
A Connectionist Approach to Dynamic Resource
Management for Virtualised Network Functions

Rashid Mijumbi∗, Sidhant Hasija∗, Steven Davy∗, Alan Davy∗, Brendan Jennings∗ and Raouf Boutaba‡
‡D.R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

∗Telecommunications Software and Systems Group, Waterford Institute of Technology, Ireland

Abstract—Network Functions Virtualisation (NFV) continues
to gain attention as a paradigm shift in the way telecommu-
nications services are deployed and managed. By separating
Network Functions (NFs) from traditional middleboxes, NFV is
expected to lead to reduced CAPEX and OPEX, and to more
agile services. However, one of the main challenges to achieving
these objectives is on how physical resources can be efficiently,
autonomously, and dynamically allocated to Virtualised Network
Functions (VNFs) whose resource requirements ebb and flow. In
this paper, we propose a Graph Neural Network (GNN)-based
algorithm which exploits Virtual Network Function Forwarding
Graph (VNF-FG) topology information to predict future resource
requirements for each Virtual Network Function Component
(VNFC). The topology information of each VNFC is derived from
combining its past resource utilisation as well as the modelled
effect on the same from VNFCs in its neighbourhood. Our
proposal has been evaluated using a deployment of a virtualised
IP Multimedia Subsystem (IMS), and real VoIP traffic traces,
with results showing an average prediction accuracy of 90%.
Moreover, compared to a scenario where resources are allocated
manually and/or statically, our proposal reduces the average
number of dropped calls by at least 27% and improves call setup
latency by over 29%.

Keywords—Network Functions Virtualisation, Resource Man-
agement, Artificial Intelligence, Topology Awareness, Neural Net-
works, Machine Learning.

I. INTRODUCTION

Service provision in the telecommunications industry has
traditionally been based on the use of specialised Network
Appliances (NAs) for each NF. This tight coupling usually
means that even slight changes in the operation of a given NF
could necessitate replacement of the NA on which it runs. This
short lifetime of the NAs leads to increased Capital Expenses
(CAPEXs). In addition, the fact that NAs are specialised
calls for specialised maintenance and limits flexibility, lead-
ing to increased Operating Expenses (OPEXs). These issues,
combined with the need for strict adherence to regulations,
network stability and service quality, usually lead to extended
product development cycles. Moreover, due to the fierce and
ever increasing competition from services provided over-the-
top, Telecommunications Service Providers (TSPs) have found
themselves with consistently reducing average revenues per
user, and therefore declining profitability. Therefore, TSPs are
faced with an urgent need to find innovative and less expensive
ways to increase and/or efficiently utilise network capacity and
functionality, and achieve better service agility.

NFV [1], [2] has been proposed as a possible path towards
this end. The main idea of NFV is to take advantage of recent
advances in virtualisation technologies to decouple NFs (e.g.

firewall, load balancing) from dedicated NAs so as to run them
in generic servers which may be located in datacenters or at
centralised TSP points of presence. Thanks to NFV, different
NFs can evolve independent of each other, and of hardware.
Furthermore, by running VNFs in virtualised resources (e.g.
Virtual Machines (VMs)), network resources can be efficiently
allocated through dynamic scaling. Finally, NFV promises
to lead to more efficient operations through automated and
centralised management of networks and services.

However, NFV is still in infancy and making its anticipated
gains a reality still faces a number of challenges. One of the
most important of these challenges relates to efficiently and
autonomously managing resources that are allocated to VNFs
[3]. Specifically, there is need for algorithms to determine how
resources from the Network Functions Virtualisation Infras-
tructure (NFVI) are shared among the VNFs. These algorithms
should have capabilities of scaling VNF resources vertically
and/or horizontally while meeting two conflicting objectives.
On one hand, VNFs should be allocated enough resources at
all times to meet service quality requirements. On the other
hand, only the needed amount of resources should be allocated
to the VNFs to ensure efficiency. Given that network traffic
and hence the load of such VNFs vary over time, and since
spinning-up new resources (horizontal scaling) may take some
time (in case the VNFs run in VMs), there is need for an
automated way of determining such resource needs ahead of
time so that resources are availed when needed without causing
system outages or inefficiently using them.

In this paper, we propose a topology-aware, dynamic and
autonomous system for managing resources in NFV based on
the concept of GNNs [4]. Our proposal is motivated by the
fact that in a Service Function Chain (SFC), network traffic tra-
verses VNFs in a sequence. This implies that resource require-
ments of a given VNF may depend on those of other VNFs
in the chain. Therefore, we start by modelling each VNFC1

in a SFC as two parametric functions, each implemented by a
Feedforward Neural Network (FNN). The task of each pair of
FNNs representing a given VNFC is to learn (in a supervised
way) the trend of resource requirements of the VNFC. This
is achieved by combining historical local VNFC resource
utilisation information with the information collected from
its neighbours to forecast future resource requirements of the
VNFC. In particular, the first FNN expresses the dependence
of the resource requirements of each VNFC on the resource

1A VNFC is an internal component of a VNF which provides a VNF
provider a defined sub-set of that VNF’s functionality, with the main character-
istic that a single instance of this component maps 1:1 against a single virtuali-
sation container [5]. According to the ETSI, while VNF implementations must
be standard and hence expose standard interfaces, VNFC implementations may
be VNF provider specific.

