
Emulating an Infrastructure with EASE

Arup Raton Roy∗, Shihabur Rahman Chowdhury†, Md. Faizul Bari†, Reaz Ahmed†, and Raouf Boutaba†

∗Arista Networks

arup@arista.com
†David R. Cheriton School of Computer Science, University of Waterloo

{sr2chowdhury | mfbari | r5ahmed | rboutaba}@uwaterloo.ca

Abstract—In the last decade we have observed a tremendous
adoption of distributed applications and a trend to host services
in private or public clouds. However, service providers still need
to own an infrastructure to test their applications or services. A
similar problem is faced by network operators when they want
to introduce a new service in their production network. It is very
difficult to determine the behavior of a new application or service
without deploying it in the production environment. Bugs or
misconfiguration can cause service outage and trigger customer
churn along with loss of reputation. There are several publicly
available testbeds such as Emulab, GENI or OFELIA that allow
users to lease physical and virtual resources for emulation.
However, these testbeds do not provide performance guarantee.
Acquisition of physical instances provides performance guarantee
and isolation, but compromises overall system utilization. On the
other hand, acquisition of virtualized instances lack guarantee
and isolation resulting in an unrealistic emulation outcome. To
address these limitations, we propose EASE, a next generation
multi-tenant infrastructure emulator with an aim to maximize
hardware utilization while providing performance guarantee,
isolation and full-fledged support for SDN and NFV.

I. INTRODUCTION

Emulation as a Service (EASE) is a distributed virtualized

testbed that can emulate an entire infrastructures consisting

of compute, storage and networking resources. The primary

reasons behind developing a new testbed are providing per-

formance guarantee, reproducible emulation environment, sup-

porting more users and finally providing performance isolation

between testbed users. None of the existing state-of-the-

art testbeds, e.g., Emulab [1], GENI [2], and OFELIA [3],

support these features. We performed a simple experiment with

Emulab to provide a motivating example.

 60

 70

 80

 90

 100

 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Background Traffic (Mbps)

Emulab

Fig. 1. Traffic throughput in Emulab

We deployed Internet2 [4] topology on Emulab using Xen

virtual nodes. As per Emulab’s policy, the maximum link

bandwidth was set to 100 Mbps. We generated background

traffic by randomly selecting some links and sending UDP

packet bursts. Then we selected a fixed link (not part of the

background traffic), and measured its maximum achievable

throughput periodically while increasing the amount of back-

ground traffic. Fig. 1 shows the measured throughput with

increasing background traffic. After the background traffic

goes beyond 400 Mbps, throughput starts dropping sharply.

This situation demonstrates that Emulab cannot provide per-

formance guarantee even between the resources belonging to

the same user. GENI and OFELIA were developed based on

Emulab node [2], so they also suffer from similar problems.

EASE overcomes this problem by ensuring performance

guarantee and isolation between testbed users. It allocates

virtual resources such as Virtual Machines (VMs), Virtual

Switches (VSs), and Virtual Links (VLs) for each user based

on their emulation specification. Moreover, EASE uses the no-

tion of time dilation to support more users than other testbeds

with the same amount of physical resources. Specifically, it

can slow down time for a VM or VS by altering the time

management mechanism of the hypervisor and provide the

illusion of more resource than what is actually allocated on the

physical infrastructure. This way EASE can provide resource

guarantee even if sufficient resources are not available.

The requirement for an infrastructure emulator such as

EASE is driven by the increasing number of distributed

applications and systems such as social networks, steaming

services, smart-phone applications, etc. If a Service Provider

(SP) is updating a service or deploying a new service, then

there is no way to test the performance (or functionality) of

the service beforehand without deploying it in the production

system due to the following factors: (i) equipment purchase

and maintenance cost and (ii) most SPs use cloud based

services. In a real deployment, the service needs to work

smoothly under different types of load and failure scenarios

to avoid customer churn and loss of reputation. This brings

in the compelling need for infrastructure emulators, allowing

SPs to test a service under different emulated conditions.

Our key contributions in this paper are as follows:

• EASE dilates time to emulate a virtual infrastructure on

top of a physical infrastructure with insufficient resources.

• EASE provides guaranteed allocation of virtual resources

with time dilation, and enables better resource sharing.

• EASE supports multi-tenancy by soft-partitioning the

physical resources, while providing complete isolation

between the users.

The rest of the paper is organized as follows. First, we

briefly discuss the related works in Section II. Then, we list

978-3-901882-85-2 c© 2016 IFIP

the testbed features and the design challenges in Section III.

The overall architecture is presented in Section IV. After that

we describe our techniques for resource provisioning (Sec-

tion V), time dilation (Section VI), and resource optimization

(Section VII). Next, performance evaluation of the system is

presented in Section VIII. Finally, we conclude in Section IX

with some future works.

