks and is relatively resource conscious compared
with Pathload in that the self-induced congest state is short
lived, and overall fewer number of trains are needed to obtain
a good bandwidth measurement.

To date, few works exist on wireless bandwidth measurement.
Wireless bandwidth estimation tool (Wbest) [5] and DietTOPP
[12] are two good examples. Wbest proposed packet disper-
sion technique to improve accuracy and convergence time
in wireless environment. However, cross traffic significantly
affects their performance. DietTOPP is a simplified version of
TOPP. Similar to TOPP, DietTOPP injects significant amount
of probing traffic into the network. In general, measurement
accuracy and energy efficiency in Wi-Fi remains an open
challenge.

III. ENERGY EFFICIENT WI-FI MANAGEMENT

In this section, we first investigate the key metrics which
influence Wi-Fi energy consumption by performing a set of
experiments, and then based on the observation, we introduce
two application management schemes - application packing
and application alignment, for the purpose of increasing energy
efficiency. Both schemes rely on the timely and accurate
measurement of available bandwidth, which is still an open
problem. We address this issue with BreezChirp in Sections
IV.
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Fig. 1. Correlation Between RSSI, Energy, and Time Consumption in Two
Data Rates with Different Parameter Setups

A. RSSI, Application Throughput and Energy Consumption

Received Signal Strength Indicator (RSSI) is a metric that
quantifies the power level present in a received radio signal.
When RSSI is low, data loss and error rate increases, and
to compensate, the transmitter dynamically lower the data
transmission rate and therefore the overall channel capacity is
reduced. To clearly understand the relation between RSSI and
application throughput with respect to energy consumption,
we performed a set of experiments using Samsung Galaxy S3
smartphone. PowerTutor [2] is used as the power measurement
tool in our experiments.

Figure 1(a) shows the total transmission time it takes to
download a fixed amount of data from a server at different
throughput. It is logical that lower throughput translates to



longer time. We further understand that since the transmission
is in CAM mode, the total power consumption due to longer
transmission time is also higher. Figure 1(b) shows the energy
consumption rate in the same experiment. Interestingly, the
energy consumption rates in CAM do not differ significantly
even though the transmission rate is different. Therein lies
the principle of application-aware energy saving: to achieve
good energy saving, we should always aim to perform data
transmission at maximum throughput (which is also known
as available bandwidth) whenever possible. From application
point of view, what this principle means is that we want to
synchronize data transmissions and burst data in CAM mode
whenever possible.

B. Application Packing and Alignment Schemes

To date, vast majority of the energy saving solutions in litera-
ture manage the Wi-Fi traffic only at the network level, without
understanding the application requirements and characteristics.
As a result, the proposed schemes tend to be either too soft
(i.e., do not provide sufficient energy saving under a realistic
workload) or too hard (i.e., break user experience due to
excessive delays). Therefore it is important to understand what
are the critical application characteristics and how they impact
and constrain the design of energy saving mechanisms.

There are several application characteristics which are highly
related to energy expenditure, and among them, transmission
delay sensitivity is the key factor in providing quality of user
experience. By using this criterion, we can classify the appli-
cations into two general categories: delay sensitive and delay
tolerant. Delay sensitive applications often require frequent
user interactivity such as Instant Messaging (IM) Applications.
Delay tolerant applications tolerate certain amount of delay,
and include background download applications, online stream-
ing, etc.

For delay tolerant applications, we can deliberately delay their
transmission for certain amount of time (without breaking an
application’s user experience) in hope of bundling multiple
applications to burst transmit at the same time. We term
this “packing”. The goal of packing is to extend the Wi-
Fi module’s PSM time and to achieve maximum bursting
when transmitting. However, in many cases we can expect
a mixture of delay sensitive and delay tolerant applications
running concurrently. In this case, the transmission behavior
of delay sensitive applications can be used to “cue in” packing
schedules of the delay tolerant applications. By doing so, we
can affix the communication of delay tolerant applications such
that they are “aligned” to the communication patterns of the
delay sensitive applications, and we term this “alignment”.
Details of the two schemes can be found in [13].

Keeping the application sensitivity characteristic in mind and
using above two energy saving schemes, we design and imple-
ment an energy management application called Battery Man-
ager (BattMan) in this paper. Figure 2 shows its architecture.
BattMan is comprised of three main modules:

• Application Classifier: this module manages the smart-
phone applications based on category: delay sensitive ap-
plications and delay tolerant applications. To ease the
users’ job of defining input configurations, several energy
saving templates are provided by default which include
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Fig. 2. System Architecture of BattMan

many popular mobile applications. In addition, the users
can customize the provided energy saving templates in
accordance with their preference.

