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Abstract—The intra-cloud network is typically shared in a
best-effort manner, which causes tenant applications to have no
actual bandwidth guarantees. Recent proposals address this issue
either by statically reserving a slice of the physical infrastructure
for each application or by providing proportional sharing among
flows. The former approach results in overprovisioned network
resources, while the latter requires substantial management
overhead. In this paper, we introduce a resource allocation
strategy that aims at providing an efficient way to predictably
share bandwidth among applications and at minimizing resource
underutilization while maintaining low management overhead.
To demonstrate the benefits of the strategy, we develop IoN-
Cloud, a system that implements the proposed allocation scheme.
IoNCloud employs the abstraction of attraction/repulsion among
applications according to their temporal bandwidth demands
in order to group them in virtual networks. In doing so, we
explore the trade-off between high resource utilization (which
is desired by providers to achieve economies of scale) and
strict network guarantees (necessary for tenants to run jobs
predictably). Evaluation results show that IoNCloud can (a)
provide predictable network sharing; and (b) reduce allocated
bandwidth, resource underutilization and management overhead
when compared against state-of-the-art proposals.

I. INTRODUCTION

Cloud providers lack practical, efficient and reliable mech-
anisms to offer bandwidth guarantees for applications [1],
[2]. The intra-cloud network is typically oversubscribed and
shared in a best-effort manner, relying on TCP to achieve high
network utilization and scalability. TCP, nonetheless, does not
provide robust isolation among flows in the network [3]; in
fact, long-lived flows with a large number of packets are priv-
ileged over small ones (which is typically called performance
interference [4]) [5]. Moreover, recent studies [6], [7] show that
bandwidth available for virtual machines (VMs) in the intra-
cloud network can vary by a factor of five or more, resulting
in poor and unpredictable overall application performance.

The lack of network guarantees directly impacts both ten-
ants and providers. Tenants are unable to enforce the allocation
of network resources for their requests (which particularly
hinders applications with strict bandwidth requirements) and
can only deploy some specific enterprise applications in the
cloud [8]. Moreover, costs are unpredictable due to high net-
work variability (in many services, the subsequent computation
depends on the data received from the network [9], [10]).
Providers, in turn, may lose revenue, because performance
interference ends up reducing datacenter throughput [1], [6].

Recent proposals [3], [6], [8], [11], [12] address this
issue either by offering minimum guarantees or by providing

proportional sharing. The former explicitly reserves a slice of
the physical infrastructure for each application, which results
in overprovisioned resources for tenants (since the temporal
network usage of applications is not constant). The latter, in
turn, assigns administrator-specific weights for entities (such
as VMs and processes) in order to provide proportional sharing
at flow-level in the network. However, it requires substantial
management overhead, since bandwidth consumed by each
flow is determined according to its weight for each link in
the path, and large-scale datacenter networks can have over
10 million flows per second [13].

In this paper, we leverage the key observation that temporal
bandwidth demands of cloud applications do not peak at
exactly the same time [14], [15] and propose a resource
allocation strategy for reserving and isolating network re-
sources in cloud datacenters. It aims at minimizing resource
underutilization while providing an efficient way to predictably
share bandwidth among applications, with low management
overhead. To show the benefits of the strategy, we develop
IoNCloud (Isolation of Networks in the Cloud), a system
that implements the proposed allocation scheme. IoNCloud
employs the abstraction of attraction/repulsion among tenant
applications according to their temporal network usage and
need of isolation, and groups them into virtual networks (VNs)
with bandwidth guarantees. In doing so, we seek to explore
the trade-off between high resource utilization (a common goal
for providers to reduce operational costs) and strict network
guarantees (desired by tenants).