II. RELATED WORKS

Emulab [1] allows users to acquire both physical and

virtual resources. However, it has several limitations such

as no performance guarantee and no out-of-the-box support

for SDN. GENI [2] and OFELIA [3] are federated testbeds

spread across a number of US and EU sites. They enable

simultaneous experimentation with different applications and

protocols by different users. However, they also suffer from

similar problems as Emulab. Mininet [20], Maxinet [21] and

EstiNet [22] are emulators for SDNs. Mininet emulates the

entire network on a single machine, and thus fails to scale

with network size and traffic volumes [10]. Maxinet proposes

to distribute Mininet over multiple machines, but cannot

provide resource guarantee. EstiNet also provides distributed

emulation across multiple machines with an added feature of

time dilation. However, no details is available regarding the

technique used by EstiNet.

A couple of research works discuss methods to dilate time

in hypervisors. One of the early works modifies the Xen

hypervisor to dilate time of a VM during boot time [8].

This dilation factor remains fixed for the VM’s lifetime. A

more recent work [9] discusses how dilation factor for VMs

running on kvm-qemu hypervisor can be changed to adapt

to system load. However, this modified kvm hypervisor does

not support separate tdf for each VM, thus making it unfit

for our purpose.

III. TESTBED FEATURES AND DESIGN CHALLENGES

EASE provides several features that makes it possible to

have a simple and seamless emulation workflow. A brief

overview of these features along with the challenges to im-

plement them is presented in the remainder of this section.

A. Multi-tenancy

EASE supports multiple tenants, each running one or more

emulations on the same physical infrastructure. In order to

ensure proper isolation between the tenants we need to ensure

the following forms of isolation:

Namespace Isolation: A user’s namespace should be iso-

lated from other users. It enables multiple users to use the

same name for their virtual resources. For example, if a user

names one of his VMs as vhost-a, this must not restrict

other users to use the same name for their virtual resources.

Performance Isolation: Each user should have performance

guarantee. Resource consumption by one user should not affect

the perceived performance of another user.

Infrastructure Isolation: From a security point of view,

a user should not be able to access the underlying physical

infrastructure. A user should only be able to access the

allocated virtual resources.

B. Resource Guarantee with Time Dilation

EASE utilizes time dilation to provide perceived resource

guarantee if sufficient physical resources are not available.

Time dilation is more suitable for CPU and throughput sensi-

tive emulation compared to latency sensitive emulation since

time dilation increases the execution time for the emulation.

In order to implement this feature, we are faced with the

following technical challenges:

Dilation of Virtualized Resources: EASE provides re-

source guarantee without hard partitioning the physical re-

sources. To stretch the physical limits of the infrastructure, we

use the notion of time dilation. EASE provides the users with

a virtual notion of time. Each unit of virtual time corresponds

to tdf (≥ 1) units of real time, hence, provides the users an

illusion of scaled up resources. For example, with tdf = 2,

it is possible to emulate a 100Mbps virtual link by allocating

50Mbps of physical bandwidth.

Per User Time Dilation and Time Synchronization:

EASE provides a user with a consistent time dilation factor

(tdf) for all of its resources. However, tdf can be different

for different users. Moreover, tdf modification for one user

should not impact the others. To this end, we have found two

research works to dilate time in hypervisors [8], [9]. However,

as discussed in Section II, they are not fit for our purpose.

It is challenging to adaptively change tdf of a user and

provide different tdf to different users. This is further com-

plicated by the fact that the tdf of a user’s virtual instances

distributed across different physical machines should also be

consistent. For example, if timestamp calculation for a dilated

VM does not consider the clock cycles spent to non-dilated

parts (e.g., memory, storage, etc.) then a user expecting to

perceive a tdf of 2, might perceive a tdf of 1.98 for VMs

on one physical machine and 1.97 for VMs on a different

physical machine.

C. Automated Embedding

Once a user specifies the topology, type of devices, VM im-

ages, etc., EASE takes care of the embedding. It determines the

optimal placement of the virtual resources and interconnects

the VMs and VSs with IP tunnels.

A major challenge in automating the embedding process is

to optimally place a user’s virtual resources on the physical

infrastructure while minimizing resource fragmentation and

maximizing physical infrastructure utilization. Different bin

packing problems reduce to such resource allocation problems,

hence, they are NP-hard to solve. Therefore, we need to design

an effective heuristic that can achieve the aforementioned goals

within reasonable execution time.

D. SDN from the Ground Up

EASE supports SDN from the ground up. EASE creates

the switching fabric using OVS [6], which allows EASE users

to create an SDN network without any manual configuration

unlike other testbeds.