• Traffic Monitor: to realize the application packing and
alignment algorithm, we need to know the application traffic
pattern. Traffic monitor passively determins the applica-
tions’ traffic pattern and stores it in historical profiles for
later reference. Note that the traffic pattern of delay sensitive
applications is determined by the users’ usage pattern;
therefore, it is difficult to predict the traffic pattern of delay
sensitive application by referring the historical profiles even
if we store them. With considering this constraint, we only
store the historical profiles of delay tolerant application in
this work.

• Application Scheduler: two data bundling schemes, named
packing and alignment are implemented by the application
scheduler. Application scheduler takes two input, traffic
statistics and a list of delay tolerant applications. If there is
no traffic information from delay sensitive applications, the
scheduler simply run the packing scheme on delay tolerant
applications, otherwise, it runs the alignment scheme. We
adopt two mechanisms for realizing application scheduling:
1) manipulation of the process life-cycle (kernel space);
and 2) traffic shaping via firewall (network space) [13].
The former scheme suspends and resums the applications
(or processes) in kernel space. It works because once the
process is suspended, it will no longer receive or transfer the
data. As the former scheme relies on process manipulation
in kernel space, it can only operate properly in the rooted
mobile devices. For the unrooted devices, we can go with
the latter scheme which exploits the firewall policy to shape
the traffic. With the help of the latter scheme, we can
easily schedule an application’s trasmission by inserting
the application into the blacklist of the firewall, while
maintaining the others application in the whitelist of the
firewall.

At the same time however, we also need to know how much
we can pack, since the total amount of bandwidth is bounded.
Overpacking can degrade application performance and cause
unintentional congestion. Therefore, we need a method that
can cheaply (energy wise) but accurately obtain the available
bandwidth in smart devices. In wired networks, available



bandwidth measurement is well investigated, and there is vast
literature on this. However, it remains an open problem in
wireless environments especially for smart devices due to
following reasons:

1) High Wireless Channel Variation: The wireless channel
exhibits high variance caused by un-predictable channel
contention and varied signal strength of wireless AP to
terminal. This makes precise measurement very difficult.

2) Timely and Accurate: There are many mobile applica-
tions executed in a short period of time, which requires
frequent data bundling to be performed. In order to bundle
the data, an updated bandwidth availability is required,
therefore, fine-grained bandwidth measurement is required.

3) Large Energy Expenditure: Existing bandwidth mea-
surement techniques are all designed for PCs which do
not suffer from energy constraint problem, while energy
efficiency is of the utter importance to smart devices.

Issue one and two call for prolonged and frequent bandwidth
measurements to ensure information precision and fidelity,
while issue three strives for short and infrequent measurement.
These lead to a logical impasse. In the next section we address
these issues with BreezChirp.

IV. CHIRP AND BREEZCHIRP

In this section, we discuss how BreezChirp helps to make
our BattMan management solution work. BreezChirp is energy
efficient by employing short lived probing chirps that works
in PSM mode. Before we detail the design of BreezChirp, we
first study the construction of conventional chirp and how it
can be reduced to be energy efficient for smartphones.

A. Working With Chirp

The idea of chirp is first proposed by pathChirp. It uses
m number of packet trains called chirps. In each chirp,
N exponentially spaced probe packets reside. The relative
queueing delay between chirp sender (measurement host)
and receiver (measurement server) is measured based on
the sequence of arrival times at the receiver, and available
bandwidth is estimated accordingly. Each probe packet has
identical packet size P bytes and the inter-packet time ∆
between two consecutive packets is exponentially decreased
by a spread factor γ. As ∆ decreases over the course of
a chirp, the probe intensity increases which eventually lead
to congestion, called excursion. When an excursion occurs,
pathChirp tries to calculate packet rate Rk through equation
Rk = P/∆k, where k denotes packet index and Rk denotes
available bandwidth. However, not all excursions are indication
of congestion. Transient excursions may occur due to variance
in the underlying communication channels. pathChirp filters
such transient excursions out by applying statistical analysis
on the packet delays over a certain period of time, called a
sliding window W.

