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Abstract—Cloud computing has become a cost-effective model
for deploying online services in recent years. To improve the
Quality-of-Service (QoS) of the provisioned services, recently a
number of proposals have advocated to provision both guaran-
teed server and network resources in the form of Virtual Data
Centers (VDCs). However, existing VDC scheduling algorithms
have not fully considered the reliability aspect of the allocations
in terms of (1) hardware failure characteristics on which the
service is hosted, and (2) the impact of individual failures on
service availability, given the dependencies among the virtual
components. To address this limitation, in this paper we present
a technique for computing VDC availability that considers
heterogeneous hardware failure rates and dependencies among
virtual components. We then propose Venice, an availability-
aware VDC embedding framework for achieving high VDC
availability and low operational costs. Experiments show Venice
can significantly improve VDC availability while achieving higher
income compared to availability-oblivious solutions.

I. INTRODUCTION

Cloud computing has become an attractive model for de-

ploying online service applications in recent years. In a typical

cloud computing environment, the Cloud Provider (CP) who

owns the physical infrastructure (i.e., data centers) offers

resources to one or more Service Providers (SPs). In turn, each

SP uses the offered resources to deliver services to end users

over the Internet. Traditionally, CPs offer resources in terms

of Virtual Machines (VMs) without considering the bandwidth

requirements between VMs. In practice, this model has gener-

ated numerous concerns related to the network performance,

security and manageability. Motivated by this observation,

recently a large number of research proposals advocate to

offer resources in the form of Virtual Data Centers (VDCs).

Also known as a virtual infrastructure, a VDC consists of

VMs connected through virtual switches, routers and links

with guaranteed bandwidth. This allows SPs to achieve better

performance isolation and Quality of Service (QoS) for their

applications, while allowing CPs to make informed traffic

engineering decisions.

One of the key challenges associated with VDC manage-

ment in Cloud data centers is the VDC embedding problem,

which aims at finding a mapping of VMs and virtual links

to physical components (e.g., servers, switches and links) to

achieve the following objectives: (1) maximizing the total

revenue generated from the embedded VDC requests, (2)

minimizing request scheduling (i.e., queuing) delay, which

refers to the time a request spends in the waiting queue

before it is scheduled, and (3) minimizing the total energy

consumed by the data center. As this problem is NP-hard,

various heuristics have been proposed in the literature to

solve this problem [4], [11], [18], [5]. However, one aspect

of the problem that has not been carefully addressed is the

reliability of the resulting VDC embeddings. In particular,

many Internet services have high availability requirements,

because a service outage can potentially incur high penalty in

terms of revenue and customer satisfaction. For example, it has

been reported that in 2010 business in North America has lost

26.5 billion in revenue due to service downtime. Furthermore,

when business critical systems are interrupted, the estimated

ability to generate revenue is reduced by 29% [1]. As a result,

improving service availability has become a critical concern

of today’s CPs [7], [15], [16].

Despite its importance, however, achieving availability-

aware VDC embedding is a nontrivial problem for several

reasons. First, a single service often consists of multiple

virtual components (e.g., VMs and virtual links) that may

have complex dependencies. For example in a 3-tier web

application that consists of a web server, an application server

and a database server, if the application server fails, the entire

service becomes unavailable regardless of the availability

of the web and database servers. Thus, it is necessary to

capture the dependencies among virtual components in the

VDC availability model. Second, recent analysis on data

center hardware reliability [14], [9], [10], [13] has shown

that physical data center components have non-uniform failure

characteristics in terms of failure rates, impact and repair costs.

Thus, given a particular VDC embedding, it is a nontrivial

problem to evaluate the quality of the embedding in terms of

service availability. Consequently, it is difficult to design an

embedding algorithm that finds the optimal trade-off between

VDC availability, total revenue and operational cost.

To address these challenges, in this paper we propose

Venice, a framework for AVailability-aware EmbeddiNg In

Cloud Environments. Specifically, we present a technique for

evaluating the availability of VDC embeddings. Using this

technique, we study the availability-aware VDC embedding

problem in a Cloud computing environment where each SP

specifies the overall service availability requirement in addition

to resource requirements. We then present a VDC embedding

algorithm which aims at maximizing the total revenue of978-1-4799-3360-0/14/$31.00 c©2014 IEEE
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the CP while minimizing the total penalty incurred due to

hardware failures and service unavailability. Experiments show

Venice significantly improves VDC availability and achieves

higher income compared to availability-oblivious solutions.
The rest of the paper is organized as follows: Section II

surveys related work on data center failure characterization and

reliable VDC embedding. In Section III, we present our tech-

nique for computing VDC availability. Section IV describes

the architecture of Venice and its components. Section V

provides the mathematical formulation of the availability-

aware VDC embedding problem. The proposed availability-

aware embedding algorithm is described in Section VI. We

provide simulation results in Section VII. Finally, we draw

our conclusions in Section VIII.

II. RELATED WORK

A. Understanding Failure Characteristics in Data Centers

Several recent studies have reported failure characteristics

in cloud data centers. The main finding is that these data

centers often comprise heterogenous equipments (e.g., phys-

ical machines, switches) [17] with skewed distributions of

failure rates, impact and repair time [14], [9], [10], [13]. In

this section we provide a summary of these heterogenous

characteristics.
Failure rates are heterogenous across physical components.