Overall, the major contributions of this paper are threefold.
First, we propose a topology-agnostic network-performance-
aware resource allocation strategy for cloud datacenters. It
improves network predictability by grouping tenant applica-
tions into virtual networks according to their temporal band-
width demands. Second, we develop IoNCloud, a system that
implements the proposed strategy for large-scale datacenters.
IoNCloud (i) groups applications in VNs; (ii) maps them on
the physical substrate; and (iii) provisions network resources at
each link the VN was allocated on according to peak aggregate
demands of applications in the same group that utilize the
link (i.e., the bandwidth required at the period of time when
the sum of network demands of applications belonging to the
same group is the highest). Third, we evaluate and show that,
in comparison with the state-of-the-art [6], IoNCloud provides
the same level of network predictability with less bandwidth
reserved for applications, reduced resource underutilization
and lower management overhead.

The remainder of this paper is organized as follows.



Section II examines related work. In Section III, we intro-
duce our resource allocation strategy (and its implementation,
IoNCloud), and Section IV presents the evaluation of the
proposed strategy. Finally, Section V discusses the generality
and limitations of IoNCloud, and Section VI closes the paper.

II. RELATED WORK

Most related approaches attempt to offer bandwidth guar-
antees by taking advantage of rate-limiting at hypervisors,
VM placement and VN embedding in order to increase their
robustness. They can be separated in three classes, as discussed
below.

Spatial-temporal awareness. Proteus [9], Choreo [16]
and the approach developed by Chen and Shen [15] use
spatial and temporal demands of applications to map them
in the cloud. However, they present some drawbacks. Proteus
requires a complex allocation scheme and provides only a rigid
network model for each application, defined at its allocation
time. Choreo requires its placement algorithm to have detailed
knowledge about current network state; such information may
not be easily obtained in large-scale datacenter networks. In
particular, Proteus and Choreo may add substantial manage-
ment overhead to achieve their goals. Finally, Chen and Shen
only focus on temporal demands of computing resources.

Network guarantees. Oktopus [6] and SecondNet [17]
provide strict bandwidth guarantees by isolating each applica-
tion in a distinct VN. Despite their benefits, these approaches
result in underutilization of resources and internal fragmenta-
tion of both computing and network resources upon high rate
of tenant arrival and departure. EyeQ [12] and Gatekeeper [18],
in turn, can offer bandwidth guarantees only when the core
of the network is congestion-free. Baraat [1] and Varys [10]
achieve high network utilization, but cannot provide strict
bandwidth guarantees for tenants. Finally, ElasticSwitch [8]
and the Logistic Model [3] are orthogonal to our approach,
as they assume there exists an allocation method in the cloud
platform (i.e., applications are already allocated).

Proportional sharing. Seawall [4] and Hadrian [11] allow
bandwidth sharing at link-level according to weights assigned
to VMs. FairCloud [19], in turn, proposes mechanisms that
explore the trade-off among network proportionality, minimum
guarantees and high utilization. These methods, however, re-
sult in substantial management overhead, because bandwidth
consumed by each flow at each link is determined according to
its weight in comparison to other flows sharing the same link
(and the intra-cloud network can have over 10 million flows
per second [13]).

In summary, these approaches either result in overprovi-
sioned network resources or require substantial management
overhead. Therefore, we introduce a resource allocation strat-
egy that aims at providing network predictability with reduced
bandwidth underutilization and low management overhead, and
materialize it by developing a system called IoNCloud.

III. IONCLOUD

The IoNCloud system implements our novel approach to
allocate tenant applications in large-scale cloud platforms. The
proposed strategy aims at providing performance predictability
in the intra-cloud network while minimizing resource under-
utilization. To achieve this, unlike previous work [6], [9],

[17], [18], IoNCloud groups applications in virtual networks
according to their temporal bandwidth demands.

In this strategy, all applications that belong to the same
group share the same set of (virtual) network resources (i.e.,
they have shared bandwidth guarantees). Virtual networks, in
turn, are completely isolated from one another, which means
that each group has a guaranteed amount of network resources.
An abstract view of IoNCloud is shown in Figure 1, which
depicts application requests being received and allocated in
two steps. The first step is responsible for application demand
analysis and grouping, while the second maps VNs (groups
composed of sets of applications) onto the physical substrate.
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Fig. 1: IoNCloud model overview.