To analyze the performance of chirps in Wi-Fi environment,
we constructed a simple testbed as depicted in Figure 3. The
testbed is comprised of three components: smartphone client
(measurement host), wireless AP and measurement server. The
Measurement server is connected to the AP through 1 Gbps
Ethernet. Samsung Galaxy S3 (Jelly Bean 4.1.2) is adopted as

Wireless AP 

Mobile Device 

(Measurement Host) 

Measurement Server 

Router 

Wide Area Network 

Local Area Network 

Fig. 3. Testbed Setup for Studying pathChirp

the measurement host, which is equipped with BCM4334 Wi-
Fi communication module. The original pathChirp is imple-
mented in C and runs on top of linux machine (measurement
host and server). We ported the client program to Android
smartphones using Android’s Native Development Kit (NDK).
The pathChirp server program is unchanged and resides on the
measurement server.

B. Probe Packet Size

Probe packet size, which denotes the size of each packet per
chirp, is regarded as one of the most important parameters that
affect measurement result. According to the relation between
P and Rk, when we increase P, Rk will increase accordingly
(see Figure 4(a) and 4(b)).

The smaller size of packet causes underestimated measurement
result in the majority of available bandwidth measurement
tools. Let the average packet rate within time τ be Ravg ,
let l denote the chirp index and let Nc denote the number
of chirps generated within time τ . The number of packets in
each chirp is noted as Np. When we have smaller size of
packet P, according to Equation 1, to preserve the same packet
rate, the overall probe rate (Nc ×Np)/τ should be increased
accordingly. Note that probe rate stands for the number of
probe packets transmitted per second.

Ravg =

Nc∑

l=1

Np∑

k=1

Pk,l

τ
(1)

In [14], it is shown that due to the computing power constraint,
the existing tools always underestimate available bandwidth,
and such underestimation is mainly caused by the increased
probe rate. Low achievable probe rate limits the maximum
achievable throughput for small packets, therefore, smaller
packet size induces less accurate measurement result, espe-
cially for the devices which have limited computing power.
Since we use smartphone as measurement host, intuitively,
choosing larger packet size would overwhelm less the smart-
phone, therefore, we can obtain more accurate result.

Although larger packet size yields more accurate result, how-
ever, we cannot enlarge the packet size unlimitedly. The reason
is if the packet size reaches the Maximum Transmission Unit
(MTU), defined by IEEE 802.3 protocol, the protocol will
split the packet into several fragments. Assume that we have a
packet with size 1728 bytes and in which packet header occu-
pies 20 bytes, then according to IEEE 802.3 standard defined
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Fig. 4. Available Bandwidth Analysis with Respect to Probe Packet Size

(e.g., MTU = 1500 bytes), the packet will be fragmented into
1500 bytes and 228 bytes respectively. Since two fragments
share the same packet header, the size of payload in each
fragment is 1480 bytes and 228 bytes respectively. We validate
our analysis result through wireshark application with 1728
sized packet, and the validated result is shown in Figure 4(c).
Since in pathChirp, we only deal with the average packet rate,
so the measured bandwidth will also be taken from the average
packet rate of fragments, which causes inaccurate measurement

result. The packet with size P̃ bytes, approximately has same

packet rate as that with size ⌈P̃/MTU⌉ bytes. To preserve
the measurement accuracy, we set the size of payload in all
packets as 1480 bytes in following experiment.

C. Spread Factor & Measurable Bandwidth

pathChirp has a number of tunable parameters, among which
spread factor γ and measurable bandwidth range (defined
by maximum measurable bandwidth Rmax and minimum
measurable bandwidth Rmin) are of particular importance to
us because they jointly determine the rate of probe packet
generations. Based on these three parameters, Inter-spacing
time ∆ is determined, which is exponentially decreasing across
packets in the same chirp train.

For instance, assuming we have N packets per chirp, then the
first inter-spacing time ∆2 will have TγN−2 (γ > 1 strictly),
while the last inter-spacing time ∆N will have value T . The
following equation is used to determine all ∆ within a chirp:

Φ =
N∑

i=2

∆i =

N∑

i=2

TγN−i = T

N∑

i=2

γN−i (2)

