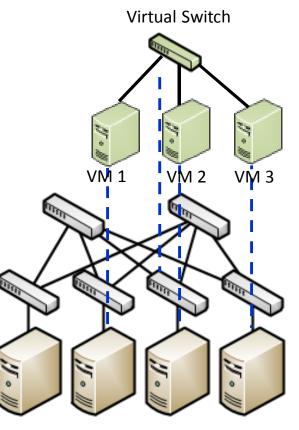


Venice: Reliable Virtual Data Center Embedding in Clouds

<u>Qi Zhang</u>, Mohamed Faten Zhani, Maissa Jabri and Raouf Boutaba

University of Waterloo

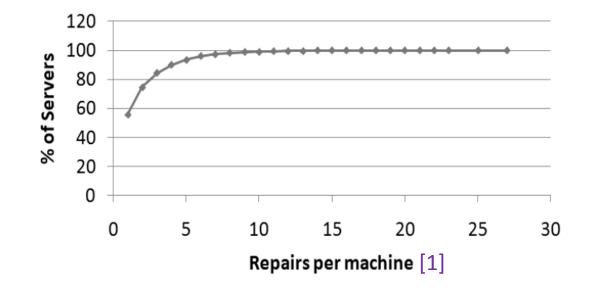
IEEE INFOCOM


Toronto, Ontario, Canada April 29, 2014

Introduction

- Cloud Computing has become a popular model for hosting online services
 - A **Cloud provider** allocates resources to service providers
 - A **service provider** uses the resources to run services
- Traditional resource allocation approach:
 - Server virtualization only
 - No bandwidth reservation
- Lack of network bandwidth reservation can hurt application performance

Virtual Data Centers


- A better approach: Allocating resources in the form of *Virtual Data Centers* (VDCs)
 - VMs connected by virtual networks
- VDC scheduling problem
 - Achieving server consolidation
 - Improving communication locality

Motivation

- **Reliability** is a major concern of service providers
 - A service outage can potentially incur high penalty in terms of revenue and customer satisfaction
- Availability is a common reliability metric specified in SLA
- VDC availability is dependent on
 - Service priority
 - VDC topology and replication groups
 - Hardware availability

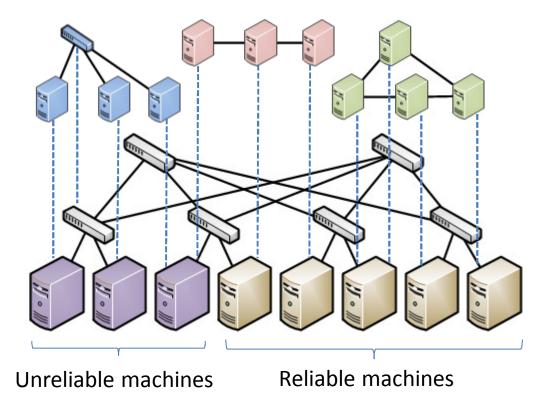
Understanding Data Center Failures

- Heterogeneous server failure rates
 - Server that has experienced a failure is likely to fail again in the near future

[1] Vishwanath et al. "Characterizing Cloud Computing Hardware Reliability", ACM SoCC 2010

Understanding Data Center Failures

- Network failure characteristics [1][2]
 - Failure rates of network equipment is type-dependent
 - Load balancers have high probability of failure ($\geq 20\%$),
 - Switches often have low failure probability (\leq 5%).
 - Number of failures are *unevenly distributed* across equipment of the same type
 - E.g. Load balancer failures dominated by few failure prone devices
 - Correlated network failures are rare
 - More than 50% of link failures are single link failures, and more than 90% of link failures involve less than 5 links [1]

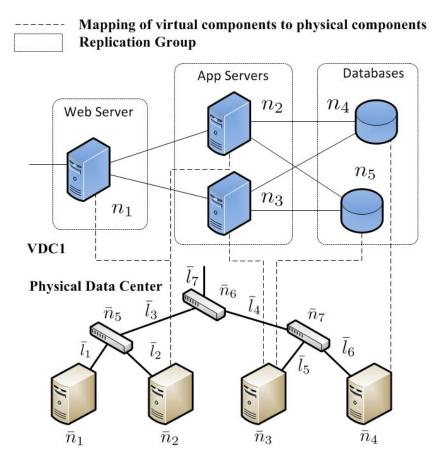

[1] Gill et. al. "Understanding network failures in data centers: measurement, analysis, and implications", SIGCOMM, 2011.