Vishwanath et al. [13] have analyzed failure characteristics

of 100, 000 servers across multiple Microsoft data centers

over a duration of 14 months. They discovered that server

unavailability is often caused by hard disk, memory and raid

controller failures, with hard disks being the most dominant

source of server failures (i. e., accounts for 78% of total

failures). They have also reported that the number of server

failures is often correlated with the number of hard disks that

the server contains. Furthermore, a server that has experienced

a failure is likely to experience another failure in the near

future. This results in a skewed distribution of server failure

rate. On the other hand, for network equipment, Gill et al.[9]

reported that the failure rates of different equipment can vary

significantly depending on their type (servers, Top-of-Rack

(ToR) switches, aggregation switches, routers) and model.

In particular, Load Balancers (LBs) have high probability of

failure (over 20%), whereas the failure probability of switches

is often very low (less than 5%). Furthermore, the failure

rates are unevenly distributed. For example, the number of

failures across LBs are highly variable with a few outlier LBs

experiencing more than 40× more failures over the one-year

period.

Failures have heterogenous impact and repair times. While

server failures can take up to hours to fix, certain network

failures can be fixed within seconds [9]. In general, most of

the network failures can be mitigated promptly using simple

actions [14]. However, certain failures can still cause signifi-

cant network downtime. For example, although more than 95%
of network failures can be fixed within 10 minutes, the worst

0.09% of failures can take more than 10 days to resolve [10].

Even though LB failures only cause packet loss over short

periods of time, failure of ToR switches can cause significant

downtime of all the servers in the rack. Interestingly, it has

also been reported that correlated equipment and link failures

are generally rare. For example, Gill et al. analyzed the

correlations among link failures and found that more than 50%
of link failures are single link failures, and more than 90% of

link failures involve less than 5 links [9]. Similarly, Greenberg

et al. [10] reported that most of the device failures are small

(i.e., involve less than 4 devices).

In summary, these analyses show that (1) there is a signifi-

cant heterogeneity in data centers in terms of failure rates and

repair times; (2) It is unlikely to see large correlated failures.

We believe these observations not only suggest that VDC em-

bedding schemes should consider the heterogenous hardware

reliability characteristics when placing mission-critical service

applications, but also provide insights on how to estimate VDC

availability in Cloud data centers.

B. Reliable Virtual Infrastructure Embedding

Due to the importance of providing high service availability

in Cloud environments, recently there is a trend towards

designing reliable embedding schemes for Cloud data centers.

For instance, Xu et al. [15] proposed a resource allocation

scheme for provisioning VDCs with backup VMs and links.

However, their solution does not consider the availability of

physical machines and links. Yeow et al. [16] provided a

technique for estimating the number of backup VMs required

to achieve the desired reliability objectives. However, they

do not consider the availability of virtual links and assume

that machines have an identical failure rate. Bodik et al. [7]

proposed an allocation scheme for improving service1 surviv-

ability while mitigating the bandwidth bottleneck in the core

of the data center network. Their scheme improves the fault

tolerance by spreading out VMs across multiple fault-domains

while minimizing the total bandwidth consumption. However,

this approach does not consider the heterogenous failure rates

of the underlying physical equipment.

III. COMPUTING VDC AVAILABILITY

In this section, we study the problem of computing VDC

availability in the presence of heterogenous hardware failure

characteristics and VM dependencies. In our model, a VDC

consists of multiple VMs connected by virtual links. Certain

VMs may form a replication group, in which each VM can

operate as a backup if another VM in the same group fails. In

this case, the replication group is available as long as one of the

VMs in the group is available 2. VM replication is commonly

used in cloud applications not only for reliability, but also for

load balancing purposes [7]. In our model, each VDC request

captures (1) the topology and resource requirements of virtual

components (e.g., VMs, virtual switches) and virtual links, (2)

the sets of virtual components that form replication groups,

and (3) the overall VDC availability objective.

1A service defined in [7] is a set of VMs that execute the same code.
2Our solution can be generalized to handle the cases where replication

group is available as long as m of the total n VMs are available.
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Fig. 1: Embedding of a 3-tier Applica-

tion (VDC1)

Fig. 2: Analyzing the Availability of

VDC1 Fig. 3: Example Illustrating Theorem 1

To illustrate our approach, consider an example 3-tier web

application modeled as VDC1 shown in Figure 1. It consists of

a single web server n1, two application servers n2 and n3 and

two database servers n4 and n5. The two application servers

n2 and n3 can provide backup for each other, and thus form a

replication group. Similarly, n4 and n5 also form a replication

group. In our example, the 3-tier web application provides

only one type of service that requires coordination among all

3 tiers. Lastly, each virtual link is embedded along the shortest

path between corresponding VMs.

In our model, we define An̄i and Al̄i as the availability

of physical machine hosting server n̄i and physical link l̄i
respectively, for i ∈ {1, ..., 7}. In general, the availability of a

physical component j is computed as:

Aj =
MTBFj

MTBFj +MTTRj

(1)

where MTBFj and MTTRj correspond to the Mean Time

Between Failures and the Mean Time To Repair of com-

ponent j respectively [6]. Both MTBFj and MTTRj can

be obtained from historical failure and maintenance records

of component j. Our goal is to determine the availability

of VDC1 based on the availability of the physical compo-

nents. In our example, the service is available if there exists

a path from the web server to the database server where

every component (physical nodes and links) along the path

is available. However, the replication of application servers

and database servers makes a direct evaluation of service

availability a difficult task. To address this issue, we break

down the possible failures into a set of failure scenarios S.

