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Introduction 

4,000,000 search 

queries 

2,460,000 pieces of 

 new content are shared 

270,000 tweets  

72 hours of new  

videos are uploaded 

Source: Josh James. Data Never Sleeps 2.0, https://www.domo.com/blog/2014/04/data-never-sleeps-2-0/ 



Introduction 

 MapReduce is a popular framework for big data analytics 

 

 Data skew in MapReduce 
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Introduction 

 Resource management schemes in Hadoop 

 

 

 

 

 

 

 Limitations 

 Assume the same kind of tasks (map or reduce) in a job has 

uniform resource requirement 

 Do not support dynamic resource allocation to each task 

 1) Prolonging the job completion time 

2) Reducing the resource utilization 
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Introduction 

 Existing solutions 
 

 Rebalance the key-value pairs among reduce tasks based on the 

key distribution 

 cause a synchronization barrier 

 

 Run speculative tasks on other machines 

 may waste resource while omitting the correlation between task load and 

progress rate 

 

 Repartition the unprocessed load of slow tasks to  another tasks  

 incur large overhead to repartition the load  

 



Our solution 



DREAMS 
 

 

 

 

 

 Eliminates the overhead of rebalancing the load 

 Mitigates data skew at run-time 

 Simple to implement  

 

 

 Needs job profiles 

Dynamically adjusting the container size 

based on the load of each reduce task, 

thereby mitigating the negative impact of 

data skew  
 



Challenges  

 

 How to predict the load of each reduce task at 

run-time? 

 

 How much amount of resources should be 

allocated to each reduce task? 

 



Challenge One 



How to predict the load of each reduce task 

 Using linear regression 

 

 

 Fj is the percentage of map tasks that have completed 

 Si
j is the size of the partitions generated by the completed map 

tasks for reduce task i 

 

 Once a threshold δ (e.g. 5%)is reached, we finalize the linear 

model.  

InvertedIndex on Wikipedia dataset 

Load of  the 

reduce task 



Challenge Two 



How much resource should be allocated?  

 We need to know: 

 

What is the relationship between the task duration and 

the task load? 

 

What is the relationship between the task duration and 

the resource allocation? 

 

f(  Task load,  Amount of resource ) 
 

Task duration = 



The relationship between task duration and task load 

(a) InvertedIndex 10G (b) InvertedIndex 10 and 20G 

The task duration is linearly correlated with the task load 

Task load (MB) Task load (MB) 



The relationship between task duration and CPU 

(a) Sort10G (b) InvertedIndex 10G 

The task duration is inverse proportionally correlated with the 

CPU allocation 



The relationship between task duration and memory 

(a) Sort10G (b) InvertedIndex 10G 

Memory is not the bottleneck resource for this workload 

(G) (G) 



 

 

 

 

 

 

 

Reduce task performance model 

 

 

 

 

 

  Use non linear regression to determine the 

coefficient factors 

 Each tuple of (Ti, Pi , D, Alloci
cpu) is a 

training data 

 This performance model is used as a job 

profile for allocating resource 

 

f(  Task load,  Amount of resource ) 
 

Task duration = 

Ti task duration 

Pi task load 

D sum of all 

reduce loads 

Alloci
cpu CPU 

allocation  



Architecture of DREAMS 
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Evaluation 



Evaluation 

 Accuracy of reduce task load prediction 
 Metric 

 

 

 

 Results  

 

 

 

 

 

 

Different datasets Different slowstart settings 



Accuracy of reduce task performance model 

 Metric 
 

 

 

 Results  

 

 

 

 

 

 

Different datasets Two kinds of validations 



Job performance evaluation 

 

 

 

 

 

 

(a) Sort (b) InvertedIndex 

20.3% speedup 



Task execution timeline 

 

 

 

 

 

 

(a) Sorting 10G with Native (b) Sorting 10G with DREAMS 

The straggling tasks prolong 

the job completion 



Resource utilization 

 

 

 

 

 

 

(a) Sorting 10G with Native (b) Sorting 10G with DREAMS 

Better utilization 



Conclusion 



Conclusion 
 We present DREAMS, a framework that mitigates the data skew 

for MapReduce by adjusting the container size at run-time 

 

 

 We develop an partition size prediction model 

 Perform at run-time 

 The error rate is less than 8.2% 

 

 We design a reduce task performance model 

 The worst error rate is 19.57% 

 

 We demonstrate the benefits of leveraging resource-awareness for data 

skew mitigation 

 Eliminate the overhead of rebalancing the load 

 Improve the job running time by up to 20.3% 



Thank you  

Questions? 