We first discuss how to obtain network profiles of ap-
plications (Section III-A) and describe application requests
(Section III-B). Then, we present our novel strategy to group
complementary applications in VNs (Section III-C) and to
embed VNs on the cloud substrate (Section III-D).

A. Network Profile of Applications

IoNCloud assumes that network profiles were previously
generated (using techniques proposed in the literature, such as
the ones described by Xie et al. [9], LaCurts et al. [16] and
Lee et al. [2]) and, thus, uses such information as input for
incoming application requests. Like Choreo [16], IoNCloud
considers, in each profile, the number of bytes sent by the
application rather than the observed rate, as the former is
independent of network congestion.

In particular, we highlight the feasibility of obtaining
these profiles. Several studies [6], [9], [13], [15], [16] have
conducted experiments on VM resource utilizations during
both short- and long-term periods of time. Their main findings
are summarized as follows: i) application traffic patterns are
predictable; ii) VMs of the same application (such as MapRe-
duce) tend to have similar resource consumption; iii) the same
application running different datasets has similar patterns of
resource usage; and iv) periodical (e.g., daily) patterns of
resource utilization can be observed for long-term applications.

These results enabled the proposal of some techniques to
profile cloud applications. For instance, Xie et al. [9] and
LaCurts et al. [16] use network monitoring tools (sFlow and
tcpdump) to collect traffic traces (gathering application com-
munication patterns), while Lee et al. [2] discuss the utilization
of application templates (provided as a library for users). Xie et



al. also convert the output of these measurements into coarse-
grained pulse functions. Both studies perform these profiling
runs during a testing phase or in production environments,
which allows them to collect sufficient information to create
network profiles before running applications in the cloud.
Therefore, such techniques can be used for IoNCloud, so that
application profiles are known before allocation.

IoNCloud also considers applications that cannot have their
network profiles generated in advance (for instance, because
the application requires an elevated amount of resources to run
a profiling test or concludes very quickly). In such situations,
the time-varying function B(t) (detailed in Section III-B),
which indicates the temporal network demands of applications,
is represented by a constant function (i.e., the same band-
width requirement during the entire application lifetime). This
constant value is specified by the tenant when submitting the
request to the cloud.

B. Application Requests

Tenants request applications using the hose-model (simi-
larly to prior work [8], [9], [19], [20]). In this abstraction,
all VMs of an application are connected to a virtual switch
through dedicated bidirectional links. Each application request
is represented by its resource demand and formally defined
by <N, B(t)>, with the terms specifying the number of VMs
and the temporal bandwidth required by the application. The
bandwidth demand is a time-varying function B(t), similarly
to Proteus [9]. It represents the bandwidth required by the
application at time “t”. The amount of bandwidth of each
link connecting a VM to the application virtual switch is
represented by max(B(t)), which denotes the peak temporal
demand of the application’s VM. This fine-grained specifi-
cation allows IoNCloud to capture network requirements of
applications in a precise manner.

Without loss of generality, we follow previous work [6], [9]
and make two assumptions. First, we abstract away computing
resources and assume a homogeneous set of VMs (i.e., equal
in terms of CPU, memory and storage consumption). Second,
we consider that all VMs of a given application follow the
same network model1.

C. Application Demand Analysis and Grouping

This first step is responsible for analyzing network de-
mands of applications and grouping them in VNs. This way,
high resource utilization can be achieved without hurting
predictability.