Each chirp has identical cumulated inter-spacing time, i.e.,
Φ = 1 (second). Therefore N varies with γ, and hence varied
probing packet generation rate. Since the packet rate directly
relates to energy consumption and communication overhead,
we want to quantify the relation among γ, Rmin, Rmax, and
N . Accordingly, we have performed series of experiments
based on the following setup: for differing the measurable
bandwidth range, we linearly increase the value of Rmax from
3 Mbps to 120 Mbps, and assign 1 Mbps, 2 Mbps and 3 Mbps
to Rmin respectively. Moreover, we choose 1.15 and 1.2 for
γ and conduct six sets of experiments. In order to track the

packet generation rate, we use a packet count program and
compute metrics on generated packets per second. Each set
of experiments is performed multiple times and the averaged
value is computed and shown in Figure 5(a). On Figure 5(a),
we can observe that with the same measurable bandwidth
range (the line for the same Rmin), as value of γ increases,
smaller number of packets are generated, while with the same
γ value, smaller range of measurable bandwidth (which has
larger Rmin) generates smaller number of packets.
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The Wi-Fi two operational modes’ switching is determined by
the packet transmitting rate. However, as we can see in Figure
5(b), even with a large value of γ and low value of Rmin,
pathChirp switches the network device into CAM mode. Now,
if we can control the packet generation rate within the mode
switching threshold, we can save significant amount of energy.
This is the key rationale behind BreezChirp. However, the
measurement efficiency suffers significantly when we do this.
Hence novel technique is needed to compensate for this loss
of efficiency.

D. BreezChirp

BreezChirp constrains the chirp to operate under PSM mode
with an adaptive sliding window technique, and compensate
the loss of efficiency with application traffic adaptive full
chirps. In doing so, we arrive at a new bandwidth mea-
surement tool that is energy efficient, effective, and suitable
for smartphones. Based on experiments, we found that 8



packets per second is the threshold value that triggers CAM
to PSM switch. Conversely, 13 packets per second is the
threshold value that triggers PSM to CAM switch. Therefore,
if we can control the chirp packet generation rate per second
to below this threshold, we can achieve energy efficiency.
However, this in practice severely constrains the bandwidth
probing range of a chirp. If there is a drastic change in the
environment in terms of available bandwidth (e.g., due to
mobility, interference, cross traffic, etc.), BreezChirp cannot
efficiently shift its measurement range within reasonable time
frame. Therefore, full chirp is needed to compensate for this
loss of efficiency. Again as we observe in Figure 5(b), when
the network device is in CAM mode, increasing the packet
rate does not significantly increase energy expenditure. Hence
BreezChirp schedules a full chirp measurement to coincide
with application-level traffic activities, by detecting whether
the network device is already in CAM mode or not. Thus the
design of BreezChirp includes two modes: limited mode (with
a narrow sliding window), efficient for measuring moderate
bandwidth changes in the environment; and normal mode (full
chirp), efficient in capturing drastic bandwidth changes.

As γ, the spread factor, moderates the packet generation rate.
We want to be able to constrain its value to fit into the PSM
threshold. The way pathChirp computes available bandwidth
is as follows: Rk = P/∆k is used to determine the packet rate
and when channel congestion occurs at a particular packet rate,
we obtain the available bandwidth. We can rewrite the equation
with respect to γ as,

Rk+1 =
P

TγN−(k+1)
=

P

TγN−k
× γ = Rk × γ (3)
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In Equation 3, k is the index number of a packet within a chirp,
and the next packet rate Rk+1 is computed by multiplying γ to
the current packet rate Rk. As γ increases, the inter-packet gap

of two consecutive packets increases accordingly, which in turn
reduces the measurement granularity. Because of this inverse
relation between γ and measurement granularity, we cannot
increase γ without bound. This led us to choose the most
appropriate value of γ with which we can preserve maximum
measurement granularity while generating the least number of
packets. Through numerous experiments, with measurement
bandwidth range 0 ∼ 100 Mbps, we found that 29 is the least
number of packets, and we denote the spread factor that yields
29 packets as γopt. However, 29 packets per second will put
the network device into CAM mode which we do not want,
we therefore need to also adjust the measurable bandwidth
range to further reduce the packet number from 29 to 13. Since
the measurable bandwidth range covered by 13 packets is the
subset of that covered by 29 packets, we term this subset a
projection. BreezChirp’s limited mode utilizes the technique
of adaptive range projection, which is illustrated in Figure 6.
It operates like a sliding window that dynamically adjusts to a
projection that encapsulates the available bandwidth. Limited
mode uses the least amount of packets Nlim (13) to measure
a narrow range of bandwidth (Rlim

min - Rlim
max Mbps). Note tat,

for the sake of space limitation, we only show Nlim = 8 case
in Figure 6, in which BreezChirp only uses 8 packets per in
second in limited mode for the purpose of ensuring energy
saving.