978-3-901882-85-2 c© 2016 IFIP 1 CNSM Full Paper

Virtualization
container such as a

VM

VNFC 1

VNF 1 VNF 2

VNFC 1

VNFC 2 VNFC 3

VNF 4

VNFC 1

VNF 3

Service Function Chain based on Virtualised Network Functions

VNFC 3 VNFC 4

VNFC 2 VNFC 5

VNFC 1VNFC 1

Fig. 1. NFV Service Function Chain. VNF 1 has a single VNFC while VNF 2 has multiple VNFCs. The VNFCs may be horizontally or vertically scaled.
While VNFs are connected to each other by directed links in a chain, the VNFCs may contain both directed and un-directed links, in a vendor-specific topology.

requirements of VNFCs in its neighbourhood. This is input into
the second FNN which forecasts the resource requirements of
the VNFC. The resource requirement forecast is in turn used to
automatically spin-up and configure new VNFCs or turn them
off as required, just in time. To the best of our knowledge,
dynamic and automated management of resources in NFV is
still an open research problem, and learning techniques based
on artificial intelligence are particularly interesting possible
solutions.

The rest of this paper is organised as follows: We describe
the problem in Section II and introduce GNNs in Section III.
The proposed GNN-based resource allocation model and the
corresponding learning algorithm are detailed in Sections IV
and V respectively. Our proposal is evaluated in Section VI,
related work discussed in Section VII, and the paper concluded
in Section VIII.

II. PROBLEM DESCRIPTION

The delivery of end-to-end services often requires packets,
frames, and/or flows to traverse an ordered or partially ordered
set of abstract NFs in what is known as an SFC. In NFV,
such NFs are deployed in virtualised resources, and are hence
known as VNFs. An example of such a SFC is shown in Fig.
1, in which the SFC is composed of 4 VNFs each connected
to others by a directed link. Each VNF may be composed of
one or more VNFCs, each hosted in a virtualisation container
(virtual machines, linux containers, etc.). The VNFCs in a VNF
are linked to each other by a combination of directed and
undirected links, and work together to provide the required
functionality of the VNF. Throughout this paper, Fig. 1, and
in particular VNF 2 and its internal structure (the topology
of constituent VNFCs) will be used as a running example to
illustrate various aspects of our proposal. However, we use
such specific and simple illustrations only to enhance clarity
for the reader. Our proposal can be applied with ease to any
SFC whose topology can be represented in the form shown in
Fig. 1.

In order to have the SFC shown in Fig. 1, a number of
problems should be solved. First, physical infrastructure must
be deployed. Then, there must be algorithms to optimise the
placement of virtual containers (or VNFs) onto the available
physical servers. Finally, throughout the lifetime of the SFC,
it is necessary to determine the actual amount of resources
allocated to each virtualisation container and/or how many
virtualisation containers are used for each VNFC. These three
problems are refered to as server placement, function place-
ment, and dynamic resource allocation respectively [3]. Server
placement and function placement have already attracted a

lot of attention, for example in [6], [7] and [8], [9], [10]
respectively, and are out of scope for this paper.

In this paper, we focus on dynamic resource allocation. We
consider that the VNFs (and hence VNFCs) have already been
placed/mapped in the respective virtual resources on which
they run. This work is motivated by the fact that the resource
requirements of each VNF change over time with changes
in traffic, which calls for ways of increasing and reducing
resources allocated to the VNFCs as needed. Even more, since
there is a non-negligible delay in spinning-up new resources
(such as VMs), waiting until the system is over-loaded so as
to scale resource up could negatively impact user QoS. In
addition, having to wait until the load has fallen below a certain
level to scale resources down could lead to inefficient resource
utilisation. Moreover in complex and big networks, the scale
involved cannot be managed manually, or this would end up
defeating one of the main selling points of NFV - which is
the flexibility and efficiency that comes with scaling resources
up and down. Undoubtedly, automating resource management
actions is a critical requirement for the success of NFV. Such
a resource management approach should ensure that while the
VNFCs have enough resources allocated to them at all times so
as to meet quality of service requirements, that these resources
are not left idle during periods of low resource utilisation. This
paper makes a contribution to this end. The next two sections
introduce the concept of GNNs and how it has been used to
develop a system that forecasts the resource requirements of
each VNFC, in order to obtain advance information of the
VNFC’s upcoming resource needs, allowing an orchestration
entity to satisfy such needs just in time.

III. GRAPH NEURAL NETWORKS

GNNs [4] are a supervised learning model aimed at solving
problems in the graphical domain. The main idea of GNNs is
to define each node n in the graph based on its features, fn,
and to complement this by the information (features) observed
in the neighbourhood, n�, of the node. While there may be
different definitions of neighbourhood, what is used in this
paper is a set of nodes directly connected to node n. Using
these two information sources, the GNN model determines a
state sn for each node n, which is then used to determine an
output on for the same node. The determination of the state
and output for each node is governed by equations (1) and (2)
respectively.

sn =
∑

m∈n�

hw

(
fn, fm, sm

)
, ∀n (1)

2 CNSM Full Paper

on = gw

(
sn, fn

)
, ∀n (2)

where fm and sm are the features and state of neighbour
m ∈ n∗ respectively. It is possible to also include the features
fmn of the direct link between n and m in equation (1)
only resulting in a problem with more dimensions. hw and
gw are parametric functions which express the dependence of
the state at each node on the state of its neighbourhood, and
the dependence of the node output on its state, respectively.
hw is known as the transition function while gw the output
function. Equations (1) and (2) represent the activity of a
network consisting of units which compute hw and gw for
each node. This is the main idea of GNNs, an information
diffusion mechanism, in which a graph is processed by a set
of units (hw and gw), each one corresponding to a node of the
graph, which are linked according to the graph connectivity.
These units update their states and exchange information until
they reach a stable equilibrium. Interested readers are referred
to [4] for more details about the model. It should suffice to
say here that by directing the diffusion process, the model is
expected to converge exponentially fast, and be stable while
determining the node states, and hence the GNN output.