Figure 2 shows an example of how IoNCloud performs this
process. In Figure 2(a), bandwidth requirements (dashed lines)
of two applications (A and B) are fully guaranteed through
a simple static reservation model (where the peak bandwidth
is reserved, represented by dotted lines). However, this basic
model causes underutilization of resources (shown by arrows
in the figure), as unused bandwidth of one application (virtual
network) cannot be used by any other application [8], [9].
IoNCloud, in contrast, enables applications with complemen-
tary bandwidth requirements to share network resources. This
is done by grouping them in the same VN and reserving

1Many applications, such as MapReduce (which represents an important
class of applications running in datacenters), have similar bandwidth demands
among their VMs [9].

the peak aggregate demand, represented by the dotted line
in Figure 2(b). Therefore, IoNCloud achieves better resource
utilization, since periods of low demand from one application
can be compensated by periods of high demand from other
ones. Note that IoNCloud removes performance interference
in the network by reserving the peak aggregate bandwidth
of the applications (that belong to the same group) sharing a
given link. Furthermore, it significantly reduces management
overhead when compared to Proteus [9], since the latter must
modify reservations as time passes by.

Algorithm. The key idea is based on minimizing the
amount of unused bandwidth for each group created (i.e., re-
ducing wasted bandwidth). Algorithm 1 retrieves one applica-
tion (app) at a time from the set of applications Applications
and verifies three possibilities of grouping: i) creating a new
group composed of app and another application from the set
Applications (i.e., trying all pairs of possible groupings of
app with other incoming applications and selecting the one
with least underutilization); ii) inserting app into one of the
existing groups; and iii) creating a new group with app only.
After verifying these possibilities, the best option is selected.
Finally, once the entire bundle of incoming applications has
been analyzed and included into groups, the algorithm con-
cludes, returns the set of groups and the process of allocating
each group (represented by a VN) on the cloud is started.

Algorithm 1: Network-aware group creation.
Input : Bundle of applications to be allocated in the cloud
Output: List of application groups GroupList

1 Create a set Applications with all incoming applications;
2 Create an empty set GroupList;
3 foreach app ∈ Applications do
4 Evaluate three possibilities of grouping:
5 Creating new group containing app and a chosen application from

Applications;
6 Including app in existing group of the set GroupList;
7 Creating new group with single application app;
8 Among the three above, select the option with least underutilization;
9 Remove grouped applications from Applications;

10 if new group was created then
11 Include new group in the set GroupList;
12 return the set GroupList;

D. Virtual Network Allocation

This step is responsible for allocating each VN (group
composed of applications that present complementary temporal
bandwidth demands) on the physical infrastructure.

A simplified example is shown in Figure 3, where there
are only two groups to be allocated, each one with two
applications. For each group, IoNCloud prioritizes clustering
VMs of the same application in the same physical server, since
good locality reduces the amount of network resources used
for intra-application communication2. For a single application,
VMs located in the same server do not consume network
resources when they communicate with each other. VMs
allocated in different servers, in turn, need a certain amount of
bandwidth to exchange data, which is given by the server with
the lowest peak aggregate rate for an application. Consider
“Server 1” (S1) and “Server 3” (S3) in the figure, which host
application 1 (app1). The bandwidth needed by VMs of this

2We follow related work [6], [9], [18] and consider only intra-application
communication when allocating applications in the cloud platform, as this type
of communication represents most of the traffic in the cloud [11].
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application for communication among themselves is given by
min(|S1,app1

|, |S3,app1
|) ∗ max(B(t)), where |Sx,app1

| repre-
sents the number of VMs of app1 placed at the xth server and
max(B(t)) denotes the peak bandwidth used by a single VM
during its lifetime. In this example, min(6, 2)∗15 = 30 Mbps.

15*2
(15*2) (10*2)

(10*2)

+

+

+

40

15 Mbps

10 Mbps

Time

B
a
n

d
w

id
th

Server 1

(10*2)
+

(10*2)

(5*2)

(5*2)

3*3

Group 1

Group 2

21

4

1111

1 1

11

22

2 2

22

22

33

3

33

3

4 4

44

4 444

4

15 Mbps (1)

10 Mbps (2)

3 Mbps (4)
5 Mbps (3)

Access (ToR) Access (ToR)

Time

B
a
n

d
w

id
th

Server 2 Server 4 Server 5Server 3 Server 6

(5*2)

+

13
(3*3)

(5*2)

Fig. 3: Shared bandwidth guarantees for applications.