The pseudo code of the adaptive range projection algorithm is
given in Algorithm 1. The algorithm is comprised of four parts:
1) Check whether the currently measured bandwidth is out of
the newly adapted measurement range of limited mode. If it is
out of the range, try to reset the range and return to normal
mode (line 1-4). Otherwise, try to adapt the new measurement
range based on the currently measured bandwidth (line 5-
17); 2) Divide the Nlim into three partitions - N

up
lim, Nmid

lim

and N
low
lim (line 6-8); 3) Find the packet rate Rappr which is

closely approximated to current measurement result Rcurr and
assign N

mid
lim as the index of Rappr (line 9-11); and 4) Find

the new measurement range through calculating R
lim
min as well

as R
lim
max by dividing spread factor N

up
lim times to Rappr, or

multiplying spread factor Nlow
lim times to Rappr (line 12-17). If

the new measurement result is larger than the previous result,
the algorithm would move the projection window forward to
preserve the increasing trend. On the contrary, the algorithm
would move the projection window backward to preserve the
decreasing trend (see Figure 6). In this way, limited mode
adapts the measurement range slowly according to the newest
measurement result, and is ideal for accommodating small to
moderate changes in the environment with respect to available
bandwidth.

However if the bandwidth change is drastic in the environment,
adaptive range projection would not work well. We can draw
similarity to how an observer tracks a moving target in the
distance with a binocular. When the target is moving slowly,
the observer can track the target through his binocular, which
has precise focus but very limited scope. However, if the
target all of a sudden vanishes from within the scope (e.g.
a sudden dash). The observer will use his eyesight to locate
the target’s new location rather than trying to search with the
binocular which is too slow to adapt. Similarly, we need a
full chirp to find the available bandwidth when the bandwidth
change is too drastic. BreezChirp’s normal mode does exactly
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Fig. 7. Comparison Result of Measured Available Bandwidth Accuracy and Energy Consumption from pathChirp and BreezChirp

Algorithm 1: Adaptive Range Projection Algorithm

input : stable measurement result Rcurr ,
number of packets for limited mode Nlim

output: minimum packet rate for limited mode R
lim
min,

maximum packet rate for limited mode R
lim
max

/* Check whether Rcurr is out of range */

1 if Rcurr < Rmin or Rcurr > Rmax then

2 R
lim
min ← R

norm
min ;

3 R
lim
max ← R

norm
max ;

4 go to normal mode;

5 else
/* Partition Nlim into three parts */

6 N
mid
lim ← 1;

7 N
up

lim ← ⌈Nlim/2⌉ − 1;

8 N
low
lim ← Nlim −N

up

lim −N
mid
lim ;

/* Find the appr. measurement range */

9 Rappr ← R
lim
min;

10 while Rappr < Rcurr − ǫ do
11 Rappr ← Rappr × γ;

/* Seek the new measurement range */

12 R
lim
max ← Rappr;

13 R
lim
min ← Rappr;

14 for i = 1, 2, 3, ...,Nup

lim do

15 R
lim
max ← R

lim
max × γ;

16 for i = 1, 2, 3, ...,Nlow
lim do

17 R
lim
min ← R

lim
min/γ;

that. Energy efficiency is achieved by: 1) Use Nnorm (29) to
measure the available bandwidth in full measurable bandwidth
range (Rnorm

min - R
norm
max Mbps). As we discussed before, 29

packets appears to be the least number of packet per second
needed to obtain a good measurement in Wi-Fi environment;
2) Whenever possible, we schedule full chirp when there is
active application traffic (i.e., the network device is already in
CAM mode).

The switching between limited mode and normal mode is
implemented as follows: at initial stage, we have no clue as to
where the bandwidth range for limited mode should reside, and
therefore we obtain a stable measurement from normal mode.
We obtain a stable measurement result through observing the
variance of measurement results in a period W, and if the vari-
ance is smaller than the predefined threshold, then we regard
the measurement result as stable result. Once we have a stable

result, limited mode is activated by setting the projection such
that the mid-bracket projection covers the observed bandwidth
measurement. In limited mode, we continuously update the
measurement range until a new measurement result is out of
all of the measurement brackets, then we schedule a normal
mode. In this way, BreezChirp is able to provide efficient Wi-
Fi bandwidth measurement while conserving energy.

V. EVALUATION

In this section, we evaluate the performance of BreezChirp
and BattMan that implements the two energy saving schemes
- application packing and alignment. Current implementation
of BattMan is targeted for Android platform and it uses
network monitor implemented as a kernel module. We use the
same experiment setup as shown in Section IV, and adopt an
Android based power measurement tool - PowerTutor [2] to
measure the power consumption by smartphone in following
experiments. The real-world experiment setup is shown in
Figure 8.