IV. GNN-BASED DYNAMIC RESOURCE MANAGEMENT

Since neighbouring VNFCs will usually be part of the
same SFC, resource fluctuations at one VNFC are expected
to influence resource requirements at its neighbours as traffic
flows from one VNFC to the other. This dependency of VNFCs
on their neighbourhood makes the connectionist approach
derived from the GNN model an interesting fit as an approach
for managing resources in NFV. Therefore, the GNN-based
dynamic resource management system proposed in this paper
is derived from equations (1) and (2), and is shown in Fig. 2
for a single VNFC. As can be seen, the system is comprised
of four main components: (1) SFC features, (2) VNFC states,
(3) state computation, and (4) output computation. In what
follows, these components are described2.

A. SFC Feautures

The SFC features are the observations or monitoring data
from the VNFCs, and consitute the input to both hw and gw.
In an NFV environment, these features represent the network
parameters (such as CPU or RAM utilisation levels) that can
be measured. As proposed by ETSI [11], the SFC in Fig. 1 may
be represented as a VNF-FG. In this paper, we consider the
resulting VNF-FG at the granularity of VNFCs, i.e., the nodes
represented in the VNF-FG are VNFCs rather than VNFs.

Specifically, we model a SFC as a directed graph G(N,L),
where N represents the set of VNFCs and L the set of links
between these VNFCs. An example of such a representation
is given in Fig. 3 which is based on the SFC in Fig. 1. As
can be seen in the figure, any given subset of VNFCs make
up a VNF (e.g. n1, n2, n3, n4 and n5 make up VNF 2 from
Fig. 1). Each VNFC n ∈ N has a set of features fn ∈ R

DN

which represent a measurable resource for the VNFC, such
as VNFC memory mn, CPU cn, processing delay dn, etc. In

2It is worth noting that Fig. 2 only shows the model for a single VNFC.
Such a system would have to be duplicated for each VNFC in a given SFC,
with the resulting topology being based on that of the VNF-FG.

Features
of VNFC

Features

of all VNFC’s Neighbours

VNFC State

Output
(Resource
Forecast)

FNN FNN

States
of all Neighbours

VNFC States

SFC Features

Output
Computation

State
Computation

Fig. 2. GNN-based Resource Forecasting Model for a single VNFC

VNF 1

VNF 2

VNF 3

VNF 4

Fig. 3. SFC Modelling: VNFC Directed Graph

the same way, each link lnm ∈ L which connects VNFC n
to m is characterised by a set fnm ∈ R

DL of features, which
could represent link delay dnm, bandwidth bnm, etc. DN and
DL refer to the dimensions of the feature sets for VNFCs and
links respectively. Equations (3) and (4) show example feature
sets for VNFC n and link lnm respectively, for which DN = 3
and DL = 2.

fn =

⎡
⎢⎣
cn
mn

dn

⎤
⎥⎦ (3)

fnm =

[
bnm
dnm

]
(4)

The objective is to monitor the features of each VNFC over
time, and to use such historical observations, as well as the
historical observations from the VNFC’s neighbours to predict
its subsequent features, which − in this case − represent
future VNFC resource requirements. In order to define both
historic and future resource utilisation, we refer to the VNFC
and connected link features at (discrete) time step t by fn(t)
and fnm(t) respectively. At any time t, we should be able
to predict future resource utilisation using a finite horizon of
past resource utilisation measurements. We denote the number
of past measurements included in such a horizon as π. An
example of current (cn(t), mn(t) and dn(t)) and π previous
measurements is shown by the vectors in equations (5) and
(6). Using the observations represented by equations (5) and
(6), the objective is to predict − say − the CPU requirement
cn(t + τ) of VNFC n at a time τ time steps after t. In the
rest of this paper, wherever fn or fnm is used, it should be
interpreted to mean the set containing fn(t) or fnm(t) plus
the full history of features over the period π.

It is important to note that modelling of links and their
features is only included here for completeness of the model, as
the link features will not be used as neighbourhood information
for VNFCs. The reason is that we consider that the resource
utilisation profile of a directed link is directly dependent on

3 CNSM Full Paper

that of the VNFC at its source from which the traffic originates,
and hence, the information obtained from a VNFC would be
similar to that obtained from the link.

fn(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cn(t)

mn(t)

dn(t)

.

.

.

cn(t− π)

mn(t− π)

dn(t− π)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5) fnm(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bnm(t)

dnm(t)

bnm(t− 1)

dnm(t− 1)

.

.

.

bnm(t− π)

dnm(t− π)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

B. VNFC States

In line with the VNF design patterns proposed by ETSI
[5], we consider that VNFCs can be stateful, with each VNFC
n ∈ N having a state sn ∈ R

SD of dimension SD. The state
sn is derived from combining the features of a given VNFC
with those from other VNFCs in its neighbourhood using the
function hw. This implies that the state of a given VNFC is
dependent on the topology or connectivity of the VNF-FG.
Such topology-awareness is represented in Fig. 4 which shows
the dependencies of VNFCs in VNF 2 on each other. The Fig.
depicts that, for example, the state s1 of VNFC n1 is dependent
on the states s2, s3, s4, and s5 of all directly connected VNFCs,
as well as the corresponding features f2, f3, f4, and f5. The
state sn is determined using equation (1). This means that,
considering Fig. 4, the state s3 of VNFC n3 is given by (7).

s3 = hw(f3, f2, s2) + hw(f3, f1, s1) (7)

C. State Computation

State computation involves using equation (1) to determine
the state for each VNFC. However, as can be observed from the
equation, for any given pair of directly connected VNFCs, the
state of each of them depends on that of the other. Therefore,
the main task of state computation is to find a method to
solve equation (1). The existence and uniqueness of a solution
to (1) is guaranteed by Banach’s fixed-point theorem [4],
[12]. However, this requires that the global function hw is
a contraction map with respect to s, i.e., equation (8) must
hold for some constant 0 ≤ ρ < 1 and any two state vectors
sa, sb ∈ R