A failure scenario is a specific failure configuration in which

a few physical components have failed. We can compute the

availability As
V DC of the VDC in each failure scenario s ∈ S,

and then combine them to obtain the VDC availability using

conditional probability. Even though there is a large number of

failure scenarios to consider in the general case, in our example

we can categorize the failure scenarios into a small number

of cases, each describing a set of scenarios. Specifically,

define F1 = {n̄2, n̄5, n̄6, n̄7, l̄2, l̄3, l̄4, l̄7} , F2 = {n̄3, l̄5} and

F3 = {n̄4, l̄6}, as shown in Figure 2, the failure scenarios that

affect VDC1 can be divided into 3 cases:

Case 1 (c1): At least one component in F1 is unavailable.

This case occurs with probability P (c1) = 1 −
∏

i∈F1
Ai. In

this case, the service is unavailable as the web server is not

reachable, thus Ac1
V DC = 0.

Case 2 (c2): All the components of F1 are available, but

at least one component in F2 is unavailable. This occurs with

probability P (c2) =
∏

i∈F1
Ai(1 −

∏

i∈F3
Ai). The service

availability in this case is determined by the availability of

components in F3 (i.e., l̄6 and n̄4). Thus, Ac2
V DC =

∏

i∈F3
Ai.

Case 3 (c3): All the components of F1 and F2 are available.

This occurs with probability P (c3) =
∏

i∈F1∪F2
Ai. In this

case the service is available, thus Ac3
V DC = 1.

The availability of VDC1 can now be computed as:

AV DC1 =

3
∑

i=1

P (ci)A
ci
V DC . (2)

Even though this approach of computing VDC availability by

breaking down failures into failure scenarios is intuitive, it

cannot be directly applied in practice. The reason is that given

n physical components on which the VDC is embedded, and

each component can either be available or unavailable, there

are O(2n) possible scenarios to be considered in the worst

case. In fact, the following result show that computing VDC

availability optimally is not a viable option.

Theorem 1. There is no polynomial time algorithm for com-

puting VDC availability unless P = NP .

Proof: We show that the problem of computing VDC

availability can be reduced from the counting monotone 2-

satisfiability problem (#MONOTONE-2SAT) [8]. Specifically,

a boolean expression f(·) is in 2-Conjunctive Normal Form

(CNF) if f(·) is a conjunction of multiple clauses, and each

clause is a disjunction of at most two input variables. Given

a 2-CNF boolean expression f(·) that does not contain any

negated variables, the #MONOTONE-2SAT problem asks how

many input sets for which f(·) evaluates to true.
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Algorithm 1 Computing VDC Availability

1: P ← N̄ ∪ L̄ the set of physical components on which VDC is
embedded

2: AV DC = 0
3: for i = 0 to L do
4: for all S ∈ {T ⊆ P : |T | = L} do
5: if Service is available when all nodes in S fail then
6: AV DC ← AV DC +

∏
i∈S(1− Ai)

∏
i/∈S Ai

7: Asample = 0
8: for i = 1 to Nsamples do
9: Randomly draw k virtual components S

10: if Service is available when all components in S fail then
11: Asample ← Asample +

∏
i∈S(1− Ai)

∏
i/∈S Ai

12: AV DC ← AV DC + Asample/Nsamples

13: return AV DC

The reduction works as follows: given a 2-CNF boolean

expression f(·) that contains N input variables, we construct

a replication group for each clause that contains two virtual

nodes. The replication groups are connected in series, such

that every virtual node is connected to both virtual nodes

in the subsequent replication group. The physical topology

of data center is a star topology where each physical ma-

chine corresponds to an input variable in f(·), and all the

servers are connected to a central switch. Furthermore, all

physical machines and links have infinite capacity. Virtual

nodes are then embedded in the physical nodes by mapping

each variable in each of the clauses to the corresponding

machine that represents this variable. Figure 3 provides an

example to illustrate this procedure. The input expression

f(A,B,C,D) = (A ∨ B) ∧ (A ∨ C) ∧ (B ∨ D) can be

represented as a VDC with 3 replication groups connected in

series that are embedded in 4 physical machines. Finally, we

assume each physical machine has availability 0.5, the links

and switches have availability 1. Since each physical machine

representing a variable has equal probability to be available

and unavailable, every input argument set is equally likely

to occur in the setup. Therefore the availability of the VDC

multiplied by 2n will give exactly the number of input sets that

satisfies f(·), thus solving #MONOTONE-2SAT optimally.

Since #MONOTONE-2SAT belongs to the complexity class

of #P -complete [8] for which no polynomial time algorithm

exists unless P = NP , the result follows.

