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Abstract—Internet applications are deployed on the same

network infrastructure, yet they have diverse performance and
functional requirements. The Internet was not originally designed
to support the diversity of current applications. Network Vir-
tualization can enable heterogeneous applications and network
architectures to coexist without interference on the same infras-
tructure. Embedding a Virtual Network (VN) into a physical
network is a fundamental problem in Network Virtualization. A
VN Embedding that aims to survive physical (e.g., link) failures is
known as the Survivable Virtual Network Embedding (SVNE). A
key challenge in the SVNE problem is to ensure VN survivability
with minimal resource redundancy. To address this challenge,
we propose SiMPLE. By exploiting path diversity in the physical
network, SiMPLE provides guaranteed VN survivability against
single link failure. In addition, SiMPLE produces highly surviv-
able VN embeddings in presence of multiple link failures while
incurring very low resource redundancy. We provide an ILP
formulation for this problem and implement it using GLPK. We
also propose a greedy algorithm to solve larger instances of the
problem. Simulation results show that our solution outperforms
full backup and shared backup schemes for SVNE, and produces
near-optimal results.

Index Terms—Survivable Virtual Network Embedding, Fault
Tolerance, Path Splitting.

I. INTRODUCTION

The Internet has to support a wide range of applications

having diverse performance and functional requirements. For

example, Audio/Video streaming requires dedicated bandwidth

and bounded delay, online banking requires security guaran-

tees, while web browsing and email applications are satisfied

with best-effort delivery. Currently, these applications are

deployed on the same network infrastructure, and rely on the

best-effort Internet’s communication model without guaran-

tees. Network Virtualization (NV) [8] has been propounded as

a promising solution for enabling heterogeneous applications

and network architectures to coexist on the same physical

infrastructure (or, substrate network). NV involves two entities:

Infrastructure Providers (InPs) and Service Providers (SPs).

An InP owns and maintains the substrate, e.g., data centers.

An SP, in contrast, requests network slices from one or more

InP(s), and offers customized services to end users without sig-

nificant investment in deploying and managing the substrate.

An InP manages a network slice as a Virtual Network (VN),

and embeds the VN to the Substrate Network (SN) with proper

isolation and guaranteed Quality of Service (QoS). In this way,

NV enables multiple SPs to coexist on the same substrate

without interference, and satisfies diverse application needs.

Efficient mapping of VNs onto an SN is known as the

VN embedding (VNE) problem [11]. In its simplest form,

the VNE problem is to map virtual nodes and links of a

VN request onto substrate nodes and paths (sequence of

physical links), respectively, while satisfying physical resource

constraints. The VNE problem is NP-hard and has been

studied extensively in the literature [9], [20], [33]. However,

one important aspect of the problem that received less attention

is VN survivability. Finding a VN Embedding that can survive

arbitrary substrate node or link failures is known as the

Survivable Virtual Network Embedding (SVNE) problem [25].

A failure in the SN may cause multiple VNs to fail, which may

significantly degrade service performance and availability. In

many applications, a service outage can incur high penalty

in terms of revenue and customer satisfaction. For example,

online businesses in North America lost 26.5 billion in revenue

due to service downtime in 2010 [1]. Hence, VN survivability

is crucial for both InPs and SPs.

Survivability has been thoroughly investigated in non-

virtualized networks in the past [5], [17], [18], [27]. However,

these solutions focus on ensuring network connectivity during

failures, whereas in SVNE the focus is to preserve the virtual

topology by using mutually exclusive substrate resources.

Hence, existing solutions are not directly applicable to SVNE.

Survivability of VNs is usually achieved through allocation of

redundant (i.e., backup) resources, which introduces additional

challenges to the VNE problem. First, the failure characteris-

tics and repair time are unpredictable [12], [21]. Reserving

the full demand of a virtual link as backup is expensive, since

backup resources remain idle when there are no failures [25].

To minimize resource wastage, shared backup schemes have

been proposed in [13]. However, they do not guarantee the

full requested bandwidth of a virtual link during failure. As

such, it is challenging to determine the minimum redundancy

level for guaranteed survivability. Second, primary and backup

resources need to be disjoint in the SN. Embedding each

virtual link into multiple disjoint paths mitigates the impact

of failures [22], [31]. Although effective, this approach incurs

path splitting overhead including packet redirection, increased

routing table size, and packet reordering. In general, it is

difficult to find the optimal trade-off between VN survivability,

redundancy level, and path splitting overhead.

To address these challenges, we propose SiMPLE for en-

suring Survivability in Multi-Path Link Embedding. SiMPLE

presents a multi-path link embedding strategy by exploiting the

path diversity in the SN. Studies in [12] and [21] have shown

that link failures are more frequent than node failures, and

node failures can be modeled as multiple link failures [26].

Hence, SiMPLE focuses on survivability against arbitrary

substrate link failures. The major contributions of this paper

can be summarized as follows:



• Key concept. We propose a novel concept to ensure high

survivability against multiple link failures while reserving

only a fraction of the virtual link’s demand as backup. To

the best of our knowledge, SiMPLE is the only approach

that provides provable survivability guarantee in presence

of a single link failure without allocating full bandwidth

of the virtual link’s demand as backup.

• Optimization model. The design goal of SiMPLE is

to find a trade-off between maximizing survivability

and minimizing redundant resources and path splitting

overhead, which has not been considered in the previous

studies. We formulate this joint optimization problem as

an Integer Linear Program (ILP) to achieve this trade-off.