SD , where ||.|| represents a vector norm.

||hw(sa)− hw(sb)|| ≤ ρ||sa − sb|| (8)

When equation (8) is satisfied, state computation is
achieved using a classic iterative scheme given in equation
(9) where s(i) is the ith iteration of the computation. This
way, the function hw stores the current state s(i), and when
called, calculates the next state s(i + 1). It can be observed
that this makes the current state sn(i) of a VNFC n dependent
on the previous state sm(i− 1) of its neighbour m.

sn(i+ 1) =
∑

m∈n�

hw

(
fn, fm, sm(i)

)
, ∀n (9)

VNF 2

VNFC State VNFC Features

Fig. 4. States and Features from VNFC Neighbourhood. Each VNFC receives
as input the state and features from all VNFCs that have a directed edge
towards it. It is worth noting that the neighbourhood effects of VNFC’s 1 and
3 on 2 have been omitted from this figure and all the proceeding analyses only
for brevity, and keeping the representations simple. However, the proposed
solution takes into account the dependencies of all the VNFCs in the SFC.

Moreover, the dynamic system containing equation (9) for
all VNFCs in the SFC converges exponentially fast to the
solution of equation (9), i.e., convergence to the fixed point
[4]. The solution is equal to the convergence point of equation
(9) for any initial value s(0). In this paper, a FNN is used
as hw. This way, we can ensure that hw is a contraction map
by limiting its parameters, i.e., the range of values that the
weights w of the FNN can take on [13]. As will be discussed
in the next section, this is achieved by using an error function
designed with this requirement in mind.

D. Output Computation

Output computation involves taking as input the states
calculated by the hw functions in the previous subsection, and
combining it with the feature set of the VNFC to forecast a
future resource requirement. The final output (forecast resource
requirement) of a given VNFC is produced by another unit,
which implements gw for all VNFCs using equation (10).

on(i) = gw

(
sn(i), fn

)
, ∀n (10)

The function gw can be any general parametric function
as long as it can be trained in a supervised manner, and the
gradient of its output with respect to its input can be calculated.
The original model proposed by [4], which is also adopted in
this paper, uses a FNN for gw.

Summary: To summarise, the proposed model is defined by
equations (9) and (10) which takes as input the resource
utilisation observations (features) of a SFC and outputs, for
each VNFC, a forecast for the specified resource requirement.
The interaction between equations (9) and (10) is illustrated
in Fig. 5 for VNFC 2. It can be observed that we replace each
VNFC with a pair of parametric functions hw and gw. In fact,
we can say that each VNFC has one gw function and as many
hw functions as it has neighbours, with each hw computing
the effect of the neighbour on the VNFC’s state. These effects
are then summed up in line with equation (9). As already
discussed, each hw or gw is implemented by a FNN. Each
hw function stores the current state of the VNFC, and, when
activated, calculates the next state using the observed VNFC
features and the information (features and state) from a given
neighbour. The gw uses the state obtained from combining all
hw outputs to determine the final output (resource forecast) of
the VNFC.

4 CNSM Full Paper

Fig. 5. GNN-based model for VNF 2: Each VNFC replaced by two functions

SFC Encoding Network: As explained in section IV-C, state
computation entails an iterative approach using equation 9.
This may be achieved by representing the model in Fig. 5 as an
encoding network. In the encoding network, the model in Fig.
5 is unfolded into multiple layers, where all the gw functions
are placed in one layer, which is preceded by multiple layers
each of them having all the hw units. Each layer i corresponds
to an iteration in which the state s(i + 1) is computed for
each VNFC. The hw units of any two consecutive layers are
connected following VNF-FG connectivity. An example of
such an unfolded network is shown in Fig. 6 for VNFC 2,
for T iterations of state computation.

This process is summarized in algorithm 1. As can be
seen, the process consists of three main steps: (1) observing
the resource utilisation of the VNFC as well as that in its
neighbourhood, (2) using the observed resource utilisation to
determine the state of the VNFC, and (3) using results from the
first two stages to determine the forecast resource utilisation.

V. LEARNING AND ADAPTATION

In order to achieve forecasts that correctly approximate
actual resource requirements, the two functions hw and gw
must be trained. This involves using data that has both inputs
f and target outputs ξ, to adapt the weights w of the FNNs
to the task under consideration. In the case of the problem
addressed in this paper, we need to have sample data, that
shows for a given state (resource utilisation profile) sn(t), the
resource utilisation on(t+τ) at a given time in the future. This
learning task can be posed as the minimisation of a penalised
quadratic cost function (11).

ew =
∑
n∈N

(
1

2

(
on − ξn

)2

+ βL
(
on

))
(11)

The first term in equation (11) is the standard error term
usually used for training FNNs [14]. The second term is
a penalty function which is added to the error function to
ensure that the function hw is a contraction map. The relative
importance of the second term can be adjusted using the

. . .

. . .

. . .

. . .

. . .

State Computation Output Computation

Fig. 6. SFC encoding network to iteratively determine the states of VNFCs

constant β. The second term, which has been adapted from
the one used in [13], is meant to limit the values that can
be assumed by the weights w to low values. This is achieved
by using the function L (defined below) to penalise the FNN
whenever its output is above a given threshold μ, known as
the contraction constant. In this paper, since all inputs to the
system are first scaled to the range (0, 1), the constant μ and
β are both set to 1.

L(y) =

{
(y − μ)2 if y > μ

0 0

The learning objective is to find the weights w for each
hw and gw such that the cost function (11) is minimised. The
learning algorithm used in this paper is based on gradient-
descent, and involves four main steps:

1) At iteration k = 0, the weights w of hw and gw
respectively are initialized randomly between −0.5
and +0.5.