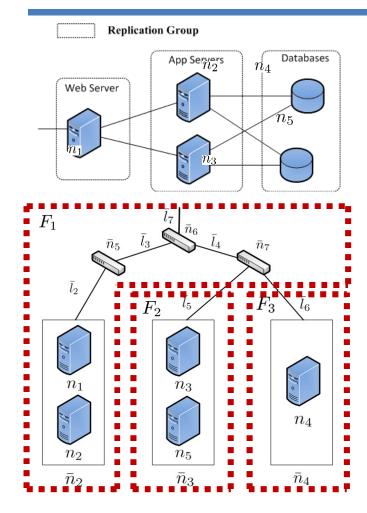
[2] Wu et. al, "Netpilot: automating datacenter network failure mitigation" SIGCOMM 2012.

Motivation

- VDCs have heterogeneous availability requirements
- Resources have heterogeneous availability characteristics
- Place VDCs with high availability on reliable machines

VDC 1 (low avail.) VDC 2 (medium avail.) VDC 3 (high avail.)


Outline


- Introduction
- Motivation
- Computing VDC Availability
- Venice: Reliable VDC Embedding in Clouds
- Experiments
- Conclusion

- Example 3-tier application
- Assume physical components \bar{n}_i and \bar{l}_i have availability $A_{\bar{n}_i}$ and $A_{\bar{l}_i}$ respectively, where

$$A_j = \frac{MTBF_j}{MTBF_j + MTTR_j}$$

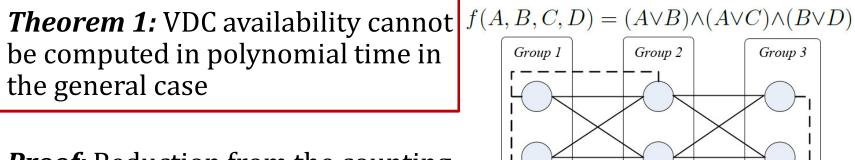
 How to compute the availability of this VDC?

Case 1: F1 unavailable,

 $A_{F_1} = \mathbf{0}$ Prob. of occurrence: $P(F_i) = 1 - \prod_{i \in F_1} A_i$

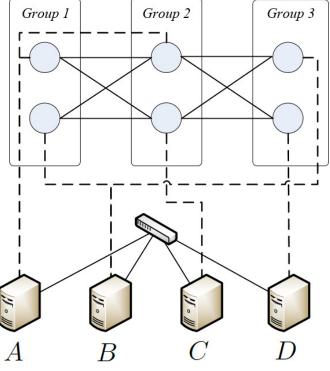
Case 2: F1 available, F2 unavailable

$$A_{F_1} = \prod_{i \in F_3} A_i$$


Prob. of occurrence: $P(F_2) = (\prod_{i \in F_1} A_i) (1 - \prod_{i \in F_2} A_i)$

Case 3: F1 available, F2 available $A_{F_1} = 1$ Prob. of occurrence: $P(F_2) = \prod_{i \in F_1 \cup F_2} A_i$

Using conditional probability, the availability of VDC_1 can be computed as:


$$A_{VDC_1} = \sum_{i=1}^{3} P(F_i) A_{F_i}$$

10

Proof: Reduction from the counting monotone 2-Satisfiability problem

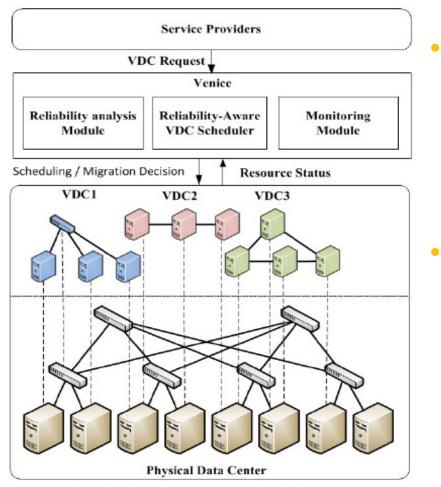
Need to consider an exponential number of scenarios in the worst case!

- Observation: it is unlikely to see large simultaneous failures
 - Given 3 nodes, each with availability \geq 95%, the probability of seeing all 3 nodes fail simultaneously is at most $(1 0.95)^3 \leq 0.00013$
- A fast heuristic:
 - Compute availability using scenarios S^k that involve at most k simultaneous failures
- Fast heuristic provides a *lower bound* on VDC availability

- An alternative approach: *Importance sampling*
 - Consider base-cases in *S*^k
 - Sampling the remaining cases $(N \in \{0,1\}^n \setminus S^k)$ and assign weight $w(s) = P(s)/\overline{P}(s)$

$$\overline{A_{VDC}} = \sum_{\substack{s \in S^k \\ \text{base case}}} P(s)A(s) + \frac{1}{|N|} \sum_{\substack{s \in N \\ s \in N}} w(s)A(s)$$

Define $\overline{S^k} = \{0,1\}^n \setminus S^k$ and $r = |\overline{S^k}| \max_{s \in \overline{S^k}} \{P(s)\}$, we can show


$$\Pr(\overline{A_{VDC}} - A_{VDC} > \varepsilon) \le \exp(-\frac{2|N|\varepsilon^2}{r^2})$$