• Algorithms. We implement the ILP model in GLPK to

find optimal solutions for small scale networks. For larger

instances of the problem, we propose a greedy algorithm

that produces near-optimal solutions. We demonstrate

SiMPLE’s effectiveness through extensive simulations

and comparison with full backup and shared backup

schemes for SVNE. Simulation results show that SiM-

PLE provides better survivability, requires lesser backup

bandwidth, and generates more profit.

The rest of the paper is organized as follows. Section II

provides necessary background. Section III presents the main

concept and ILP model for SiMPLE. Section IV presents a

greedy algorithm for link embedding in SVNE. Section V

presents our evaluation results, and Section VI discusses the

related literature. Finally, Section VII concludes the paper with

an outline of possible future research directions.

II. BACKGROUND

In this section, we present the VNE problem and the existing

mechanisms for ensuring survivability in VNE process.
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Fig. 1: Embedding VN requests onto a substrate

A. Virtual Network Embedding

To describe the VNE problem, we model the Substrate

Network (SN) and Virtual Network (VN) as weighted graphs

GS(NS , ES) and GV (NV , EV ), respectively. Here, NS and

ES denote the sets of the Substrate Nodes (SNodes) and

Substrate Links (SLinks), respectively, while NV and EV

denote the sets of Virtual Nodes (VNodes) and Virtual Links

(VLinks), respectively. Each SNode ns ∈ NS has a CPU

capacity, c(ns), and each SLink es ∈ ES has a bandwidth

capacity, b(es). Similarly, the CPU demand of a VNode

nv ∈ NV and bandwidth demand of a VLink ev ∈ EV are

denoted by c(nv) and b(ev), respectively. The residual CPU

and bandwidth resources at ns and es are represented by r(ns)
and r(es), respectively. Generally, the VNE problem can be

divided into two stages:

1) Node Embedding: Each VNode nv ∈ NV from a VN

request is mapped to a single SNode by a node mapping func-

tion: ξN : NV → NS , subject to CPU capacity constraints:

∀nv ∈ NV : c(nv) ≤ r(ξN (nv)).

2) Link Embedding: Each VLink ev ∈ EV is mapped to

a substrate path pe
v ∈ P ev between ingress SNode, ξN (evs)

and egress SNode, ξN (evd), where evs and evd denote the source

and destination VNodes of ev , respectively. The link mapping

function is ξE : EV → P ev , subject to bandwidth capacity

constraint: ∀ev ∈ EV ∧ ∀pev ∈ P ev : b(ev) ≤ r(pe
v

), where

r(pe
v

) = min
es∈pev r(es).

Solving the VNE problem is NP-hard, as it is related to the

multi-way separator problem [20]. Even with a given VNode

mapping, the problem of optimally allocating the VLinks to

substrate paths reduces to the unsplittable flow problem [16],

and is thus NP-hard as well. Fig. 1 depicts the embedding of

the two VN requests, GV 1 and GV 2 (on the left) on an SN, GS

(on the right). Here, the SNodes and VNodes are labeled with

letters inside the corresponding node. Node mapping for GV 1

is ξ1N (a) = D, ξ1N (b) = A, ξ1N (c) = F , and link mapping

is ξ1E(ab) = DBA, ξ1E(ac) = DEF , ξ1E(bc) = ACF ; while

GV 2 has node mapping ξ2N (e) = D, ξ2N (d) = G, ξ2N (f) = F ,

and link mapping ξ2E(ed) = DG, ξ2E(ef) = DEF .

B. Survivable Virtual Network Embedding

Substrate node failures are very rare and result into multiple

SLink failures [12], [21]. Hence, majority of the SVNE

literature focuses on single SLink failure. An SLink may not

operate properly all the time due to various reasons such as

fiber cut, maintenance, mis-configuration, and so on [12], [21].

To see the impact of such failures let us consider a failure in

SLink DE in Fig. 1. It will cause the VLinks ac and ef
to fail. We now discuss two major approaches for achieving

survivability against SLink failures.

1) Allocating Backup Resources: To survive against SLink

failures, backup resource can be allocated in two ways [14],

namely, SLink protection and path protection. In SLink pro-

tection, a primary path pe
v

is associated to each VLink, and

each SLink es ∈ pe
v

is protected by a detour. Upon an SLink

failure, traffic on that SLink is locally rerouted through its

detour. In Fig. 1, SLink DE can be associated with two detours

DGE and DBAE for the VLinks ac and ef , respectively. In

case of the path protection, each end-to-end primary path pe
v

is protected by an SLink disjoint backup path from source to

destination. The source activates the backup path when it is

notified about the failure of an SLink along path pe
v

. In Fig. 1,

the bandwidth demanded by VLinks ac and ef can be reserved

in the backup paths DGF and DBACF , respectively, which

are SLink disjoint to the primary path DEF . Hence, redundant

bandwidth has to be allocated in SN for each backup path.

However, multiple backup paths can share the same backup

bandwidth to minimize redundancy.
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Fig. 2: The SiMPLE Embedding Concept

2) Multipath Embedding: Path splitting is a routing strategy

to allow a single data stream to be split across multiple

paths. Various path splitting techniques, such as, Equal-cost

Multipath (ECMP) and Multipath TCP (MPTCP), have been

used in the IP and TCP layers, respectively. Authors in [31]

introduced path splitting in VNE to embed a VLink over

multiple substrate paths. Multipath embedding mitigates the

impact of failure by switching the affected traffic on the

failed SLink to alternate paths [22]. In the worst case, it

can salvage a fraction of the VLink’s bandwidth during an

SLink failure. In Fig. 1, we can embed VLinks ac and ef
onto multiple paths such as ξ1E(ac) = {DEF,DGF} and

ξ2E(ef) = {DEF,DBACF}. Here, upon the failure of the

SLink DE, both VLinks ac and ef can partially survive

through the alternate paths DGF and DBACF , respectively.