2) At each iteration k = k + 1, state and output
computation is done using equations (9), and (10)
respectively,

3) Computing the gradient
∂ew
∂w

of cost function (11)

with respect to the parameters w for all hw and gw,
4) Updating the weights w for all hw and gw using

equation (12), where α is the learning rate.

w(k + 1) = w(k)− α
∂ew
∂w

(12)

Steps 1 and 4 are obvious, while step 2 has been dis-
cussed in sections IV-C and IV-D. Step 3 is realised by
using backpropagation-through-time (BPTT) [15], [4]. BPTT
involves carrying out the traditional back propagation [15]
on the unfolded network (Fig. 6) to compute the gradient of
the cost function for each hw and gw and summing all the
gradients up. The learning and weight adaptation algorithm is
summarised in algorithm 2.

5 CNSM Full Paper

Algorithm 1 GNN-based Model for NFV G(N,E)

1: Initialise: w, iteration i = 0, state s(i) = 0 ∀n ∈ N

2: procedure OBSERVATION
3: Observe f for all VNFC’s and their neighbourhoods

4: end procedure

5: procedure STATE COMPUTATION
6: while (i < T) do
7: Compute s(i+ 1) using equation (9)
8: i = i+ 1
9: end while

10: end procedure

11: procedure OUTPUT COMPUTATION
12: Compute o(i) using equation (10)
13: end procedure

Algorithm 2 Learning and Adaptation

1: procedure LEARNING AND ADAPTATION

2: Initialise: w, k = 0
3: while (stopping criterion not satisfied) do
4: Compute state s and output o using algorithm 1

5:
∂ew
∂w

←− Back Propagation Through Time

6: Update w using equation (12)
7: k = k + 1
8: end while
9: end procedure

VI. EVALUATIONS

A. Experimental Setup

The proposed system has been evaluated using the setup
shown in Fig. 7. The deployment is comprised of 6 main
components: Clearwater cloud IMS, Openstack, User Equip-
ments (UEs), Monitoring, Domain Name System (DNS), and
the algorithms being tested. Clearwater [16] is an open source
IMS core, developed by Metaswitch Networks. It is composed
of five core nodes named bono, sprout, homestead, homer, and
ralf. Bono is a Session Initiation Protocol (SIP) edge proxy
which provides a Web Real-Time Communications (WebRTC)
interface to UEs. It is the anchor point for UEs to the
Clearwater system. Sprout is a SIP registrar and authoritative
routing proxy which handles UE authentication. It includes a
memcached cluster storing client registration data. Homestead
provides a web services interface to sprout for retrieving
authentication credentials and user profile information. It runs
as a cluster using cassandra as the store for mastered/cached
data. Homer is a standard XML Document Management
Server (XDMS) used to store multimedia telephony (MMTEL)
service settings documents for each user of the system using
cassandra as the data store. Ralf provides an HTTP API that
both Bono and Sprout can use to report billable events that
should be passed to the Charging Data Function (CDF). It
uses a memcached to store and manage session state.

In our implementation, UEs are realised using SIPp [17].
SIPp is an open source test tool/traffic generator for the SIP
protocol. Two SIPp instances were created each running in a
VM. Each SIPp instance has 50,000 unique registered users.

Bono Sprout

Ralf Homer Homestead
HSS Mirror
cassandra

XDMS
cassandra

Rf CTF
memcached

I/S-CSCF BGCF

memcached
P-CSCF,
WebRTC

Clearwater
virtualised

IMS

SNMPUEs
SIPp

GNN-based
Dynamic
Resource

ManagementDNS

Heat
Orchestration

SIP

CACTI
Monitoring

SUT

Fig. 7. NFV Implementation Used for Evaluations

Calls originate from users on one SIP instance to users on the
other. In order to monitor the resource utilisation of the VNFCs
in the system, we used Cacti [18] an open-source, web-based
network monitoring and graphing tool which polls all system
nodes using Simple Network Management Protocol (SNMP).
Finally, we use BIND [19] an open source implementation of
DNS to allow Clearwater nodes identify each other, and for
load distribution when any of the nodes has more than one
instance.

In the experiments, each of the Clearwater nodes represents
a VNFC3, and is hosted in a VM running in Openstack.
Therefore, the basic evaluation system deployment included
10 VMs running in Openstack (5 for Clearwater nodes, 2
for UEs, 1 for DNS, 1 for Cacti monitoring, and 1 hosting
the system under test (the proposed algorithms). These VMs,
and additional ones (for horizontal scaling of Clearwater) were
automatically deployed in Openstack using Heat Orchestration
Templates (HOTs) [20].

B. Setup Parameters

Each VM used in the tests has 1vCPU, 2GB RAM and 8
GB Storage, each running Ubuntu 14.04. Calls were generated
from one UE to the other following a Poisson distribution
with an average arrival rate of 10 calls per second, and each
call lasting an average of 180 seconds following a negative
exponential distribution. To model a time of day effect on
traffic arrivals, the above arrival pattern is repeated after every
50,000 calls, with the arrival rate and call duration being halved
and doubled alternately. During the duration of each call, real
voice and video media are transmitted between the UEs. The
voice/video content is derived from VoIP (Skype) traces [21]
which contain network traffic captured on the main link of
Politecnico di Torino involving Skype traffic from students,
researchers, professors and administration staff. The original
3.75 GB of end-to-end voice only and voice+video calls traces
with about 40 million packets was split into 40 .pcap files,
each with about 1 million packets. For each established call,
one of these media files (chosen at random) was played to
simulate real voice or video media. Three sets of experiments

3It is important to note that while our experimental setup involves multiple
VNFCs that make up a single VNF, it does not limit our proposal to a single
VNF. This is because irrespective of the number of VNFs or constituent
VNFCs, for as long as a topology of the functions in a SFC can be created,
then the GNN-based model can be used. This also includes situations where
the VNF may be a blackbox, in which case it would considered as having a
single VNFC.