- Generalizations
 - Replication group that tolerates k out of n failures
 - E.g. replicated file systems
 - *Partial availability* where failures cause down-graded performance
 - Availability as a continuous value between [0,1]

Outline

- Introduction
- Motivation
- Computing VDC Availability
- Venice: Reliable VDC Embedding in Clouds
- Experiments
- Conclusion

Venice: Reliable VDC Embedding

---- Mapping of a virtual components to physical components

3 Components:

- Resource Monitor
- Reliability analysis module
- VDC Scheduler
- Features
 - Migration-based scheduling
 - Dynamic scaling
 - Periodic consolidation

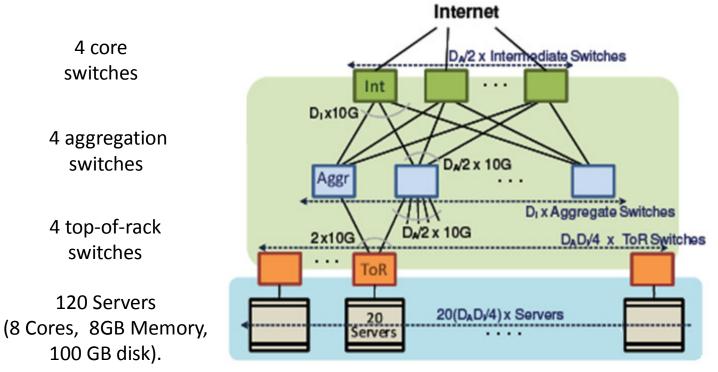
Problem Formulation

Objective function: $\min C_E + C_M + C_A$

• Where
$$C_E = \sum_{\bar{n} \in \bar{N}} y_{\bar{n}} p_{\bar{n}}$$
 (Resource cost)
 $C_M = \sum_{i \in I} \sum_{n \in N^i} \sum_{\bar{n} \in \bar{N}} \gamma_n x^i_{n\bar{n}} g^i_{n\bar{n}}$ (Migration cost)
 $C_A = \sum_{i \in I} (1 - A_i) \pi_i + \sum_{\bar{n} \in \bar{N}} F_{\bar{n}} C^{restore}_{\bar{n}} + \sum_{\bar{l} \in \bar{L}} F_{\bar{l}} C^{restore}_{\bar{l}}$ (Failure cost)

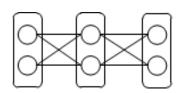
Subject to constraints:

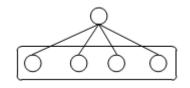
> $\sum_{i \in I} \sum_{n \in N^i} x^i_{n\bar{n}} c^{ir}_n \le c^r_{\bar{n}} \quad \sum_{i \in I} \sum_{l \in L^i} f^i_{l\bar{l}} \le b_{\bar{l}}$ (Capacity constraint) $i \in I$ $n \in N^i$ $\sum_{\bar{l}\in\bar{L}}\bar{s}_{\bar{n}\bar{l}}f^i_{l\bar{l}} - \sum_{\bar{l}\in\bar{L}}\bar{d}_{\bar{n}\bar{l}}f^i_{l\bar{l}} = \sum_{n\in N^i} x^i_{n\bar{n}}s^i_{nl}b_l - \sum_{n\in N^i} x^i_{n\bar{n}}d^i_{nl}b_l \qquad (\text{Flow constraint})$ $x_{n\bar{n}}^i \le \tilde{x}_{n\bar{n}}^i \quad \sum x_{n\bar{n}}^i = 1 \quad \sum f_{l\bar{l}}^i = b_l$ (Assignment constraint) $\bar{n} \in \bar{N}$


Greedy Scheduling Algorithm

- For each received VDC request
 - **Initial embedding:** embed one node from each replication group.
 - Repeat
 - For each remaining component compute a score as the availability improvement resource cost
 - Embed the component with the highest score
 - Until the VDC availability is achieved or all nodes are embedded
 - Embed the remaining components greedily based solely on resource cost

Outline


- Introduction
- Motivation
- Computing VDC Availability
- Venice: Reliable VDC Embedding in Clouds
- Experiments
- Conclusion

