nf.io: A File System Abstraction for NFV Orchestration

Md. Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, Raouf Boutaba
David R. Cheriton School of Computer Science, University of Waterloo
{mfbari, sr2chowdhury, r5ahmed, rboutaba}@uwaterloo.ca

CCS Concepts

eNetworks — Network architectures; Network de-
sign principles;

Keywords

Network Function Virtualization; Service Chain Orchestra-
tion; File System Abstraction

1. INTRODUCTION

Middleboxes have become an integral part of modern en-
terprise and data center networks. They are used for realiz-
ing various performance and security objectives. Most mid-
dlboxes (e.g., firewalls, Intrusion Detection Systems (IDSs),
Network Address Translators (NATSs), etc.) are dedicated
hardware appliances. However, recent advancements in cloud
and virtualization technologies have fueled the concept of
Virtual Middleboxes or Virtual Network Functions (VNF's)
along with a new research field known as Network Function
Virtualization (NFV). This area of research has gained a
lot of traction from both industry and academia. Although
much progress has been made in NFV technology, a crucial
component for realizing the primary objective of NFV is still
missing — a management and orchestration [7] system that
conforms to the principles of NFV: open source, open API
and standardized software solutions. Without this feature,
network operators may end-up with the same situation of
vendor lock-in as with proprietary hardware middleboxes.
A number of recent proposals like Stratos [§], OpenNF [9],
and Split/Merge [10], strive to fulfill the requirements for
VNF management and orchestration. However, they pro-
pose incompatible northbound APIs. What is really needed
is a standardized API that is flexible enough to express a
wide range of NFV management and orchestration opera-
tions. History shows that standardization efforts usually
take a long time and often are futile. Hence, we take a dif-
ferent approach, and propose to use an existing, well known,
standardized interface for NF'V management and orchestra-
tion: the Linux file system interface.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
(© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOL: http://dx.doi.org/10.1145/2785956.2790028

361

— action

L— boot.conf
ip
VM. memory
VM. VCpu
pkt_drop
|: rx_bytes
tx_bytes
— status

(a) nf.io root (b) VNF Instance

Figure 1: nf.io File System Abstraction

We call our proposed system nf.io. It utilizes the Linux
file system as the northbound API for VNF orchestration.
It adopts various operating system principles: (i) everything
(resource, configuration) is represented as files, (ii) common
Linux utility programs (e.g., mkdir, cp, mv, 1n, etc.) are used
for state manipulation, (iii) heterogeneous resource pools
(e.g., different networking tool-chains like Linux bridge or
Open vSwitch [5]) are controlled through a high-level ab-
straction, and (iv) resource specific drivers are developed
similar to device drivers in an OS. Existing NFV manage-
ment and orchestration systems like Stratos or OpenNF can
use the nf . io abstraction by developing resource drivers spe-
cific to their requirements.

2. SYSTEM DESCRIPTION

2.1 Features
Key features of nf.io are as follows:
e Everything is a file: States and configurations of a
VNF deployment are represented as files organized in
a hierarchical directory structure.
e Centralized control: A centralized point of control
over a distributed VNF deployment.

e Compatibility: A rich set of existing file system util-
ities (e.g., grep, mkdir, etc.) and configuration man-
agement tools (e.g., Chef, Puppet, etc.) can be used
with nf.io for VNF management.

2.2 File System Abstraction

nf.io uses a simple and intuitive directory hierarchy to
store states regarding VNF deployment, configuration and
chaining. A high-level view of the nf.io directory hierarchy
is shown in Figure The root of the file system with two
users is shown in Figure The user-a and user-b di-
rectories mark the home directory for the users. The VNFs


http://dx.doi.org/10.1145/2785956.2790028

and chains deployed by a user are organized under his home
directory. The structure of a directory representing a VNF
is shown in Figure The config and machine direc-
tories contain configuration parameters. The action file is
used by the user to perform different VNF operations (e.g.,
start, pause, resume, kill, etc.). The status file indicated
the current status of the VNF (e.g., running, paused, er-
ror, etc.). The files contained under the stats directory are
used to collect data like packet drops, transmitted/received
bytes, etc. The stats directory contains one file for each
measurement metric. The rfs directory mounts the file sys-
tem of the VNF itself, so that the user can directly change
a configuration file and also read different kinds of statis-
tics from the VNF. A VNF chain is deployed by creating a
directory under the chns directory. A chain directory con-
tains symbolic links to the VNF instances that are part of
the chain. It also contains markers to indicate the start and
next VNFs in the chain.

2.3 Architecture

Command Custom Scripts Automation
Line Utils. P Tools
nf.io File System
Hypervisor Network Chain
Driver Driver Driver
Compute Network VNF
Resources Resources Chaining

Figure 2: nf.io Architecture

A high-level view of the nf . io architecture is shown in Fig-
ure 2] The nf.io File System is a virtual file system that
runs on top of the traditional OS file system. VNF opera-
tions are triggered when a user writes a operation string in
the action files. nf.io performs these operations by using
three resource drivers: (i) Hypervisor Driver, (ii) Network
Driver, and (iii) Chain Driver.