III. SVNE THROUGH PATH SPLITTING

In this section, we first describe the main concept of

SiMPLE. Then we present its ILP formulation.

A. The SiMPLE Embedding Concept

The main concept of SiMPLE is illustrated in Fig. 2. A

basic proactive approach for SVNE, the Full Backup Scheme

(FBS), is illustrated in Fig. 2a. In this case, a VLink with

demand x is embedded onto two disjoint paths with sufficient

residual capacity. One of the paths acts as the primary (denoted

with solid line), whereas the other is reserved for the backup

(dashed line). When an SLink in the primary path fails, the

backup path serves the VLink traffic. When the failed SLink

recovers, the primary path starts serving the VLink again.

However, such technique provisions twice the demand of each

VLink. As a result, the number of accepted VNs and SLink

utilization decreases significantly.

SiMPLE operates according to Fig. 2b – Fig. 2d. In Fig.

2b, the VLink is split into three disjoint substrate paths, and

x/2 bandwidth is allocated to each of them. In this case, two

paths are used to carry the primary flow, whereas the third

path is used as backup. Since these paths are disjoint, at most

one of them can be affected by a single SLink failure. If an

SLink fails, the two unaffected paths deliver the requested

bandwidth x. Note that only half of the requested bandwidth is

allocated in the backup path, or, in other words, 50% backup

bandwidth is saved in contrast to FBS. We can extend this

idea to a higher number of splits, say k. Fig. 2c and Fig.

2d present the VLink embedding scenario for k = 4 and 5,

respectively. As highlighted in these figures, 67% and 75%
backup bandwidth is saved in these two cases, respectively. In

addition, the splitting of each VLink into multiple substrate

paths improves the possibility of VN request acceptance; even

if the full requested bandwidth is not available in any of the

SLinks, a VLink can be embedded by splitting the required

bandwidth over multiple paths. In other words, it utilizes the

links more efficiently than FBS, and increases the number

of accepted VNs. However, increasing the number of splits

introduces additional overhead, which must be considered.

There is a trade-off between the number of splits, and VNE

overhead. Indeed, each path splitting has a cost in terms of

routing entry updates, source and destination buffers, and addi-

tional SLink delays. We formulate these costs mathematically

in Section III-B. If we increase the number of splits too much,

these costs may result into infeasible VN embeddings.

Theorem 1: SiMPLE guarantees to preserve the full demand

of every embedded VLink in case of a single SLink failure.

Proof: We prove this Theorem by contradiction. Assume

that a VLink ẽv ∈ EV is not supported with its full demand.

According to the SiMPLE working principle, at least two paths

pẽ
v

1 and pẽ
v

2 in ẽv are impacted by a single SLink failure. By

definition, pẽ
v

1 and pẽ
v

2 are disjoint, (i.e., they have no common

SLink), and this leads to a contradiction.

Theorem 2: While embedding VNs with same characteris-

tics (e.g., size, demand, and arrival rate), SiMPLE outperforms

FBS in the number of accepted VNs by a factor of 2
(
k−1
k

)
,

where k is the average number of splits in embedding a VLink.

Proof: Assume that FBS and SiMPLE are evaluated for

time T , and accepted a series of n VNs. Each VN has ν
VLinks, and each VLink demands x bandwidth. At time T ,

substrate bandwidth consumptions of FBS and SiMPLE are

given by BT
F = 2nl̄νx and BT

S = knl̄ν x
k−1 , respectively,

where l̄ is the average length of the substrate paths used in

embedding. The additional substrate bandwidth used in FBS

is given by BT
F − BT

S = nl̄νxk−2
k−1 . Before SiMPLE consumes

bandwidth BT
F , an additional n̂ VNs with same characteristics

would occupy B̂T
S bandwidth, where B̂T

S = kn̂l̄ν x
k−1 . Since

B̂T
S = BT

F −BT
S , we obtain, n̂ = nk−2

k . Hence, the number of

accepted VNs in SiMPLE is n+ n̂ = 2k−1
k n.

B. ILP Formulation

We use the following notations to represent different aspects

of embedding. The set P ev represents a set of disjoint paths

{pev1 , pe
v

2 , . . . , pe
v

k } in SN where ev is embedded. Note that

the number of paths in P ev will be equal to the number of

splits for ev ∈ EV , i.e., |P ev | = ke
v

. Two boolean variables

are defined as follows.

X(nv, ns) =

{
1, if nv is embedded to ns

0, otherwise
(1)



Y (pe
v

i , es) =

{
1, if the path pe

v

i contains es

0, otherwise
(2)

We formulate SiMPLE as an ILP Model, since it involves

integer (binary) variables as well as linear constraints. In

this model, we optimize both the number of splits and the

set of substrate paths for each VLink of a VN such that

the overall embedding cost is minimized. Afterwards, the

corresponding VLinks are mapped to optimal sets of paths.

The VN embedding cost has the following three components.
1) Split and Join Cost: The first cost is the split and join

cost at the source and destination SNodes for a VLink ev .

In SiMPLE, we assume that the SN supports path splitting,

and this assumption relies on the substrate switches. This is

because each data stream is split at the ingress switch, and

subsequently joined at the egress switch1. Let d1(n
s, k) and

d2(n
s, k) be the splitting and joining costs into k branches at

ns ∈ NS . The total split and join cost at ns is denoted by

D(ns, k) = d1(n
s, k) + d2(n

s, k). We can represent the total

split and join cost as follows in (3).

