
Zhihong Liu*+, Qi Zhang+, Mohamed Faten Zhani+, Raouf Boutaba+,

Yaping Liu* and Zhenghu Gong*

 *National University of Defense Technology, China

 +University of Waterloo, Canada

DREAMS: Dynamic REsource Allocation

for MapReduce with Data Skew

Outline

 Introduction

Our solution

Evaluation

Conclusion

Introduction

Introduction

4,000,000 search

queries

2,460,000 pieces of

 new content are shared

270,000 tweets

72 hours of new

videos are uploaded

Source: Josh James. Data Never Sleeps 2.0, https://www.domo.com/blog/2014/04/data-never-sleeps-2-0/

Introduction

 MapReduce is a popular framework for big data analytics

 Data skew in MapReduce

Split 1t

Split 1t

Split 1t

M1

M2

M3

P1

P2

P1

P1

P1

P2

P2

P2

Output 1t

Output 1t

R1

R2

Map Stage Reduce Stage

Hash(Key) mod Num. of Reducers

K
ey

-v
al

u
e

p
ai

rs

H
as

h
 P

ar
ti

ti
o
n

Introduction

 Resource management schemes in Hadoop

 Limitations

 Assume the same kind of tasks (map or reduce) in a job has

uniform resource requirement

 Do not support dynamic resource allocation to each task

 1) Prolonging the job completion time

2) Reducing the resource utilization

Map slot

Map slot

Reduce slot

Reduce slot

Container

Container

Container

slot-based container-based

Introduction

 Existing solutions

 Rebalance the key-value pairs among reduce tasks based on the

key distribution

 cause a synchronization barrier

 Run speculative tasks on other machines

 may waste resource while omitting the correlation between task load and

progress rate

 Repartition the unprocessed load of slow tasks to another tasks

 incur large overhead to repartition the load

Our solution

DREAMS

 Eliminates the overhead of rebalancing the load

 Mitigates data skew at run-time

 Simple to implement

 Needs job profiles

Dynamically adjusting the container size

based on the load of each reduce task,

thereby mitigating the negative impact of

data skew

Challenges

 How to predict the load of each reduce task at

run-time?

 How much amount of resources should be

allocated to each reduce task?

Challenge One

How to predict the load of each reduce task

 Using linear regression

 Fj is the percentage of map tasks that have completed

 Si
j is the size of the partitions generated by the completed map

tasks for reduce task i

 Once a threshold δ (e.g. 5%)is reached, we finalize the linear

model.

InvertedIndex on Wikipedia dataset

Load of the

reduce task

Challenge Two

How much resource should be allocated?

 We need to know:

What is the relationship between the task duration and

the task load?

What is the relationship between the task duration and

the resource allocation?

f(Task load, Amount of resource)

Task duration =

The relationship between task duration and task load

(a) InvertedIndex 10G (b) InvertedIndex 10 and 20G

The task duration is linearly correlated with the task load

Task load (MB) Task load (MB)

The relationship between task duration and CPU

(a) Sort10G (b) InvertedIndex 10G

The task duration is inverse proportionally correlated with the

CPU allocation

The relationship between task duration and memory

(a) Sort10G (b) InvertedIndex 10G

Memory is not the bottleneck resource for this workload

(G) (G)

Reduce task performance model

  Use non linear regression to determine the

coefficient factors

 Each tuple of (Ti, Pi , D, Alloci
cpu) is a

training data

 This performance model is used as a job

profile for allocating resource

f(Task load, Amount of resource)

Task duration =

Ti task duration

Pi task load

D sum of all

reduce loads

Alloci
cpu CPU

allocation

Architecture of DREAMS

NodeManager

Map 1

Map 2
...

P1 Pn...P2

P1 Pn...P2

Application Master

Partition Size Predictor

Resource

Allocator

Job Profile
Job Profile
Job Profile

Task Duration

Estimator

Resource Manager

Fine-grained Container

Scheduler

Partition Stats Report

Resource Request

Resource Response

Partition Size Monitor

NodeManager

Map 3

Map 4
...

P1 Pn...P2

P1 Pn...P2

Partition Size Monitor

NodeManager

Map 5

Map 6
...

P1 Pn...P2

P1 Pn...P2

Partition Size Monitor

Container Launch

①

②

③

④

Evaluation

Evaluation

 Accuracy of reduce task load prediction
 Metric

 Results

Different datasets Different slowstart settings

Accuracy of reduce task performance model

 Metric

 Results

Different datasets Two kinds of validations

Job performance evaluation

(a) Sort (b) InvertedIndex

20.3% speedup

Task execution timeline

(a) Sorting 10G with Native (b) Sorting 10G with DREAMS

The straggling tasks prolong

the job completion

Resource utilization

(a) Sorting 10G with Native (b) Sorting 10G with DREAMS

Better utilization

Conclusion

Conclusion
 We present DREAMS, a framework that mitigates the data skew

for MapReduce by adjusting the container size at run-time

 We develop an partition size prediction model

 Perform at run-time

 The error rate is less than 8.2%

 We design a reduce task performance model

 The worst error rate is 19.57%

 We demonstrate the benefits of leveraging resource-awareness for data

skew mitigation

 Eliminate the overhead of rebalancing the load

 Improve the job running time by up to 20.3%

Thank you 

Questions?