6 CNSM Full Paper

0

10

20

30

40

50

60

0 200 400 600 800 1000

RM
SE

Training Iteration, each involving 10,000 examples

Ralf Bono Sprout
Homestead Homer Total

Fig. 8. Root Mean Square Error

1.40

1.44

1.48

1.52

1.56

1.60

0 200 400 600 800 1000

RA
M

 U
til

is
at

io
n

(G
B)

Test Number

Actual Output Expected Output

Fig. 9. Ralf RAM Utilisation

0.00

0.20

0.40

0.60

0.80

1.00

0 200 400 600 800 1000

%
 C

PU
 U

tli
sa

tio
n

Test Number

Actual Output Expected Output

Fig. 10. Homer CPU Utilisation

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 200 400 600 800 1000

D
el

ay
 (m

s)

Test Number

Actual Output Expected Output

Fig. 11. Homestead Processing Delay

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

%
 D

el
ay

 P
re

di
ct

io
n

Er
ro

r

Test Number

Error 100 period Mov. Avg.

Fig. 12. Percentage Error on Delay Prediction

0

0.2

0.4

0.6

0.8

1

100 400 700 1000

%
 C

PU
 U

til
is

at
io

n

Test Number

Static Manual Automated

Fig. 13. Percentage CPU for Homer

were done. In each experiment, measurements of resource
parameters (CPU, RAM, latency, Call drops) for all Clearwater
nodes were taken every 15s. The first experiment was used to
collect 10,000 data points which were used to train the FNNs.
The history and forecasting periods used were π = τ = 20,
implying that for each VNFC, the last 20 observations were
used to predict the resource requirement 20 time units in the
future. In the second experiment, The trained system was tested
to determine its prediction accuracy over 1,000 measurements,
in which case, every 15s, the system was run to determine an
output, and its output compared to the actual resource require-
ments 20 time units later. Finally, the system predictions were
used to actually effect resource allocations in the Clearwater
system. In this case, the system was programmed to effect a
deployment of a new VNFC whenever it predicted that the
% CPU utilisation of a given VNFC would exceed 40%, and
where possible (if more than one are available), to reduce the
number of deployed VNFC’s when the predicted utilisation is
20%. The motivation behind using 40% and 20% respectively
as the thresholds is VNF specific. In our monitoring of the
normal operation of the Clearwater VNF, we observed that the
VMs had a relatively low CPU utilisation most of the time, but
that beyond 40% of CUP utilisation, performance (call drops)
would degrade, while below 20% of CPU utilisation, the call
drop rate remained almost unchanged. It is worth noting that
these thresholds may be different for a different VNF. This was
compared to a scenario where the resources were not changed
at all (static), and another one where a manually programmed
deployment was performed. The main difference between the
manual programming and the proposal given in this paper is
that in the manual approach, the process of scaling resources
is only started after a given threshold is reached, while in our
proposal, the reaching of this threshold is predicted ahead of
time, and the scaling process started before the threshold is
actually reached.

C. Results

The evaluation results are shown in Figs. 8 - 16. Fig. 8
shows results from the first set of experiments (training), while
Figs. 9 - 12 evaluate the prediction accuracy of the trained
system. Figs. 13 - 16 are based on 100 period moving averages.
Results from evaluating the effect of the resulting system are
shown in Figs. 13 - 16. From Fig. 8, it can be observed that the
prediction root mean square error (computed using equation
(11)) is initially high, and falls almost exponentially until it
becomes stable after about 700 iterations (each with 10,000
training examples) of the learning and adaptation algorithm4.
It is worth remarking that for our experimental setup, each
iteration takes about of 45s to complete, giving a total training
period (for 1,000 iterations) of about 13hours. However, since
the learning/training phase is an offline process, it does not
affect the online performance of the system. After the training
period, the weights of all the FNNs in the model are saved in a
file, from where they can be loaded every time a prediction is
needed. Therefore, we observed that each online prediction
required about 2s, including the time required to read the
weights from a file. Moreover, in systems that are time critical,
the prediction system could be kept running, in which case the
time needed to load the weights from file can be saved. This
way, our evaluations showed that a prediction can be obtained
in about 5ms.

With a final RMSE of about 5 as shown in Fig. 8, and
considering this is the total error for 10,000 examples and
5 VNFCs, it can be concluded that the system achieves an
approximate accuracy of about 99% percent on the training
data set. However, this level of accuracy is not realised when
the system is tested on a new data set as shown in Figs. 9 - 11,
which show the prediction accuracy of the RAM utilisation for

4It should be mentioned here that the stopping condition in algorithm II is
1000 iterations.

7 CNSM Full Paper

0.00

0.50

1.00

1.50

2.00

2.50

3.00

100 400 700 1000

D
el

ay
 (m

s)

Test Number

Static Manual Automated

Fig. 14. Effect on Processing Latency

0

2

4

6

8

100 400 700 1000

D
ro

pp
ed

 C
al

ls
Th

ou
sa

nd
s

Test Number

Static Manual Automated

Fig. 15. Effect on Calls Dropped

0

10

20

30

40

100 400 700 1000

D
ro

pp
ed

 C
al

ls
Th

ou
sa

nd
s

Test Number

Static Manual Automated

Fig. 16. Cumulative Call Drops

ralf, CPU utilisation for homer, and request processing latency
for homestead respectively. First, it can be noted from Fig. 12
that the accuracy on latency prediction is about 90%. This loss
in accuracy can be explained by the error term used during the
weight learning phase which attempts to prevent the weights
from assuming large values. By limiting the value of the
weights, the FNNs may be prevented from generalisation with
high accuracy i.e., the capability to use acquired knowledge
on new tasks.