Ï(ev, P ev , ke
v

) =
(
D(ξN (evs), k

ev ) +D(ξN (evd), k
ev )

)
(3)

2) Switching Cost: The second cost is the packet switching

cost, and it is presented in (4) as S̈(ev, pe
v

i ). This cost is

associated with each mapped path of ev due to forwarding

the fragmented data stream between the source and destina-

tion SNodes. For such a path pe
v

i ∈ P ev , all intermediate

SNodes forward each flow to the next appropriate SNode1.

The switching cost at ns ∈ NS is denoted by β(ns).

S̈(ev, pe
v

i ) =
∑

ns∈pev
i

(
c(ns)

r(ns)
β(ns)

)
(4)

3) SLink Cost: The third and final cost component, SLink

cost, is given by L̈(ev, pe
v

i ) in (5). This cost represents the

sum of allocated substrate bandwidth cost and accumulated

delays along the SLinks on pe
v

i . This cost is also defined

for each mapped path pe
v

i ∈ P ev for ev . In (5), the term

wE represents the relative weight of the SLink delay (δ(es))
(in time units) compared to the allocated bandwidth cost (in

bandwidth units). In today’s data center networks, the link

delay is usually very small. For this reason, we suggest that

wE should take a fractional value less than one.

L̈(ev, pe
v

i , ke
v

) =
∑

es∈pev

(
b(es)

r(es)

b(ev)

kev − 1
+ wEδ(es)

)
(5)

A goal in our ILP model is to ensure proper load balancing

across SNodes and SLinks. To this end, each SNode and

SLink is associated with a non-linear weight function that

produces low values for under-utilized SNodes and SLinks,

while weight function value increases rapidly as an SNode’s or

SLink’s utilization approaches saturation. The fractions
c(ns)
r(ns)

and
b(es)
r(es) give higher privilege to less loaded SNodes and

1Without loss of generality and for simplifying the formulation, we do not
place any cap on the number of splits, joins, or switchings per SNode.

SLinks, respectively, over the saturated ones. Therefore, in (4)

and (5), these two fractions are chosen as the load balancing
factors for SNodes and SLinks, respectively. The possible

alternates, e.g., (1 − r(ns)
c(ns) ) and (1 − r(es)

b(es) ), have a linear

relation between utilization and demand, and so cannot be

used for our purpose.

Now we introduce the SiMPLE objective function. The goal

is to minimize the cost presented in (6). In this equation, Ï
and S̈ have units in MIPS (for split, join, switching costs

involving CPU resources), whereas L̈ has Mbps unit. To unify

these different units, we multiply the split, join, and switching

costs with a weight, wN . Furthermore, in comparison with the

bandwidth resources, the CPU resources are cheaper and more

available. Therefore, we propose that wN should be a fraction.

In this process, we prioritize bandwidth in the cost function

above other resources.

SiMPLE ILP :

minimize

⎡
⎢⎢⎣

∑
ev∈EV

⎛
⎜⎜⎝

Ï(ev, P ev , ke
v

)wN+

∑
pev
i ∈P ev

(
S̈(ev, pe

v

i )wN+

L̈(ev, pe
v

i , ke
v

)

)
⎞
⎟⎟⎠
⎤
⎥⎥⎦ (6)

The constraints for SiMPLE ILP are presented in (7) - (13).

SNode and SLink capacity constraints are presented in (7)

and (8), whereas VNode demand constraint is given by (9).

Constraint (10) ensures that a VNode is mapped to exactly

one SNode. Path disjointness constraint is presented in (11).

Constraint (12) ensures that a total of ke
v

paths are found,

whereas (13) ensures that ke
v

is an integer between 2 and 5.

∀ns ∈ NS :
∑

nv∈NV

c(nv)×X(nv, ns) ≤ c(ns) (7)

∀es ∈ ES :
∑

ev∈EV

b(ev)

kev − 1
× Y (pe

v

, es) ≤ b(es) (8)

∀ev ∈ EV : Y (P ev , es)× b(ev)

kev − 1
≤ r(es) (9)

∀nv ∈ NV :
∑

ns∈NS

X(nv, ns) = 1 (10)

∀ev ∈ EV :
∑

pev
i ∈P ev

Y (pe
v

i , es) ≤ 1 (11)

∀ev ∈ EV :
∑

pev
i ∈P ev

∑
es∈pev

i

1

|p| × Y (pe
v

i , es) = ke
v

(12)

∀ev ∈ EV : (ke
v ∈ N) ∧ (2 ≤ ke

v ≤ 5) (13)

IV. PROPOSED GREEDY SOLUTION

The ILP model presented in Section III can find optimal

solution for small instances of the multi-path embedding

problem, but it will not scale with SN and VN size. In

this section, we propose a scalable greedy algorithm named

SiMPLE-GR to solve this problem. SiMPLE-GR assumes that

the node mapping has already been done, possibly using one

of the greedy approaches (e.g., First Fit [15]). SiMPLE-GR
iteratively computes a set of disjoint paths for each VLink,

and returns the result of embedding, or φ if none exists.