Theorem 1 indicates that computing VDC availability is

a difficult problem even for simple star topologies. Thus, it

is necessary to develop fast heuristics for computing VDC

availability. One naı̈ve solution is to leverage the fact that the

probability of observing k physical components fail simulta-

neously is low. For example, assume all physical components

have availability ≥ 95%, the probability of seeing 3 physical

components fail simultaneously is at most (1 − 95%)3 ≤
0.015%. This implies that considering failure scenarios that

involve at most 2 failed physical components simultaneously

can already provide an accurate lower bound of the actual

VDC availability. However, although this approach works well

for small VDCs, it fails to produce accurate estimation for

large VDCs. This is because the remaining
∑n

k=3

(

n
k

)

cases

can still contribute to a large fraction of scenarios for a large

value of n, rendering this approach ineffective in this case.

To address this limitation, we resolve to use sampling tech-

niques. The idea is to improve the estimation by sampling over

the remaining 2n possible failure scenarios. Let s ∈ {0, 1}n

denote a sample failure scenario over n physical components,

and let P (s) denote the probability that s occurs. Define S

as the failure scenarios that involve less than k simultaneous

component failures, and let S̄k = {0, 1}n\Sk. Suppose the

samples drawn by the sampling algorithm is N ∈ S̄k, a lower

bound on VDC availability can be computed as

Alower
V DC =

∑

s∈Sk

P (s)As
V DC +

∑

s∈N

As
V DC · P (s) (3)

This estimate is better than the naı̈ve solution before. However,

it still requires a large number of samples to be accurate.

In this case, we use a statistical technique called importance

sampling [3]. Let P̄ (s) denote the probability that s is drawn

in {0, 1}n\Sk, and define w(s) = P (s)
P̄ (s)

. It is easy to see that

AV DC =
∑

s∈Sk

P (s)As
V DC +

∑

s∈S̄k

P (s)As
V DC

=
∑

s∈Sk

P (s)As
V DC +

∑

s∈S̄k

P̄ (s)As
V DC ·

P (s)

P̄ (s)

≈
∑

s∈Sk

P (s)As
V DC +

1

|N |

∑

s∈N

As
V DCw(s) (4)

Thus, if we draw samples randomly from {0, 1}n\Sk accord-

ing to probability density function P̄ (s), we can estimate the

AV DC as the sample mean of the VDC availability value in

each scenario weighted by w(s). The purpose of computing

the availability for Sk separately is to ensure these important

samples are considered. For simplicity, we chose P̄ (s) to be

uniform over {0, 1}n\Sk in our implementation. It is easy to

see that both estimations approach the true VDC availability

as we increase the sample set S̄k towards {0, 1}n\Sk.

Lastly, even though so far our discussion has been focusing

on the cases where a VDC is either available or unavailable in

given failure scenario (e.g., As
V DC ∈ {0, 1}), it is straightfor-

ward to generalize it to the cases where partial availability is

considered (e.g., As
V DC ∈ [0, 1]). Partial availability is useful

when a failure does not shut down the service, but rather

reduces the overall service quality. It is clear that equation

(3) and (4) can be generalized to handle this case as well.

IV. SYSTEM ARCHITECTURE

Leveraging the technique for computing VDC availability

in the previous section, we describe Venice, a framework for

providing availability-aware VDC embedding, as shown in

Figure 4. Specifically, the Monitoring Module is responsible

for monitoring and detecting failures in the physical infras-

tructure. The Reliability Analysis Module is responsible for

characterizing the availability of the data center components

based on the statistics provided by the monitoring module.

Finally, the VDC Scheduler is responsible for embedding each
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Fig. 4: Venice Architecture

VDC in the data center. If there is no feasible embedding for

a VDC, the request is kept in a scheduling queue until the

SP decides to withdraw it. The VDC scheduler also uses VM

migration to improve the availability of high priority VDCs.

V. AVAILABILITY-AWARE VDC-EMBEDDING

This section formally introduces our model for availability-

aware VDC-embedding. We model a data center as a graph

Ḡ = (N̄ , L̄). Let R denote the types of resources offered by

each node (e.g., CPU and memory for servers). We assume

each node n̄ ∈ N̄ has a capacity crn̄ for each resource

r ∈ R, and each link l̄ ∈ L̄ has a bandwidth capacity bl̄.

Furthermore, we define s̄n̄l̄, d̄n̄l̄ ∈ {0, 1} as boolean variables

that indicate whether n̄ is the source and destination node

of link l̄, respectively. Similarly, we assume there is a set of

VDC requests I , each request i ∈ I asks for embedding a

VDC Gi = (N i, Li). We also assume each node n ∈ N i has

a capacity cirn for resource r ∈ R, and each link l ∈ Li has a

bandwidth capacity bl. We also define snl and dnl as boolean

variables that indicate whether n is the source and destination

node of l ∈ Li, respectively. Let xi
nn̄ ∈ {0, 1} be a variable

that indicates whether virtual node n of VDC i is embedded

in substrate node n̄, and f i
ll̄

be a variable that measures the

bandwidth of edge l̄ allocated for virtual link l ∈ Li. To ensure

the embedding does not violate the capacity constraints of the

physical resources, the following constraints must be met:
∑

i∈I

∑

n∈Ni

xi
nn̄c

ir
n ≤ crn̄ ∀n̄ ∈ N̄ , r ∈ R (5)

∑

i∈I

∑

l∈Li

f i
ll̄
≤ bl̄ ∀l̄ ∈ L̄ (6)