In Fig. 13, we show the evolution of % CPU utilisation
for homer for the three scenarios described above. It can
be observed that the proposed automated approach correctly
forecasts the trend in resource utilisation, and deploys an
additional homer VNFC, leading in a reduction in the load
of the current VNFC as the load is now shared. When the
utilisation reaches 40%, the manual scenario also triggers the
deployment of an additional homer VNFC, which takes some
time to start taking up load, but when it eventually does, the
resource utilisation of the original VNFC reduces compared
to the static scenario in which the number of VNFCs is
not altered. Similar profiles can be seen in the other two
cases when the utilisation crosses the 40% mark. It is also
worth noting that there is not a very big difference in the
performance of the manual and automated scenarios when the
resources have to be scaled down (when utilisation is below
20%). This can be explained by the fact that since it does not
require any preparation to shutdown resources (VMs in this
case), predicting the need to shutdown in the use case under
consideration does not give any advantage since in any case
both scenarios have to wait until a certain point is reached
before scaling down. However, both approaches would still
perform better than the static approach in which resources
would be left allocated, even when unutilised.

The performance results discussed above can still be ob-
served in Figs. 14 - 16 in which the automated approach
outperforms the other two approaches. In fact, it can be seen
that the total number of calls dropped due to the system being
overloaded over the entire testing period is 29% lower for the
proposed approach compared to the manual one. Moreover, it
is important to state that our prediction is mainly based on
system load, and does not take into consideration the effect
of traffic arrivals. It is possible that by attempting to predict
traffic arrivals, and incorporating this into the model may yield
better results. However, since we used synthetic traffic arrivals
(because we could not get more practical data), trying to
predict this could have been trivial. This could be an interesting
future consideration.

VII. RELATED WORK

Resource Management in NFV involves a number of sub-
problems [3]. However, until now most current approaches
have concentrated on the placement of servers [7] and VNFs
[9], [22], [23]. These approaches do not consider the need to
autonomously and dynamically scale the resources allocated
to VNFs whose load may vary over time. As stated in the first
NFV white paper [2] the automation and efficiency of such
processes is of paramount importance to the success of NFV.
This requires efficient and timely deployment and tear-down
of resource containers on which VNFs run to match changing
traffic.

With regard to dynamic resource management, three ap-
proaches are usually followed: control theory [24], [25], per-
formance dynamics modeling [26] and workload prediction
[27], [28]. However, such generic resource management ap-
proaches cannot be trivially applied to NFV environments
due to the additional challenges that result from the need
to simultaneously consider multiple resource types (such as
CPU, memory, latency). Moreover, these resource types are
not only segmented into many VNFCs and their connecting
links, but the VNFCs may also require different quality of
service guarantees.

Perhaps the closest approaches to the current work are
in [29], [30] where the authors propose machine learning
techniques for dynamic allocation of resources in network
virtualisation environments. The authors model the nodes and
links in a physical network as agents which use reinforcement
learning to allocate resources to virtual nodes and links as
requirements change. However, the nature of SFCs in NFV
present additional challenges since the graphs that represent
the VNFs are directed, which makes the VNFCs dependent
on each other, and hence the GNN approach proposed in this
paper more suitable in such a scenario.

In summary, our proposal enhances the state-of-the-art
in that it complements VNF placement which is quite well
studied, with a way to autonomously and dynamically scale
up and down the initially allocated resources. This way,
resources can be reserved for VNFs only when they are needed.
Moreover, GNNs as used in our proposal are well suited for
such a problem due to the ability to take advantage of topology
dependencies which result when the load of VNFs is dependent
on that of its neighbours. To the best of our knowledge, this is
the first attempt to automate resource management in NFV
through machine learning, and by taking advantage of the
topology of the VNF-FG.

8 CNSM Full Paper

VIII. CONCLUSION

In this paper, we have proposed an automated, dynamic
and topology-aware resource management approach for NFV
environments. The proposal models each VNFC in a SFC as
a pair of parametric functions which combine the observed
resource utilisation profile at a given VNFC with that observed
at its neighbours so as to predict future resource requirements.
The predicted resource requirements can then be used to spin
up new resources or plan global resource availability for the
whole system. Through evaluations using a deployment of a
virtualised IMS, and using real VoIP traces, we have evaluated
our proposal, and showed that it can achieve a prediction
accuracy of about 90%, and is able to enhance the processing
delay and call drop rate by 27% and 29% respectively.

However, there might be some room to improve the current
system so as to have even better generalisation accuracy
by considering error functions with different penalty terms.
Moreover, the backpropagation through time algorithm used
for training the SFC encoding network requires to store the
states of each parametric function. If the SFC is large, this
might require a considerable amount of memory. Therefore,
future work will attempt to find more efficient ways of training
the SFC encoding network.

ACKNOWLEDGMENT

This publication has emanated from research supported in
part by a research grant from Science Foundation Ireland (SFI)
and is co-funded under the European Regional Development
Fund under Grant Number 13/RC/2077.

REFERENCES

[1] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 236–262, Firstquarter 2016.

[2] R. Guerzoni, “Network Functions Virtualisation: An Introduction, Ben-
efits, Enablers, Challenges and Call for Action. Introductory white
paper,” in SDN and OpenFlow World Congress, June 2012.

[3] R. Mijumbi, J. Serrat, J. l. Gorricho, S. Latre, M. Charalambides,
and D. Lopez, “Management and orchestration challenges in network
functions virtualization,” IEEE Communications Magazine, vol. 54,
no. 1, pp. 98–105, January 2016.

[4] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, Jan 2009.