Algorithm 1 SiMPLE Greedy Algorithm, SiMPLE-GR

function SIMPLE-GR(GS , GV , ξN )

for all ev ∈ EV do
∀k ∈ {2, 3, 4, 5} : P k ← φ ∧ Cost(P k) ← ∞
for k ∈ {2, 3, 4, 5} do

E
S ← ES

for j ← 1, k do
Q ← Dijkstra (NS ,ES , ξN (evs), ξN (evd),

b(ev)
k−1

)

P k ← P k ∪Q
E
S ← E

S − P k

end for
end for
P ∗ ← min(P 2, P 3, P 4, P 5)
if Cost(P ∗) = ∞ then

return φ
end if
ξE(e

v) ← P ∗

end for
∀es ∈ ES ∩ P ∗ : update r(es)
return ξE

end function

The input to SiMPLE-GR, as presented in Algorithm 1, is

an SN GS , a VN GV , and its node mapping function, ξN .

In SiMPLE-GR, we split each VLink into no more than five

paths. This is because, we experimentally found that a higher

number of splits will cause a very high splitting, joining,

routing and delay overheads, which will eventually make the

embedding expensive and infeasible. For space constraints, we

skip the details of this experiment. SiMPLE-GR iteratively

works on each VLink of a newly arrived GV . The set P k

(initially empty) denotes the set of candidate paths selected

for split k, where 2 ≤ k ≤ 5 and k ∈ N . At each iteration of

k, SiMPLE-GR runs the Dijkstra’s weighted shortest path al-

gorithm to select a candidate path with the sufficient residuals

(b(ev) / (k − 1)) between the source and destination SNodes

of the corresponding VLink. This path is added to P k. To

maintain the disjointness constraint, the SLinks of the path

are temporarily removed from GS . After the end of this loop,

the discarded SLinks are restored, and the set of paths with the

minimal cost, P ∗, is calculated. If no such set is found (i.e.,

cost of P ∗ is ∞), SiMPLE-GR finds no feasible mapping

for this VLink (and hence GV ) and returns φ. Otherwise,

it updates the link mapping function ξE , and moves on to

process the next VLink. If the mapping of all the VLinks are

found in this process, SiMPLE-GR returns ξE . In this case,

GV is embedded onto GS , and the residual capacities in the

corresponding SLinks are updated.

V. PERFORMANCE EVALUATION

A. Simulation Setup

We consider the online version of the SVNE problem, where

each VN request is embedded as it arrives. We use the Fat tree

topology [3] to assess the behavior of SiMPLE in data center

TABLE I: Evaluation Environment

Characteristics Small Scale Large Scale

Fat-tree Arity 10 20
Number of SNodes 125 500

SNode Capacity [50, 150] [10, 50]
SNode Switching Cost [2, 7] [2, 7]

Number of SLinks 500 4000
SLink Capacity [70, 80] [70, 80]

SLink Delay [3, 15] [3, 15]
Split Cost 10 per split 10 per split
Join Cost 10 per join 10 per join

VNodes per VN [2, 6] [2, 10]
VNode Capacity [5, 20] [5, 20]

VLink Conn. Prob. 0.5 0.5
VLink Demand α% of [70, 80] [10, 20]

Total Number of VNs 300 300
Total Simulation Time 15000 15000
VN Arrival Rate, λV Pois{0.05} Pois{0.05}

VN Lifeime Geo{1000} Geo{1000}
Failure Arrival Rate, λF N/A Pois {0.05× γ}

Failure Repair Time N/A Geo{7000}

networks. To demonstrate SiMPLE-GR scalability, we present

the results on VN embedding performance at small scale, and

VN survivability at large scale. In small scale experiments,

we evaluate both SiMPLE-GR and the optimal solution,

SiMPLE-OP. The later is an implementation of the ILP model

presented in Section III-B using GLPK. This ILP model finds

an optimal embedding for all VLinks of a VN request. To

reduce the solution space, the GLPK implementation considers

the first 200-shortest loop-less paths between a pair of SNodes,

computed using Yen’s Algorithm [29]. However, we evaluate

only SiMPLE-GR in large scale experiments.

For all experiments, VN requests are generated by varying

their size randomly. We use Poisson process to model VN

arrival and SLink failure events. The VN lifetime is modeled

using a Geometric distribution. It is worth noting that, our

simulation setup and choice of different simulation parameters

are similar to the previous works [7], [25] on the SVNE

problem. Table I summarizes the simulation parameters. In this

table, [xmin, xmax] denotes a uniform distribution between

xmin and xmax. Pois{p} and Geo{g} stand for the Poisson

and Geometric distributions with mean p and g, respectively.

For our experiments, we use random node mapping, which

is less informed and thus makes the VLink embedding more

challenging than the systematic node mapping approaches.

We run our experiments under different levels of workload,

α, defined as the percentage of the average VLink demand to

the average SLink capacity. To observe the impact of different

workloads, α is varied from 10% to 60%. Furthermore, since

our focus is to mitigate SLink failures, we measure SiMPLE’s

ability to survive different failure levels, expressed as γ – the

ratio of the failure rate to the VN arrival rate. In large scale

experiments, we stress the SN with a lot of failures, even at a

rate higher than the VN arrival rate. For this reason, γ is varied

from 1 to 6. In addition, the Mean Time to Repair (MTTR)

is significantly higher than the mean VN lifetime (Table I) to

magnify the impact of failures.



B. Baseline Algorithms
We compare SiMPLE-GR and SiMPLE-OP to two proac-

tive approaches, Full Backup Scheme (FBS) and Shared
Backup Scheme (SBS).

1) FBS: In FBS, the full demand of each VLink is mapped

to two disjoint substrate paths, which are computed using

Dijkstra’s weighted shortest path algorithm. The shorter of

these two paths act as primary, whereas the other path is

reserved as backup.