A group of applications, in contrast, requires the peak
aggregate bandwidth demand of the group. Therefore, the allo-
cated bandwidth on each physical link l of a VN corresponds
to the peak aggregate demand of VMs in the group that use l.
This allocation is illustrated in Figure 3 in two situations: i)
when more than one application of the same group share a link,
the aggregate peak bandwidth of the VMs of these applications
is reserved: for instance, in Server 3, VMs of applications 1
and 2 from group 1 share the access link and, if they were
isolated, they would require 50 Mbps (15 × 2 + 10 × 2), but
only 40 Mbps is reserved because this is the peak temporal
demand of the group for this link (according to the temporal
demands of applications shown below the servers in the figure);
and ii) when a single application of a group uses a link, the
bandwidth reserved corresponds to the amount needed by its
VMs alone (other applications of the group do not need to
use that link, as we can see in core links). Last but not least,
note that VNs do not share bandwidth with one another (i.e.,
groups are completely isolated).

Algorithm. Algorithm 2 takes advantage of application
affinity to allocate VNs on the substrate3. Since locality is
key to make efficient use of resources, we address it with
two granularities: i) VMs of the same application are mapped
on the infrastructure according to a VM placement objective

3Like related work [6], [9], [18], [20], we assume the physical infrastructure
topology in cloud datacenters is defined as a multi-rooted tree [5].

(since IoNCloud is agnostic about VM placement, these ob-
jectives will be detailed after the overview of the allocation
algorithm); and ii) VMs belonging to applications of the
same group are allocated close to each other, because their
bandwidth demands are complementary and, thus, network
underutilization can be reduced (as determined by the grouping
algorithm in the previous step). The algorithm allocates one
VN at a time, with a coordinated node and link mapping,
following insights provided by Chowdhury et al. [21]. The first
step is the allocation of nodes (VMs) for each application in the
group, according to the VM placement policy defined. After
all VMs of a VN are allocated, the algorithm starts the second
step of the mapping, which is the allocation of bandwidth
for the group according to the example shown in Figure 3.
The algorithm returns a success code for each VN that was
embedded on the substrate and a failure code otherwise.

Algorithm 2: Virtual network embedding.
Input : Physical infrastructure P , Set of groups GroupList
Output: Success/Failure array allocated

1 foreach Group g ∈ GroupList do
// VM allocation

2 foreach Application app ∈ g do
3 Allocate VMs of app in the cloud infrastructure according to a

predefined objective (e.g., minimum bandwidth, energy consumption,
or fault tolerance);

// Bandwidth allocation
4 foreach Level lv from 0 to Height(P) do
5 Allocate bandwidth at lv according to demands of VMs at lower

levels (similarly to Figure 3);
6 allocated[g] ← success/failure code for the allocation of group g;
7 return allocated;

VM placement objectives. VM placement is often imple-
mented as a multi-dimensional packing with constraints being
defined according to a placement goal. IoNCloud currently
supports three different goals, as follows. First, MinBand
minimizes bandwidth consumption by clustering VMs of the
same application and of the same group on the smallest subtree
in the physical infrastructure (similarly to Ballani et al. [6]).
Second, MinEnergy follows insights from Mann et al. [22] and
uses a first-fit algorithm to reduce the number of servers turned
on, thus minimizing the total amount of power consumed
by these servers. Third, MaxFT considers fault tolerance by
spreading VMs on the cloud platform, so that applications
can survive upon link, switch and/or rack failures (similarly
to Bodík et al. [23]). The key idea is to increase the number
of servers used to allocate VMs in accordance to a given
spreading factor (sf ). In particular, the minimum number of
servers is determined considering the servers with available
resources, and the number of VMs from the application each
one of them can host. The new number of servers that will
host these VMs is determined by choosing the minimum value



between (i) the multiplication of the minimum number of
servers required to allocate such VMs and sf and (ii) the
number of VMs of the application: ExpectedNumSrvs =
min(MinNumSrvs(App) ∗ sf, NumVMs(App)).