Fig. 8. Real World Experiment Setup with BattMan and BreezChirp

A. BreezChirp Evaluation

To evaluate the performance of BreezChirp, we ported
pathChirp and implemented BreezChirp on an Android phone.

First we examine the impact of reducing packet numbers on
measurement accuracy. Figure 7(a) shows the probability of
congestion being detected by a chirp on a given packet index
in the chirp. The available bandwidth of the measured channel
is indicated by the sharp rise in congestion probability. When
the available bandwidth is within the bandwidth measurement
range, 13 packets per second is sufficient.



Two experiments are performed for the purpose of evaluating
the bandwidth measurement accuracy and energy efficiency
of BreezChirp. The first experiment is conducted in wireless
environment in which channel condition is relatively stable.
Figure 7(b) shows the measured available bandwidth and
energy consumption with pathChirp and BreezChirp for the
first experiment. BreezChirp performs as well as pathChirp
but at a fraction of the energy consumption.

The second experiment is conducted in wireless environment
with synthesized cross traffic by using FTP file transmission
workload. The traffic is generated from another terminal which
is connected to the same wireless AP as the terminal running
BreezChirp. The traffic generation is commenced at the begin-
ning of experiment, suspended on 1 min mark, and resumed
on 2 min mark. We therefore created two environmental
transitions. The result is shown in Figure 7(c), and as we can
see from the Figure, BreezChirp adapts to the changes very
well. We observe a short lag when the environment transition
occurs because a switch from limited mode to normal mode
have occurred in BreezChirp. Overall, BreezChirp conserved
around 20.6% power consumption compared to pathChirp in
this experiment, and this rate increases with prolonged usage
of BreezChirp as it achieves higher energy saving rate when
the environment condition is stable.

B. BattMan Evaluation

We now utilize the bandwidth metric provided by BreezChirp
in BattMan that implements application packing and align-
ment. In the first experiment, we performed packing on delay
tolerant applications. Three different applications - Dropbox,
Download Manager and AndFTP are used in this experiment,
where each of which has 300 Kbps, 200 Kbps and 500 Kbps
throughput and 8 second, 18 second, and 58 second task
(transmission) arrival time respectively. BreezChirp clocks the
average available bandwidth during the first experiment to be
around 450 Kbps. In uncontrolled case (without BattMan),
power consumption spikes up (CAM mode) whenever trans-
mission occurs, while in controlled case (with BattMan),
application transmissions are synchronized. Figure 9 shows
the resulting power consumption measurements. As we can
observe, the first application is postponed around 10s until
the second application arrives. Since the total amount of ex-
pected throughput of Dropbox and Download Manager exceeds
available bandwidth, the data transmission of Dropbox and
Download Manager is permitted. Overall, we obtained around
42.4% energy reduction.

In the second experiment, we have a mix of delay sensitive
and delay tolerant applications. We adopt Facebook as a delay
sensitive application, while a background Download Manager
as a delay tolerant application.

In the uncontrolled scenario, regardless of the behavior of
Facebook, Download Manager always tries to download the
data, while in the controlled scenario, Download Manager
is delayed intermittently in order to sync with Facebook’s
transmission. As we can observe from the overall power con-
sumption graph shown in Figure 10, in uncontrolled scenario,
the overall throughput has a consecutive shape and lasts 60
seconds. While three delay phases are detected when BattMan
is used. An additional 20 seconds are spent in controlled
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Fig. 9. Energy Expenditure Comparison on Application Packing

case in order to download the same amount of data as in
uncontrolled case for preserving fairness. We achieve around
23.3% energy reduction in alignment scenario.
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Fig. 10. Energy Expenditure Comparison on Application Alignment

VI. CONCLUSION

In this paper, we presented an application-aware approach to
Wi-Fi energy management for smartphones. We started by
investigation energy consumption patterns in Wi-Fi environ-
ment and found that PSM prolongation and CAM bundling
are the key energy saving principles. Accordingly we have
designed BattMan an energy management mechanism which
implements application packing and alignment schemes. We
further found that an energy efficient and accurate Wi-Fi band-
width measurement tool is fundamental to the efficiency of
BattMan and have thus developed BreezChirp as a companion
solution. Through on device implementation and real world
field experiments, we have evaluated the performance of both
BreezChirp and BattMan and have found that indeed they offer
a comprehensive solution that can significantly reduce energy
consumption due to Wi-Fi communication on smartphones. As
future work, we plan to extend our work to include 4G radio
communication.
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