2) SBS: The primary and backup path allocations in

SBS [13] are similar to that in FBS. However, in contrast to

FBS, multiple VLinks can share the same resources for their

backup flows. When a failure occurs, the affected VLinks try to

recover their full demand from the backup path. When multiple

VLinks try to use the same backup link simultaneously, fair

sharing policy is adopted.

C. Terminology

We use the following terms to analyze failure impacts.

1) Path Failure: A path failure event is defined as the

failure of one (or, more) SLink(s) belonging to a specific path.

At this state, the corresponding path cannot carry the flow from

the source to the destination SNode.

2) Affected VLink: A VLink is affected by a SLink failure

if and only if one (or, more) of its substrate paths fail(s). An

affected VLink may still retain its full demand depending on

the severity of failure. For example, both FBS and SiMPLE

retain their full demand in presence of a single SLink failure.

3) Failed VLink and Failed VN: A VLink is failed if and

only if all of its mapped substrate paths fail (i.e., when it meets

0% of its demand). A VN fails if and only if one (or, more)

of its VLinks fail(s).

D. Performance Metrics

Unless otherwise mentioned, the symbols used in this Sec-

tion have their usual meanings as described in Section III-B.

1) Profit, Ψ: We first define the revenue, Π(GV ), for a

VN as Π(GV ) = c1
∑

ev∈EV b(ev)+c2
∑

nv∈NV c(nv). Here,

c1 and c2 are application-specific constants that represent the

relative importance of bandwidth and CPU. The profit of GV is

defined by Ψ(GV ) = T (GV )×(
Π(GV )− Cost(GV )

)
. Here,

T (GV ) is the lifetime of GV , and Cost(GV ) represents the

total substrate cost for GV , as represented in (6). The overall

profit is given by, Ψ =
∑

∀GV Ψ(GV ).
2) Acceptance Ratio, AR: It is the ratio of the number of

accepted VNs in the system (|ZA|) to the total number of VN

requests (|ZT|). Formally, AR = |ZA|/|ZT|, where Z
A ⊆ Z

T.

3) Average Fraction of Backup Bandwidth, B̂: For ev , Bev

is the ratio of its backup bandwidth allocation to its total

bandwidth allocation, i.e., Bev = |pevb |/∑pev
i ∈P ev |pevi |. Here,

|pevb | is the bandwidth consumption for backup path pe
v

b . The

average fraction of backup bandwidth is, B̂ = Avg
∀ev∈EV

(
B
ev
)
.

4) Average Splitting Overhead, Ŝ: The average split-

ting overhead is given by the average of the total split,

join, and switching cost for all VLinks, i.e., Ŝ =
Avg

ev∈EV

(
Ï(ev, P ev , ke

v

) +
∑

pev
i ∈P ev S̈(ev, pe

v

i )
)

5) Average Fraction of Survived Bandwidth, F̂: Let ẼV ⊆
EV denote the set of affected VLinks. For an affected VLink
ẽv ∈ ẼV , Fẽv represents the ratio of the available bandwidth to

its total demand. The average fraction of survived bandwidth

(F̂) of the affected VLinks is given by, F̂ =
Avg

∀ẽv∈ẼV

(
F
ẽv
)
.

6) Probability of Simultaneous VN Failures, Prob(ρi): Let

ρi denote the event of i simultaneous VN failures, and τi be

the duration of time for ρi. Prob(ρi) is denoted as the ratio of

its lifetime τi to total simulation time τ , i.e., Prob(ρi) = τi/τ .

7) Nine Availability: The availability of a system is often

represented by the number of nines in its uptime probability;

e.g., 1 or 2 nines imply that the probability of the system

being available is 0.9 or 0.99, respectively [10]. We compute

the nine availability of a failed VN, GV , as
(− log10 ω(G

V )
)
,

where ω(GV ) is the ratio of time GV is in failed state to its

lifetime.

E. Performance Evaluation Results

We evaluate the VN embedding performances in all four

schemes as follows.

1) Profit: In terms of Profit, SiMPLE-GR outperforms both

FBS and SBS approaches, and is very close to the optimal

result (SiMPLE-OP). Fig. 3a shows the profits for different

load (or, α). As shown in this figure, all approaches achieve

similar profits for small load (α ≤ 10). However, at increased

loads, the profits decrease for FBS and SBS, and SiMPLE-GR
achieves approximately 100% and 50% more profit than FBS

and SBS, respectively.

2) Acceptance Ratio: Results for the AR at different α
are given in Fig. 3b. According to these results, SiMPLE-GR
performs as good as FBS and SBS for small loads (α ≤ 10).

However, at large loads, AR of SiMPLE-GR exceeds these

two approaches by 20− 50%, and lies close to SiMPLE-OP.

3) Overhead: The overhead of the considered approaches

are evaluated from two perspectives – backup bandwidth

allocation and splitting overhead. SiMPLE-GR uses a very

small fraction of the total allocated bandwidth resource as

backup. For different α, the fraction B̂ is shown in Fig. 3c.

This figure shows that FBS uses more than half of its resources

for backup, regardless of α. On the contrary, B̂ is relatively

smaller for both SiMPLE-GR and SiMPLE-OP. The value B̂

for SBS is always small for all α, since SBS allows sharing

the same backup resource between multiple VLinks. However,

for heavier loads, SiMPLE uses approximately 40− 50% less

backup bandwidth than FBS, and performs very close to SBS.