Allocation quality. Algorithm 2 was designed as a con-
structive heuristic with the focus of providing efficient alloca-
tion of resources. It does not consider optimality, because it
is computationally expensive to employ optimization strategies
for large-scale cloud platforms [6], [20] and the allocation must
be performed as quickly as possible (since there are high rates
of tenant arrival and departure [4], known as churn). We defer
a detailed study of the advantages and drawbacks of employing
optimization models for IoNCloud to future work.

IV. EVALUATION

In this section, we demonstrate the benefits of IoNCloud for
both providers and tenants. Our evaluation focuses primarily on
quantifying the advantage of grouping applications in virtual
networks in terms of network predictability and resource
utilization. Toward this end, we first describe the environment
and, then, present the main results.

A. Environment

Datacenter topology. We follow previous work [6], [9],
[20] and implement a discrete-event simulator that models a
multi-tenant datacenter. We focus on tree-like topologies sim-
ilar to multi-rooted trees used in current cloud platforms [11].
The physical substrate is defined as a three-level tree topology
with 8,000 servers at level 0, each with 4 VM slots (i.e.,
with a total amount of 32,000 available VMs in the cloud).
Every machine is linked to a ToR switch (40 machines form
a rack), and every 20 ToRs are connected to an aggregation
switch. Finally, all aggregation switches are connected to a
core switch. Link capacities are defined as follows: machines
are connected to ToR switches with access links of 1 Gbps;
links from racks up to aggregation switches are 10 Gbps; and
aggregation switches are attached to a core switch with links
of 50 Gbps. Thus, the default oversubscription of the network
is 4.

Workload. In line with related work [6], [9], [11], we
generated the workload according to results obtained by mea-
surement studies [4], [13], [24]. More specifically, the work-
load is composed of requests of applications to be allocated in
the cloud platform. Requests are formed by a heterogeneous
set of applications (including MapReduce and Web Services),
which is representative of applications running on public cloud
platforms [5]. Each application is represented as a tuple <N,
B(t)>, with N being the number of VMs and B(t) a time-
varying function to specify the temporal network demand. The
former is exponentially distributed around a mean of 49 VMs
(representative of current clouds [4]). The latter was generated
following results obtained by Benson et al. [13] and Kandula
et al. [24] (we used measurements related to inter-arrival flow
time and size at servers to simulate application traffic).

B. Results

We compare IoNCloud, which employs shared band-
width guarantees, with the approach adopted by most related
work [6], [17], [18], which creates one virtual network per
application. Ideally, we would have compared IoNCloud with

Proteus [9]. Proteus uses as input pulse functions obtained
from the temporal network demands of applications. However,
the generation of such pulse functions is addressed as a black-
box in the paper and, thus, we cannot precisely develop a
generator that mimics its behavior.

As previously mentioned (Section III-D), the algorithm
used for virtual network allocation is agnostic in terms of VM
placement. Hence, three VM placement algorithms are used
in experiments: (i) MinBand, which minimizes the amount
of bandwidth reserved for communication between VMs; (ii)
MinEnergy, which minimizes energy consumption by reducing
the number of used servers; and (iii) MaxFT, which maximizes
fault-tolerance based on a given parameter (the desired ratio
of extra servers used for spreading VMs).

For all experiments, we plot the percentile difference
between both approaches given by the following equation:
( IoNCloud
One VN per App

− 1) ∗ 100%. Hence, negative percentiles mean
IoNCloud has achieved a lower value than traditional ap-
proaches, while positive percentiles mean IoNCloud has
achieved a higher value than traditional approaches. In general
lower values are better, with the sole exception being Figure 7.
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Fig. 4: Amount of reserved network resources.