2.3.1 Hypervisor Driver

In nf.io, network functions can be deployed in a number
of ways. They can run as processes on a physical machine,
VMs on a hypervisor like Xen or KVM, or as light-weigh con-
tainers provided by Docker [1] or Linux Container (LXC) [4].
The hypervisor driver abstracts the underlying diversity in
these virtualization technologies and provides a uniform in-
terface to nf.io.

2.3.2 Network Driver

nf.io requires support for certain networking function-
ality from the underlying physical infrastructure. In each
physical machine, nf.io must have the ability to (i) setup
bridges, (ii) create IP links between virtual ethernet (veth)
pairs, (iii) setup tunnels (e.g., VXLAN or GRE), and (iv)
install forwarding rules. Similar to the hypervisor driver,
the network driver hides the underlying heterogeneity and
provides an abstract network interface to nf.io.

2.3.3 Chain Driver

The chain driver interconnects different types of VNFs.
It provides a function chn-cnct(vnfl, vnf2), where vnfl
and vnf2 are two arbitrary VNFs. For a chain like a — b
— ¢, this function must be called twice: first for a — b,

362

and again for b — c¢. The task of Interconnecting two VNFs
depends primarily on their types, and whether their network
interfaces are on the same or different IP subnets.

2.4 Implementation

The nf.io prototype is implemented using the python
API binding for FUSE [2]. We rewrote a number of file
system calls like mkdir, read, write, symlink, etc. to im-
plement the nf.io file system semantics. The Hypervisor
Driver currently supports KVM, Xen and Docker. We use
libvirt |3] and Docker Remote API to control VMs and con-
tainers in KVM/Xen and Docker, respectively. The Network
and Chain Drivers currently support two configurations: (i)
Linux iptables and Linux bridge and (ii) Open vSwitch. In
both cases we use GRE tunnels to connect VNF's deployed
on different physical machines. Finally, we remotely mount
the VNF’s file system under the rfs directory (Figure [1)
using sshfs [6]. A demonstration of nf.io is available at
http://faizulbari.github.io/nf.io/.

3. DEMONSTRATION

We demonstrate the capabilities of nf.io by showcasing
use cases focused on three primary areas: (i) configuration,
(ii) deployment, and (iii) monitoring of VNF instances and
chains. First, we will show how to configure different pa-
rameters of a single VNF instance. Then we will configure a
service chain consisting of multiple VNFs and tweak differ-
ent chain level parameters. Next, we will deploy the service
chain on Docker containers and run a client to generate some
test data. Finally, we will demonstrate nf.io’s monitoring
features by querying data both at the VNF and chain levels.

4. ACKNOWLEDGMENTS

This work was supported by the Natural Science and Engi-
neering Council of Canada (NSERC) under the Smart Appli-
cations on Virtual Infrastructure (SAVI) Research Network.

5. REFERENCES

[1] Docker. http://docker.com/.

[2] fusepy. https://github.com/terencehonles/fusepy.

[3] libvirt: The virtualization API. http://libvirt.org/.

[4] LXC: Linux Containers. https://linuxcontainers.org/.

[5] OVS: Open vSwitch. https://linuxcontainers.org/.

[6] sshfs. http://fuse.sourceforge.net/sshfs.html.

[7] BArl, M. F., CHOWDHURY, S. R., AHMED, R., AND
BoutaBA, R. On orchestrating virtual network
functions in NFV. CoRR abs/1503.06377 (2015).
GEMBER, A., KRISHNAMURTHY, A., JOHN, S. S.,
GRANDL, R., Gao, X., ANAND, A., BENSON, T.,
AKELLA, A., AND SEKAR, V. Stratos: A
network-aware orchestration layer for middleboxes in
the cloud. Tech. rep., 2013.

GEMBER-JACOBSON, A., VISWANATHAN, R.,
PrakasH, C., GRANDL, R., KHALID, J., Das, S.,
AND AKELLA, A. OpenNF: Enabling innovation in
network function control. In Proc. of SIGCOMM
(2014), ACM, pp. 163-174.

RAJAGOPALAN, S., WiLLIAMS, D., JAMJooM, H.,
AND WARFIELD, A. Split/merge: System support for
elastic execution in virtual middleboxes. In Proc. of
USENIX NSDI (2013), pp. 227-240.

8]

[9]

(10]


http://faizulbari.github.io/nf.io/

	Introduction
	System Description
	Features
	File System Abstraction
	Architecture
	Hypervisor Driver
	Network Driver
	Chain Driver

	Implementation

	Demonstration
	Acknowledgments
	References