The splitting overhead, Ŝ, of these approaches are shown in

Fig. 3d. According to these results, Ŝ in SiMPLE-GR or

SiMPLE-OP is roughly two to three times higher than that

in FBS or SBS. But this increase in splitting overhead comes

with the benefits of survivability guarantee and reduced backup

overhead. Moreover, with the built-in path splitting capability,

modern switches are expected to mitigate this impact.

4) Execution Time: The average execution time for embed-

ding a VN request in SiMPLE-OP and SiMPLE-GR is 61.72
and 0.95 seconds, respectively. This shows that SiMPLE-GR
is 50−60 times faster than SiMPLE-OP. A significant portion
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(a) Profit, Ψ vs. α
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(b) Acceptance Ratio vs. α

��

����

����

����

����

����

����

��� ��� ��� ��� ���

�
�	

�
�	

�


�
��
��
��
��

��
��
��
��
�
��

�


����������
���
	��������
���� !"#+
���� !",�

(c) Backup B/W, B̂ vs. α
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(d) Avg. Split Overhead vs. α

Fig. 3: Performance Analysis

of the execution time of SiMPLE-OP is consumed by GLPK

in finding an optimal solution. However, the performance of

SiMPLE-GR (as represented in Fig. 3) lies very close to

SiMPLE-OP in all cases. For large scale instances, GLPK

exceeds memory limits and cannot find a solution.

5) Discussion:
a) Profit vs. AR: From Fig. 3a, we observe that both FBS

and SBS suffer from decreasing profit with increasing α. This

reduction in profit is due to the lower AR, as presented in Fig.

3b. To embed the VLinks, SiMPLE relies on path splitting.

Since SiMPLE spreads the VLink demand across multiple

paths, it utilizes the substrate resources more efficiently, and

achieves a higher AR. On the contrary, FBS and SBS do not

rely on path splitting, and fail to achieve satisfactory AR due to

resource fragmentation. SBS utilizes resources more efficiently

than FBS because of backup resource sharing, and achieves

slightly better performance.

b) Profit vs. Overhead: In addition to providing a higher

profit as shown in Fig. 3a, SiMPLE requires a lower fraction of

backup bandwidth. This behavior is depicted in Fig. 3c. SBS

has the lowest backup bandwidth over all workloads α, which

is mostly due to the backup resources fair sharing policy. On

the contrary, because it is often not cost effective to split small

demands, SiMPLE has a slightly higher backup bandwidth

requirement than SBS at lower α. However, with increasing

α, the number of splits at each VLink increases. Therefore,

in SiMPLE, B̂ decreases, and becomes similar to SBS. At the

same time, path splitting allows SiMPLE to achieve a higher

profit than FBS and SBS. However, path splitting brings extra

overhead (see Fig. 3d) to SiMPLE. Nonetheless, this overhead

is compensated by larger profit, better acceptance ratio, and

lower backup bandwidth requirement.

F. Survivability Evaluation Results

We conducted experiments to evaluate survivability of

SiMPLE-GR, FBS, and SBS in the event of failures.

1) Impact of Failures: The impact of failures is evalu-

ated from two perspectives. First, we present the Cumulative

Distribution Function (CDF) for Prob(ρi) – the probability

of i simultaneous VN failures, for i = 0, 1, 2, . . . , imax,

where imax denotes the maximum number of simultaneous

VN failures. The CDF for γ = 5 is shown in Fig. 4a. Second,

we measure the fraction of failed VNs to total accepted VNs in

SN. For different γ, these results are shown in Fig. 4b. These

figures show that both simultaneous and total VN failures

are less likely to occur in SiMPLE-GR. In contrast, these

quantities are higher in FBS, and highest in SBS. For larger

γ, the number of failed VNs is approximately 50 − 100%
higher in FBS and SBS than that in SiMPLE-GR. These

results reveal that SiMPLE-GR provides the best resilience

to failures, whereas SBS performs worse than others.
2) Availability: The CDF of nine availability of the failed

VNs for γ = 5 are depicted in Fig. 4c. We see that a small

fraction of VNs have low nine availability in SiMPLE-GR.

In contrast, this fraction is much higher in case of FBS and

SBS. Therefore, compared to these two schemes, SiMPLE-GR
provides high availability to a higher number of VNs. For

example, the number of VNs with 68% or less availability

(0.5 nines) in FBS and SBS are roughly four times than that

in SiMPLE-GR.
3) Failure Tolerance: To evaluate the failure tolerance of

each of the considered approaches, we measure the average

fraction of survived bandwidth for affected VLinks, F̂. Fig. 4d

presents the changes in F̂ for different values of γ. In these

figures, we see that the F̂ obtained in SiMPLE-GR is within

5−10% of that in FBS for all values of γ. However, F̂ provided

by SBS is lower than the other two schemes. For larger values

of γ, F̂ obtained in SBS is approximately 50− 70% less than

that in SiMPLE-GR, which demonstrates a poor performance

of SBS in presence of frequent failures.
4) Discussion:

a) Impact of Failures vs. Availability: We see that SiM-

PLE outperforms FBS and SBS in both minimizing failure

impact (Fig. 4a, Fig. 4b) and achieving better availability (Fig.

4c). The superiority of SiMPLE is achieved due to embedding

VLinks over multiple disjoint paths. Since SiMPLE associates

more SLinks to each VLink ev , the minimum number of SLink

failures required for ev to fail also increases. In contrast, the

number of associated SLinks to ev in FBS and SBS are lower,

because they do not embed VLinks into multiple paths. Hence,

SLink failures are more likely to cause VLink (or, VN) failures

in these two approaches. For SBS, the SLinks in the backup

path of a VLink ev1 may already be used by another VLink ev2
suffering from SLink failure, which makes ev1 more vulnerable.