Amount of reserved network resources. Figure 4 shows
the total amount of reserved network resources according to
the different placement algorithms. The y-axis represents the
percentile difference between both approaches regarding the
amount of bandwidth allocated, hence the lower the value,
the better. We see that for any given approach, the amount of
reserved resources increases in accordance with VM spreading.
As expected, the shared bandwidth mechanism employed by
IoNCloud outperforms the traditional methods when VMs are
spread around the network, as it reduces the amount of re-
served resources (up to 16.70%). This means that the provider
can accept more applications in the cloud, improve resource
utilization and, ultimately, increase datacenter throughput.

In contrast, IoNCloud is unable to achieve gains (in fact,
with 0.65% of overhead in the worst-case) when there is
no spreading, that is, when VMs are as packed as possible.
This happens because the resource reservation employed by
IoNCloud is performed per group, instead of per application
(as traditional approaches). Therefore, the bandwidth allocated
to each virtual link is only released after all applications in
the respective group have finished. This design choice was
deliberately chosen; such model can reduce the overhead of
calculating the amount of bandwidth to be deallocated for each
application that finishes its execution at each virtual link of the
group. Moreover, we expect VM spreading to be norm in real
cloud networks due to the high churn [4] of applications in
these environments.

We further analyze bandwidth allocation by measuring the



amount of reserved resources in access and aggregation levels4

of the topology for all VM placement algorithms. We see
in Figure 5 that IoNCloud allocates less resources at both
levels. In particular, note that IoNCloud has better results
in the aggregation. This effect also increases the chance of
allocating virtual links, since network oversubscription at this
level is higher than at the edge, and decreases the probability
of packet discards in the network (which usually happens at
this level [13]).
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Fig. 5: Per-level analysis of reserved network resources.

Underutilization in the network. Figure 6 depicts the
percentile difference of unused bandwidth for different place-
ment algorithms. Underutilization is quantified by measuring
the unused bandwidth on each virtual link. Lower values are
better, since they mean that the cloud infrastructure is making
better use of its reserved resources. As expected, IoNCloud
achieves lower underutilization than current approaches. In
fact, when compared to traditional schemes, IoNCloud is able
to reduce waste, saving up to 18% of resources.
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Fig. 6: Overall underutilization of resources.

IoNCloud can reduce resource underutilization, but it still
suffers from some underutilization. As mentioned in the pre-
vious experiment, this happens because the current implemen-
tation of IoNCloud performs bandwidth deallocation at group
granularity (as opposed to application granularity).

Ratio of Allocated VMs. This metric shows the proportion
of VMs that were allocated in servers. Higher values are better,

4In our experiments, there were no reserved resources at the core.

as the revenue of the cloud provider is proportional to the num-
ber of VMs it allocates. Figure 7 shows the difference between
VM allocation ratios. As observed, IoNCloud performs better
for all algorithms. Although the number of slots and VMs is the
same, the allocation ratio differs depending on the allocation
goal. This is because VMs can only be allocated if there is
enough bandwidth for guaranteeing the setup of virtual links.
Hence, reducing the amount of allocated bandwidth (as seen in
Figure 4) increases the acceptance ratio of VMs in the cloud
platform (since bandwidth is the bottleneck resource).
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Fig. 7: Ratio of VMs that were placed in physical servers.

To understand the behavior of VM rejection, we perform
experiments in a scenario were all datacenter links have
unlimited bandwidth. Table I shows a comparison between
both scenarios: normal and unlimited bandwidth. As can be ob-
served, the assumption that bandwidth consumption interferes
in VM allocation is verified, since all methods achieve 100%
allocation with unlimited bandwidth. Note that MinEnergy is
the only algorithm that achieves 100% VM allocation ratio
under normal conditions. This is because VMs are packed
together and fragmentation is minimal, thus, the majority of
VMs will be closer. When minimizing bandwidth (MinBand),
VMs may be allocated on free slots that are far from each
other, which means that virtual links have a higher probability
of reaching a bottlenecked physical link. MaxFT worsens this
behavior, as it explicitly allocates VMs farther from each other.