Furthermore, each link embedding must satisfy the flow con-

straint that the total outgoing flow of a physical node n̄ for a

virtual link Li is zero unless n̄ hosts either the source or the

destination of virtual link i:
∑

l̄∈L̄

s̄n̄l̄f
i
ll̄
−
∑

l̄∈L̄

d̄n̄l̄f
i
ll̄

=
∑

n∈Ni

xi
nn̄s

i
nlbl −

∑

n∈Ni

xi
nn̄d

i
nlbl

∀i ∈ I, l ∈ Li, n̄ ∈ N̄ . (7)

Next, we need to consider node placement constraints. This

constraint is used to specify that VMs are exclusively em-

bedded in physical machines (i.e., not in switches). Define

x̃i
nn̄ ∈ {0, 1} as a boolean variable that indicates whether

virtual node n can be embedded in physical node n̄, the place-

ment constraint can be captured by the following equation:

xi
nn̄ ≤ x̃i

nn̄ ∀i ∈ I, n ∈ n, n̄ ∈ N̄ (8)

We also need to ensure every n ∈ N i is embedded:
∑

n̄∈N̄

xi
nn̄ = 1 ∀i ∈ I, n ∈ N i (9)

Lastly, we need to define yn̄ as a boolean variable that

indicates whether physical node n̄ is active. A physical node

is active if it hosts at least one virtual component. This implies

the following constraints must hold:

yn̄ ≥ xi
nn̄ ∀i ∈ I, n ∈ N i, n̄ ∈ N̄ (10)

yn̄ ≥
1

bl
f i
ll̄
s̄n̄l̄ ∀i ∈ I, n̄ ∈ N̄ , l ∈ Li, l̄ ∈ L̄ (11)

yn̄ ≥
1

bl
f i
ll̄
d̄n̄l̄ ∀i ∈ I, n̄ ∈ N̄ , l ∈ Li, l̄ ∈ L̄ (12)

A. Migration

VM migration can be used to improve the overall quality of

the embedding in terms of total revenue. However, in order to

leverage VM migration for VDC embedding, it is necessary

to consider the migration cost in terms of service disruption

and bandwidth cost. Specifically, we treat migration cost as

a one-time embedding cost. The one-time cost of embedding

a node n of VDC i (which is currently embedded in node

m̄ ∈ N̄ ) in node n̄ ∈ N is given by:

ginn̄ =

{

mig(n, m̄, n̄) if n̄ 6= m̄

0 if n̄ = m̄ or n is not embedded

where mig(n, m̄, n̄) denotes the cost of migrating node n from

node m̄ to node n̄. Thus, when n is already embedded but

needs to be migrated from m̄ to n̄, the one-time embedding

cost is equal to the migration cost. This cost is equal to zero

when n is already embedded in the physical node n̄ (i.e., n̄ =
m̄), or when the node n is embedded for the first time.

B. Reliability Requirement

Let Ai denote the availability of VDC i, we define the SLA
penalty due to resource unavailability as

Cunavail =
∑

i∈I

(1− Ai)πi (13)

where πi is the unit SLA penalty due to resource unavailabil-

ity. There is also the virtual resource restoration cost which

includes the cost of restarting VMs and reconfiguring the
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network devices. We can define the restoration cost for a

failure of node n̄ as

Crestore
n̄ = ρn̄ +

∑

i∈I

∑

n∈Ni

xi
nn̄λn +

∑

l∈Li

f i
ll̄
un̄l̄λl (14)

Crestore
l̄

= ρl̄ +
∑

i∈I

∑

l∈Li

f i
ll̄
λl (15)

where λn and λl are the costs for restoring virtual node n

and virtual link l, respectively. Fn̄ and Fl̄ are the node and

link failure rates for node n̄ ∈ N̄ and l̄ ∈ L̄, respectively.

We also define un̄l̄ = max{s̄n̄l̄, d̄n̄l̄} as a boolean variable

that indicates whether physical link l̄ uses node n̄, the total

service unavailability cost is given by

CA = Cunavail +
∑

n̄∈N̄

Fn̄C
restore
n̄ +

∑

l̄∈L̄

Fl̄C
restore
l̄

(16)

C. Optimization Problem Formulation

Let pn̄ represent the energy cost of an active node n̄

(expressed in dollars). The goal of the reliability-aware em-

bedding can be stated as finding an embedding that achieves

min
∑

n̄∈N̄

yn̄pn̄ +
∑

i∈I

∑

n∈Ni

∑

n̄∈N̄

γnx
i
nn̄g

i
nn̄ + CA (17)

Subject to constraints (4)-(11). The first, second and third

term represent the energy, migration, and unavailability costs,

respectively. Here γn is a weight factor that controls the

tradeoff between migration cost and other costs. This problem

is clearly NP-hard as it generalizes the bin-packing problem.

VI. VDC EMBEDDING ALGORITHM

A. Reliability-Aware VDC Embedding Heuristic

This section describes the VDC embedding algorithm we

proposed in Venice. There are two major issues we have to ad-

dress in order to achieve availability-aware embedding. First,

we want to differentiate incoming VDC requests so that the

machines with high availability are allocated to those VDCs

with high availability requirements. Second, high availability

should not achieved at the expense of high resource usage.