For these reasons, SBS suffers from failures more than FBS,

while SiMPLE outperforms both of these approaches.
b) Impact of Failures vs. Fault Tolerance: The correla-

tion between low impact of failures (Fig. 4a, Fig. 4b) and high

fault tolerance (Fig. 4d) in SiMPLE is also part of its main

concept, i.e., path splitting with minimal backup. We have

seen how path splitting increases survivability by associating

multiple SLinks to each VLink. In addition, we notice that the
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(a) CDF of Prob(pi), γ = 5
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(b) Failed VNs vs. γ
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(c) Nine availability CDF, γ = 5

����

����

����

��� 

���!

���"

����

��

�� �� �� �� �� ��

	�

�
�
�
��
��

��
��
�

��

��
�

��

�

�

�

	�����
����
��
�����
����
�
����� !

(d) Survived B/W, F̂ vs. γ

Fig. 4: Survivability Analysis

number of operational SLinks in an affected VLink ev is also

high. These fully operational SLinks facilitate ev to retain its

full demand (for a single SLink failure), or a high fraction of

it (for multiple SLink failures). In SiMPLE, F̂ is very close to

that of FBS. However, FBS needs dedicated backup path with

full demand unlike SiMPLE. The backup path sharing in SBS

makes it vulnerable to multiple and frequent failures.

VI. RELATED WORKS

SVNE literature can be broadly categorized into two main

classes: protection and restoration [14]. Protection is per-

formed in a proactive way by provisioning additional resources

as backup before any failure. Several research works, includ-

ing [6] and [25], formulated two separate LP models for

VLink embedding, which allocate full demand of each VLink

along a primary path and a disjoint backup path. These full

backup schemes result into poor bandwidth utilization. Shared

backup schemes, on the other hand, allow multiple VLinks to

share backup resources allocated to each end-to-end path [7]

or SLink [13]. These approaches do not offer bandwidth

guarantee. In contrast, restoration approaches do not allocate

any backup bandwidth in advance, and attempt to reallocate

the end-to-end path or re-embed an affected VN after an SLink

fails [19]. Such reactive approaches require time to converge,

leaving VNs inactive during such periods. Rahman et al. [24]

proposed a hybrid mechanism which computes a set of backup

detours for each SLink before any VN request arrives. Upon an

SLink failure, a reactive optimization mechanism reroutes the

affected data streams along the pre-computed backup detours.

However, in a highly saturated substrate, this mechanism may

not find enough resources left for the recovery.

Path splitting approaches provide VN survivability with-

out the use of backup resources [31]. This is advantageous

compared to single path approaches where a failure requires

activating the backup paths or detours. Oliveira et al. [22], [23]

proposed multi-path embedding for VN survivability using

both proactive and reactive approaches. The proactive strategy

attempts to mitigate the impact of failures in one of the

survived paths. On the other hand, the reactive strategy aims at

partially or fully recovering the capacity of the affected SLinks

through reconfiguration. However, none of these approaches

can guarantee full recovery of a VLink demand even in the

case of a single SLink failure.

Network survivability in Optical and Multi-Protocol La-

bel Switched (MPLS) networks is usually considered dur-

ing the network design. The solutions in these domains,

e.g., [17], [18], [27] assume that traffic demands are known

in advance (i.e., offline). In contrast, SVNE is online; it needs

to provide survivability for unpredictable VN request arrivals

and demand patterns. Furthermore, SVNE solutions have to

ensure the intactness of all VLinks in presence of failures. This

restriction is not present in Optical/MPLS networks, where the

goal is to ensure connectivity in the network.

Due to the importance of providing high service availability

in Cloud environments, recently there is a trend towards

designing survivable resource allocation schemes for band-

width constrained data centers [2], [4], [30], [32]. Xu et

al. [28] proposed a resource allocation scheme for provisioning

virtual data centers with backup virtual machines and links.

Bodik et al. [5] proposed an optimization framework for

improving survivability while reducing the total bandwidth

consumption in the core of the data center network. Zhang et

al. [32] proposed a framework for reliable virtual data center

embedding in clouds by considering heterogeneous failure

rates. SiMPLE differs from these works in its objective of

simultaneously optimizing VN survivability, bandwidth usage,

and path splitting overhead.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented SiMPLE which exploits

the substrate network’s path splitting capability for survivable

embedding of virtual network requests. Compared to existing

approaches, SiMPLE reserves less backup bandwidth, yet

guarantees virtual link survivability in presence of a single sub-

strate link failure. In case of multiple link failures, the survived

bandwidth of the affected virtual link(s) is better than that

of FBS and SBS. Simulation results have demonstrated that

SiMPLE reduces the failure percentage by at least 50% over

those two schemes, and provides better availability of VNs.

In addition, backup bandwidth overhead in SiMPLE is 50%
less than that of FBS, and lies very close to SBS. Finally, the

path splitting overhead incurred by SiMPLE is compensated

by guaranteed survivability, increased profit, better acceptance

ratio, and lower backup bandwidth requirement.

As a future extension of this work, we intend to evaluate the

performance of SiMPLE through a prototype implementation

in an SDN environment for supporting path splitting in the

substrate. We also would like to extend SiMPLE’s link em-

bedding concept towards a coordinated node and link mapping

strategy. Finally, it would be interesting to extend this work to

multi-layer NV environment that could raise further challenges

because of the need for cross layer optimization.
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