TABLE I: VM allocation ratio with normal and unlimited
bandwidth capacity on links.

VM placement goal Bandwidth
Normal Unlimited

MinBand 0.929 1
MinEnergy 1 1
MaxFT, sf=2 0.845 1
MaxFT, sf=3 0.892 1
MaxFT, sf=4 0.888 1

Link Sharing and Management Overhead. We also
measure the number of reservations over each link in the
datacenter network. Figure 8 shows the percentile difference of
the maximum number of virtual links allocated in the network.
We find that IoNCloud results in a significantly lower number
of reservations to be managed (which can be as high as 22.32%
less). In an environment as large and dynamic as a cloud
platform, where network devices are limited in terms of the
amount of control state and the rate at which these states
can be updated, this typically results in a reduced reservation
management overhead. Furthermore, during the experiments,
we observed relatively small absolute values (an overall value
of less than 10,000) for the number of reservations for all



strategies. This reflects the spatial locality applied by the
allocation algorithms and suggests that the bandwidth reserva-
tion schemes can be accomplished using technologies already
available in current datacenters (e.g., using rate-limiters in off-
the-shelf switches or programmability of hypervisors [9]).
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Fig. 8: Maximum number of allocated virtual links.

V. DESIGN DISCUSSION

Datacenter network topology. Current datacenters are
typically implemented through a multi-rooted tree topol-
ogy [11]. Therefore, in this paper, we focus on this kind
of topology to show the benefits of IoNCloud. However,
IoNCloud can be easily adapted for other topologies, such as
random graphs [25]. In particular, it can be applied to multi-
path topologies, both where load balancing is uniform across
paths and where it is not uniform. For the first case (e.g., Fat-
Tree), a single aggregate link can be used as a representation
for a set of parallel links for bandwidth reservation [6], [8].
For the latter, IoNCloud would have to use an additional
layer at hypervisor-level to control each path and its respective
bandwidth for communication between VMs.

Online allocation of applications. IoNCloud allocates
groups of applications in order to increase datacenter resource
utilization. In this context, there is, at least, two ways of
robustly providing online allocation for incoming application
requests: i) by allocating an incoming application to an existing
group; and ii) by allocating requests according to time slots.
The first approach is straightforward, but may introduce some
overhead to manage network resources when expanding an
existing group. The second one (which we employed in our
evaluation) takes advantage of high churn in cloud environ-
ments [4]. Thus, for each time slot (i.e., a predefined time
period), IoNCloud can allocate the set of incoming requests by
grouping them according to their bandwidth demands, without
modifying previously allocated groups (less overhead).

Generality of the network model. Currently, IoNCloud
adopts a single network model for all VMs of the same
application. Nonetheless, it requires no modification when
considering VMs of the same application with distinct network
profiles. However, it may add some complexity to the resource
allocation process. Another option is to extend the system
to enforce per-VM traffic models by reserving bandwidth on
links according to the VM with the highest demand in each
application (at the cost of some underutilization).

VI. CONCLUSIONS AND FUTURE WORK

We have introduced IoNCloud, a system that provides net-
work predictability while minimizing resource underutilization
and management overhead. To achieve this, IoNCloud groups
applications in VNs according to their temporal bandwidth

usage. Evaluation results show the benefits of our strategy,
which is able to use available bandwidth more efficiently,
reducing allocated bandwidth, network underutilization and
management overhead. In future work, we intend to extend
IoNCloud in two ways: i) by considering other objectives
for application grouping; and ii) by adding VM migration to
minimize network traffic.
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