In particular, even though it is possible to improve VDC

availability by spreading replicas across a large number of

physical nodes, doing so can go against the goal of minimizing

the number of active physical nodes (e.g., for minimizing

bandwidth usage and energy consumption) [7]. Thus, we need

to find a trade-off between these objectives.
To address the first challenge, our algorithm embeds a given

VDC on machines with the least availability that can still

attain the desired VDC availability requirement. As most of

the machines (and links) have similar availability, they can

be divided into distinct availability types (e.g. based on their

actual type). Let N denote the number of availability types.

The embedding algorithm proceeds in multiple trials. In the

first trial, we use all the machines to embed the VDC. In each

subsequent trial, we remove machines of the lowest availability

type and use remaining machines to embed the VDC. This

produces N different embedding solutions, and the one with

the best cost is the one used for actual embedding.

To address the second challenge, we leverage the fact that

availability is additive, as demonstrated in Section III. we first

start with an initial embedding where only one VM in each

replication group is embedded. We then compare the resulting

availability with the desired VDC availability. If it is lower

than the desired value, we select the next virtual node such

that the embedding of this node can significantly improve

VDC availability. This process repeats until the desired VDC

availability is achieved, and subsequently the remaining virtual

components can be embedded greedily without considering the

VDC availability requirement.

We now describe our reliability-aware VDC embedding al-

gorithm (depicted by Algorithm 2) in details. Upon receiving a

VDC request i, the algorithm first separates the physical nodes

into 2 lists based on whether they are active or inactive. The

algorithm then runs N embedding trials, each considers one

less availability type than the previous trial. In each trial, We

sort virtual nodes in decreasing order of their size. Specifically,

for each n ∈ N i, we define its size as sizein =
∑

r∈Rwrcirn ,

where wr is a weight factor for resource type r. The intuition

is that sizein measures the difficulty of embedding n. Thus wr

is selected based on the scarcity of resource type r ∈ R.

After sorting all virtual nodes in N i according to sizein, our

algorithm then tries to embed each node in the sorted order,

based on whether it is connected to any embedded nodes. For

each selected node n ∈ N i, define Li
n ⊆ Li as the set of

virtual links that have already been embedded and that are

connected to n. Define σl(l) ⊆ L̄, and σn(l) ⊆ N̄ as the set of

links and nodes in which the link l is embedded, respectively.

The cost for embedding a node n on n̄ becomes:

costi(n, n̄) = γn(mig(n, m̄, n̄) +MigOther(n, n̄)) + Fn̄λn

+
∑

l∈Li
n





∑

n′∈σn(l)

Fn′λn +
∑

l̄∈σ(l)

bl + Fl̄λl



 (18)

where the last two terms capture the restoration and bandwidth

cost of embedding n on n̄. Note that as some virtual compo-

nents may not have been embedded yet, the bandwidth and

link restoration costs in equation (18) only include the links

that have already been embedded. Finally, MigOther(n, n̄)
is the cost of migrating away the nodes on n̄ in order to

accommodate n on n̄. Formally, we denote by loc(n̄) the set

of virtual nodes hosted on physical node n̄. Let mig(ñ, n̄)
denote the minimum cost (including both the migration cost

and service unavailability cost defined in equation (16)) for

migrating away ñ ∈ loc(n̄) to another node that has capacity

to host ñ. As computing mig(ñ, n̄) generalizes a minimum

knapsack problem [12], we use a greedy algorithm to compute

MigOther(n, n̄). In particular, for a virtual node ñ ∈ loc(n̄)
that belongs to a VDC j, we compute a cost-to-size ratio rñ:

rñ = arg min
n̄′∈N̄ ′

(

mig(ñ, n̄, n̄′)
∑

r∈R wrc
jr
ñ

)

(19)

where N̄ ′ is the set of nodes to examine for VM migration.

Currently, we set N̄ ′ to be the machines within the same rack
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as n̄. Then, we sort loc(n̄) based on the values of rñ, and

greedily migrate away rñ in the sorted order until there is

sufficient capacity to accommodate n on n̄. The total migration

cost of this solution produces MigOther(n, n̄). If there is no

feasible solution, we set MigOther(n, n̄) = ∞. Lastly, once

the embedding cost costi(n, n̄) is computed for every n̄ ∈ N̄ ,

we embed n on the node with the minimum costi(n, n̄).
This process repeats until we have embedded at least one

component in each replication group. The algorithm then

compares the availability of the current embedding with the

desired VDC availability. If it is lower than the desired value,

we find the next virtual node n such that the embedding of

n on a new physical node n̄ achieves the highest reduction

in solution cost. Specifically, let Ai and Ai(n, n
′) denote the

current availability of VDC i and the availability of VDC i

after embedding n on n′, respectively. The cost for embedding

node n can be computed as:

n̄ = arg min
n′∈N

{

costi(n, n′) + (1−Ai)πi − (1−Ai(n, n
′))πi

}

This process is repeated until the desired VDC availability

is achieved, and subsequently the remaining virtual compo-

nents can be embedded greedily using costi(n, n̄) defined in

equation (18). Finally, the algorithm terminates when either

costi(n∗, n̄) = ∞ (which indicates VDC i is not embeddable),

or the embedding of VDC i actually hurts the net income (i.e.,

the cost is higher than the revenue for VDC i), in which case

the request for VDC i should be rejected.