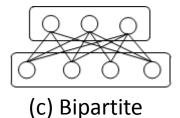
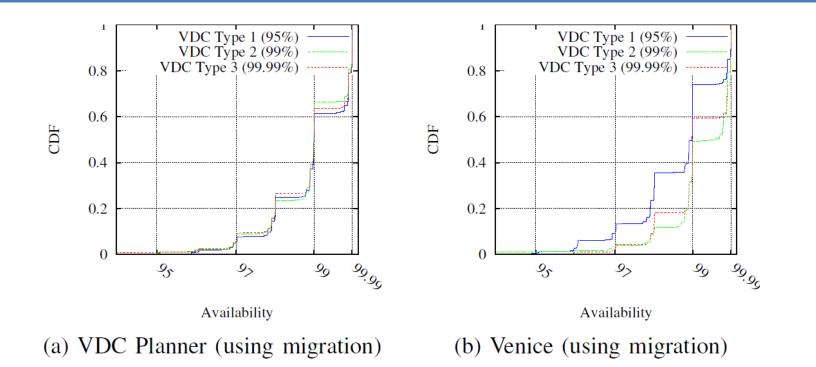

Data Center Topology

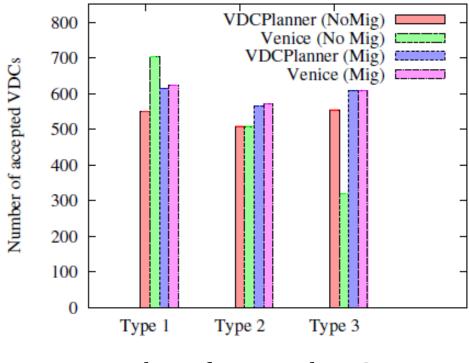
Physical Topology (VL2)

- VDC request formats
 - From 1 to 10 VMs per group
 - Different availability requirements
- We use VDC Planner [1] as a baseline for comparison

(a) Multi-tiered

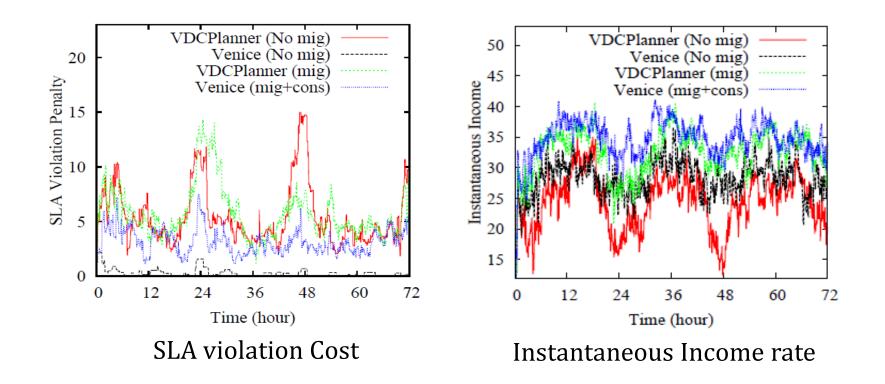
(b) Partition-Aggregate


TABLE I: VDC Availability requirements

VDC Type	Minimum Required Availability (%)	Acceptable daily downtime
1	95.00	1h:12mn
2	99.00	14mn:2s
3	99.99	08.64s

[1] Zhani et al. "VDC Planner: Dynamic Migration-Aware Virtual Data Center Embedding for Clouds", IM 2013



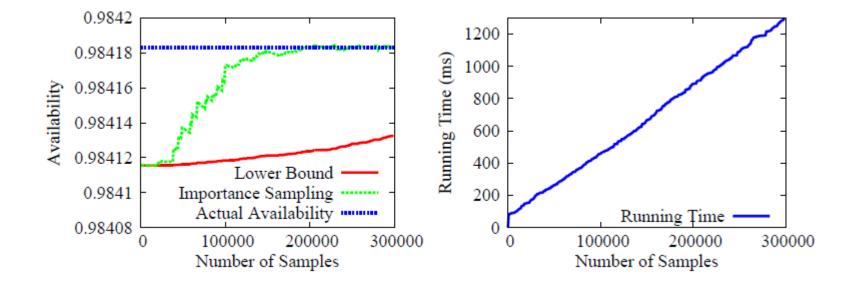
 Venice increases the number of VDCs satisfying availability requirements by up to 35%

Number of accepted VDCs

• With migration, the number of accepted VDCs is comparable to that of VDC Planner

 Venice achieves 15% increase in revenue compared to VDC Planner

Conclusion


- We proposed a technique to compute VDC availability that considers heterogeneous failure characteristics of the data center components
- We proposed an availability-aware VDC embedding framework called Venice
- Benefits of Venice:
 - Increases the number of VDCs satisfying availability requirement by up to 35%
 - Increases the net income by up to 15%.

Thank you!

Dynamic Workload Consolidation

- Consolidate workload during idle periods while improving VDC availability
- Algorithm
 - Step 1: Improve availability of existing VDCs
 - Select top VVDCs that have highest penalty
 - Try to re-embed each of them to improve solution cost
 - Step 2: Consolidate on fewer machines
 - Iterate *C*_{th} times
 - Select most under utilized machine \bar{n}
 - Re-embed VDCs running on \overline{n} without using the machine \overline{n}