[5] ETSI Industry Specification Group (ISG) NFV, “ETSI GS NFV-SWA
001: Network Functions Virtualisation (NFV); Virtual Network Func-
tions Architecture,” http://www.etsi.org/deliver/etsi gs/NFV-SWA/001
099/001/01.01.01 60/gs nfv-swa001v010101p.pdf, December 2014.

[6] D. Ta, S. Zhou, W. Cai, X. Tang, and R. Ayani, “Network-aware server
placement for highly interactive distributed virtual environments,” in
Distributed Simulation and Real-Time Applications, 2008. DS-RT 2008.
12th IEEE/ACM International Symposium on, Oct 2008, pp. 95–102.

[7] R. Mijumbi, J. Serrat, J. L. Gorricho, J. Rubio-Loyola, and S. Davy,
“Server placement and assignment in virtualized radio access networks,”
in Network and Service Management (CNSM), 2015 11th International
Conference on, Nov 2015, pp. 398–401.

[8] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
Orchestrating Virtual Network Functions in NFV,” in 11th Interna-
tional Conference on Network and Service Management (CNSM) Mini-
Conference, 2015.

[9] H. Moens and F. D. Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in 10th International Conference on
Network and Service Management (CNSM) and Workshop, Nov 2014,
pp. 418–423.

[10] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C.
M. B. Duarte, “Orchestrating virtualized network functions,” IEEE
Transactions on Network and Service Management, vol. PP, no. 99,
pp. 1–1, 2016.

[11] ETSI Industry Specification Group (ISG) NFV, “ETSI GS
NFV 001 V1.1.1: Network Function Virtualization. Use Cases,”
www.etsi.org/deliver/etsi gs/NFV/001 099/001/01.01.01 60/gs
NFV001v010101p.pdf, October 2013.

[12] M. A. Khamsi and W. A. Kirk, Banach Spaces: Introduction.
John Wiley & Sons, Inc., 2001, pp. 125–170. [Online]. Available:
http://dx.doi.org/10.1002/9781118033074.ch6

[13] V. D. Massa, G. Monfardini, L. Sarti, F. Scarselli, M. Maggini, and
M. Gori, “A comparison between recursive neural networks and graph
neural networks,” in The 2006 IEEE International Joint Conference on
Neural Network Proceedings, 2006, pp. 778–785.

[14] R. Rojas, Neural Networks: A Systematic Introduction. New York, NY,
USA: Springer-Verlag New York, Inc., 1996.

[15] J. C. Principe, J. M. Kuo, and B. de Vries, “Backpropagation through
time with fixed memory size requirements,” in Neural Networks for
Processing [1993] III. Proceedings of the 1993 IEEE-SP Workshop,
Sep 1993, pp. 207–215.

[16] Metaswitch Networks, “Project Clearwater,” http://clearwater.
readthedocs.io/en/latest/index.html, June 2016.

[17] Rob Day, “SIPp,” http://sipp.sourceforge.net/, June 2016.

[18] The Cacti Group, Inc., “Cacti,” http://www.cacti.net/, June 2016.

[19] Internet Systems Consortium, “BIND,” https://www.isc.org/downloads/
bind/, June 2016.

[20] OpenStack, “Heat Orchestration Templates,” https://wiki.openstack.org/
wiki/Heat, June 2016.

[21] TSTAT, “TCP STatistic and Analysis Tool: Skype Traces,” http://tstat.
polito.it/traces-skype.shtml, June 2016.

[22] R. Mijumbi, J. Serrat, J. L. Gorricho, and R. Boutaba, “A path gener-
ation approach to embedding of virtual networks,” IEEE Transactions
on Network and Service Management, vol. 12, no. 3, pp. 334–348, Sept
2015.

[23] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca,
“The dynamic placement of virtual network functions,” in 2014 IEEE
Network Operations and Management Symposium (NOMS), May 2014,
pp. 1–9.

[24] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba, and
J. L. Hellerstein, “Dynamic energy-aware capacity provisioning
for cloud computing environments,” in Proceedings of the 9th
International Conference on Autonomic Computing, ser. ICAC ’12.
New York, NY, USA: ACM, 2012, pp. 145–154. [Online]. Available:
http://doi.acm.org/10.1145/2371536.2371562

[25] W. Pan, D. Mu, H. Wu, and L. Yao, “Feedback control-based qos guar-
antees in web application servers,” in High Performance Computing and
Communications, 2008. HPCC ’08. 10th IEEE International Conference
on, Sept 2008, pp. 328–334.

[26] W. S. Lai, M. E. Chiang, S. C. Lee, and T. S. Lee, “Game theoretic
distributed dynamic resource allocation with interference avoidance in
cognitive femtocell networks,” in 2013 IEEE Wireless Communications
and Networking Conference (WCNC), April 2013, pp. 3364–3369.

[27] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Dynamic
heterogeneity-aware resource provisioning in the cloud,” IEEE Trans-
actions on Cloud Computing, vol. 2, no. 1, pp. 14–28, Jan 2014.

[28] F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lilius, “Prediction-
based dynamic resource allocation for video transcoding in cloud com-
puting,” in 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, Feb 2013, pp. 254–261.

[29] R. Mijumbi, J. Serrat, and J. L. Gorricho, “Self-managed resources in
network virtualisation environments,” in 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), May 2015, pp.
1099–1106.

[30] R. Mijumbi, J.-L. Gorricho, and J. Serrat, Monitoring and Securing
Virtualized Networks and Services: 8th IFIP WG 6.6 Proceedings of
AIMS 2014, Brno, Czech Republic, June 30 – July 3, 2014. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, ch. Contributions to
Efficient Resource Management in Virtual Networks, pp. 47–51.

9 CNSM Full Paper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