As for the running time of the algorithm, assume each

physical node can host at most nmax virtual nodes, and the

number of physical machine per rack is at most Nrack, the

running time for computing MigOther(n, n̄) (Line 11) is

O(|N̄ |nmax|Nrack). Line 6 to 18 take O(|N i||N i|) rounds

of computing MigOther(n, n̄), as we need to search for an

embedding for each virtual node in N i. Thus, the total running

time of the algorithm is O(|ATH ||N i||N̄ |nmaxNrack).

B. VDC Consolidation Algorithm

Since VDCs may come and leave, the initial embedding

of VDCs can become suboptimal over time. Hence, it is

possible to use migration to (1) consolidate the VMs in order

to minimize bandwidth usage and energy consumption and to

(2) improve the availability of embedded VDCs. For example,

at night time when the data center is under-utilized, it is

possible to consolidate VMs on a few physical machines

with high availability to save energy, or reducing the service

unavailability cost defined in equation (16) for certain VDCs.

In Venice, the VDC consolidation is performed only when the

arrival rate is low over a period of time (i.e., below a threshold

λth requests per second over a duration of T minutes).
Our dynamic VDC consolidation algorithm is represented

by Algorithm 3. The algorithm starts by improving the avail-

ability of VDCs using active machines, and then tries to reduce

the number of active machines to minimize energy cost. In the

first step, the algorithm identifies the top V VDCs with the

highest unavailability cost, where V is a constant that can

be controlled. For each identified VDC, the algorithm uses

Algorithm 2 Algorithm for embedding VDC request i

1: M̄ ← active machines, Ū ← inactive machines, M1, ...MN ←
availability groups in increasing order of availability,
BestCost←∞

2: for i← 1 to N do
3: Mth ←

⋃i
p=1

Mp ∩ M̄

4: Nth ←
⋃i

p=1
Mp ∩ Ū}

5: N̄th = Mth ∪ Uth

6: S ← N i with one node from each reliability group
7: repeat
8: C ← nodes in S that are connected to embedded nodes.
9: if C = {∅} then

10: C = {S}
11: for each n̄ ∈ N̄th in sorted order do
12: Compute embedding cost costi(n∗, n̄) according to

equation (18). If not feasible, set costi(n∗, n̄) =∞.
13: if costi(n∗, n̄) =∞∀n̄ ∈ N̄th then
14: Continue
15: else
16: Embed n∗ on n̄ with lowest costi(n, n̄). S ← S\n∗

17: until S == {∅}
18: S ← remaining nodes in N i

19: repeat
20: Sort C according sizein defined by equation (VI-A).
21: n∗ ← first node in C
22: if AVDC ≥ required VDC then

23: N̄
′

← N̄th

24: else
25: N̄

′

← N̄th\{nodes where n∗’s siblings are embedded }
26: for each n̄ ∈ N̄

′

in sorted order do
27: Compute embedding cost costi(n∗, n̄) according to

equation (18). If not feasible, set costi(n∗, n̄) =∞.

28: if costi(n∗, n̄) =∞∀n̄ ∈ N̄
′

then
29: Continue
30: else
31: Embed n∗ on n̄ ∈ N̄

′

with lowest costi(n, n̄). S ←
S\n∗

32: if Solution Cost < BestCost then
33: BestCost ← Solution Cost, BestSolution ← current

solution
34: until S == {∅}
35: return BestSolution

Algorithm 2 to compute a new embedding. The re-embedding

is performed only if the new embedding improves the solution

quality. This process repeats until all V VDCs have been

examined. In the second step, the algorithm tries to reduce

the number of active machines. It first sorts the physical nodes

in increasing order of their utilizations. For each n̄ ∈ N̄ , we

define the utilization Un̄ of n̄ as the weighted sum of the

utilization of each type of resources (e.g., CPU, memory, disk

and network bandwidth):

Un̄ =
∑

r∈R

∑

i∈I

∑

n∈Ni:n∈loc(n̄)

wrcirn
crn̄

, (20)

Once physical nodes are sorted, for each physical node we

sort virtual nodes n ∈ loc(n̄) according their size sizein. Let

i denote the VDC that n belongs to. We then run Algorithm

2 on VDC i with physical nodes excluding n̄. This will find

an embedding where n̄ is not used. Once all virtual nodes

have been migrated, we compute the cost of the solution
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Algorithm 3 Dynamic VDC Consolidation Algorithm

1: Let S̄ represent the set of active machines
2: Sort VDCs in increasing order of CA
3: for i = 1 to V do
4: cost(i)← Cost of running Algorithm 2 on VDC i.
5: if cost(i) ≤ current cost then
6: Re-embed VDC i according to Algorithm 2
7: repeat
8: Sort S̄ in increasing order of Un̄ according to equation (20).
9: n̄← next node in S̄, S ← loc(n̄)

10: Sort S according to sizein defined in equation (VI-A).
11: for n ∈ S do
12: n← next node in S, i← the VDC to which n belongs
13: Run Algorithm 2 on VDC i over S̄\{n̄}.
14: cost(n̄)← the total cost according to equation (17)
15: if cost(n̄) ≤ pn̄ then
16: Migrate all virtual nodes according to Algorithm 2
17: Set n̄ to inactive
18: S̄ ← S̄\{n̄}
19: until Un̄ ≥ Cth

(a) Multi-Tiered (b) Partition-Aggregate (c) MapReduce

Fig. 5: Example VDC Topologies
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according to equation (17) and compare it to the energy saving,

which is represented by pn̄. If the total saving is greater than

the total cost of the solution, migration is performed and n̄

becomes inactive. Otherwise, the algorithm proceeds to the

next physical node n̄ in the list until the cluster is sufficiently

consolidated (i.e., all the machines in the cluster have reached

a threshold Cth). This ensures the quality of the embedding

will increase as the algorithm proceeds.

Finally, we analyze the running time of Algorithm 3. Line 2

takes O(|I| log(V )) time by using a binary heap to find top V

VDCs. Line 3-8 takes O(V |ATH ||N i||N̄ |nmaxNrack) time to

complete by running Algorithm 3 up to V times. Thus the total

running time of the algorithm is O(|I| log(V )+|N̄ |2 log |N̄ |+
(|N̄ |+ V )|ATH ||N i||N̄ |nmaxNrack).

VII. PERFORMANCE EVALUATIONS

We have implemented Venice and evaluated its performance

against VDC Planner [18], which is a VDC embedding frame-

work that leverages VM migration to achieve high revenue.

However, VDC Planner does not use availability information

for VDC embedding. In our experiments, we have simulated

a VL2 topology [10] with 120 physical machines organized

in 4 racks that are connected through 4 top-of-rack switches,

4 aggregation switches and 4 core switches. Each physical

machine has 4 CPU cores, 8GB of memory, 100GB of disk

space, and contains a 1 Gbps network adapter. The availability

of each equipment (either a server, a switch or a link) is ran-

domly chosen within {99.95%, 99.99%, 99.995%, 99.999%}.

The arrival of VDC requests follows a Poisson process with

the average rate of 0.010 requests/s during non-busy period

(12 hours) and 0.020 requests/s during busy periods (12
hours). This reflects the demand fluctuation in data centers

(e.g., time-of-the-day effect). We use 3 types of topologies

in our experiments: (1) Multi-Tiered, which represents multi-

tiered applications, (2) Partition-Aggregate, which represents

query-processing applications, (3) MapReduce, which repre-

sents batch applications, as shown in Figure 5. The CPU,

memory and disk capacity of each VM is generated randomly

between 0− 4 cores, 0− 2GB of RAM and 0− 10GB of disk

space, respectively. The number of VMs per group is randomly

chosen between 1 and 10. The bandwidth requirement of each

virtual link is set randomly between 0 and 100 Mbps. The

lifetime of VDCs is exponentially distributed with an average

of 3 hours. If a VDC cannot be embedded (e.g., due to a lack

of resources), it waits in the queue for a duration of 1 hour

before it is withdrawn. For each VDC, we randomly select

availability requirements among {95%, 99%, 99.99%}, similar

to the ones used by Google App [2]. For convenience, we set

L = 20, γn = 1, λth = 0.015 and k = 2.

We first evaluated our heuristics for computing VDC avail-

ability with k = 2. As shown in Figure 6, For a three-

tier application where each tier consists of 5 servers, setting

k = 2 can already estimate the availability with error less

than 0.006%. Furthermore, the importance sampling heuristic

in equation (4) achieve better accuracy than the naı̈ve sampling

heuristic in equation (3). We found the running time of both

heuristics are similar as shown in Figure 7, suggesting they

are practical for real applications.

We then evaluated the performance of VDC Planner and

Venice without using VM migration. Figure 8 shows the

Cumulative Distribution Function (CDF) of VDC availability.

It is evident from Figure 8a that the distributions of VDC

availability for VDC Planner are nearly identical for all 3

types of VDCs, which agrees with the fact that VDC Planner

is availability-oblivious. Compared to VDC Planner, Venice

improves the number of type 2 and 3 VDCs satisfying avail-

ability requirements by 35%. Similarly, we also evaluated the

VDC availability of both algorithms when VM migration is

used. The results are shown in Figure 9. It can be seen that

Venice again achieves higher availability for VDCs of type 2

and 3. However, the average VDC availability is lower than

the case where VM migration is not used. To understand the

reason, Figure 10 shows the number of VDCs accepted by

each algorithm. It is clear that when VM migration is used,

Venice is able to accept a lot more type 2 and 3 VDC requests

at the cost of lowering the average VDC availability, as doing
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Fig. 8: VDC Availability not using migration and consolidation
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so can improve the total revenue gain. Lastly, Figure 11 shows

Venice is able to achieve lower service penalty due to failures

compared to VDC Planner. Finally, Figure 12 and 13 show the

revenue gain of each method. We found Venice can improve

the total net income by 10− 15% compared to VDC planner.

VIII. CONCLUSION

As Cloud data centers gain popularity for delivering busi-

ness critical services, ensuring high availability of cloud ser-

vices has become a critical concern for cloud providers. How-

ever, despite the recent studies on this problem, none of the ex-

isting work has considered heterogenous failure characteristics

and dependencies among application components within a data

center. In this paper, we first developed a practical algorithm

for computing VDC availability, and then designed Venice as

a framework for achieving high availability of the embedded

applications. Through simulations, we show that, compared

to availability-oblivious solutions, Venice can increase the

number of VDCs satisfying availability requirements by up

to 35% and thereby maximize the net income by up to 15%.
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