EASE Node

Hypervisor (Kernel Module)
Kernel Space

User Space

Local Management Daemon

Provisioning

Agent

Time Dilation

Agent

Monitoring

Agent

Virtualized Instances

Management

Database
File Server

EASE Master

Monitoring

Module

Provisioning

Module

Resource

Management

Module

Migration

Agent

Fig. 2. EASE Architecture

E. Transparency

EASE deploys various specialized components to enable

distributed deployment and emulation, which are kept trans-

parent from the user. Users are given the illusion that only their

requested infrastructure is being emulated. EASE provides re-

source guarantee by partitioning the virtual infrastructure and

deploying it across multiple physical machines. To incorporate

time dilation for the network, EASE deploys the switches

inside a VM. In such partitioning, one virtual link might

be mapped to a physical path, which brings forth technical

challenges in neighbor discovery for the switching fabric.

Transparency ensures that no modifications are required in a

user’s virtual switching fabric.

IV. SYSTEM ARCHITECTURE

In this section, we describe the architecture and different

components of EASE. Fig 2 shows the overall architecture of

EASE. We have two types of physical machines in our system:

EASE Master and EASE Node. EASE Nodes host the vir-

tual instances (VMs, VSs and VLs) of a user’s emulated infras-

tructure. The operations of EASE Nodes are orchestrated by

the EASE Master. The EASE Master and EASE Nodes

communicate via Remote Procedure Call (RPC). EASE also

maintains Management Database and File Server for storing

configurations, monitoring data, VM images and snapshots.

A. EASE Master

EASE Master consists of the following modules:

1) Provisioning Module: Provisioning module embeds a

user’s virtual resources. It takes an embedding request from

a user that contains the topology, resource requirements, and

Service Level Objectives (SLOs) (e.g., availability, emulation

duration). This module then determines suitable placements

for the virtual resources by considering physical resource con-

straints. EASE deploys emulated topologies across multiple

physical machines to achieve scalability.

2) Resource Management Module: Resource management

module periodically runs to tune different parameters of the

virtual resources for increasing hardware utilization. Specif-

ically, it changes the virtual to physical resource mapping,

adjusts the share of physical resources (CPU, bandwidth, etc.)

and modifies different QoS parameters (e.g., link delays).

Switching

VM1

Switching

VM2

(a)

(b)

(c)

Virtual Switch

Gateway Switch

Virtual Host

Tunnel

Virtual Link

a

b

c

d
e

a′

a′′

c′
d′

b

d′′ e′′

c′′

e′

t1
t2

t3

Fig. 3. Virtual Infrastructure Deployment

3) Monitoring Module: This module collects the system

statistics periodically and stores them in the database. The

statistics include the utilization of the physical and virtual

CPUs and usage of the network.

B. EASE Node

EASE Node hosts the virtual instances (VMs, VSs, VLs)

from different simultaneous emulations. It also runs a lo-

cal management daemon which handles commands from the

EASE Master. This daemon maintains several interfaces

with different user processes, and the host kernel to provision,

monitor and modify virtual instances. Next, we briefly explain

each component:

1) Provisioning Agent: This agent spawns VMs mapped

only to this physical machine using hypervisor specific APIs.

It also creates the virtual switches and virtual links and con-

figures them accordingly. Finally, it creates inter-host virtual

links to connect all the partitions of a virtual infrastructure

provisioned across different physical machines.

2) Monitoring Agent: Monitoring agent runs at a pre-

configured time interval and gathers resource usage of a

particular EASE Node. It monitors both physical and virtual

resources and reports them to the EASE Master.

3) Migration Agent: This agent starts inter-host VM mi-

grations when triggered by the EASE Master. Additionally,

it also changes the vCPU assignment of a VM dynamically.

4) Time Dilation Agent: Time dilation agent keeps an inter-

face with the host kernel to set the tdf of a VM dynamically.

In case of inter-host migration, it also updates the virtual time

from which the VM resumes its operation.

V. EMULATION PROVISIONING

In this section, we explain how EASE ensures the connectiv-

ity between the virtual components of an emulation deployed

across multiple physical machines. This will give a precise

idea of the how both isolation and transparency are ensured

by the design.

A. Network Partitioning

Recall that EASE leverages time dilation to utilize the

underlying infrastructure by running different emulations with

different tdfs. Therefore, both the switching fabric and the

end hosts (user VMs) need to be dilated. This criteria restricts

us to run the switches inside VMs.

Now, we can take two trivial approaches to put the switching

fabric in a VM: (i) run the entire switching fabric inside a

single VM, or (ii) deploy each switch (router) in a separate

VM. Both of these approaches have their pros and cons.

Coalescing the entire switching fabric, and running it in a

single VM creates a large VM in terms of processing require-

ments. Fulfilling its resource requirement is harder when the

physical resources in the infrastructure gets fragmented over

time. One can solve this issue by deploying each switch in a

separate VM. However, this solution results in higher numbers

of VM to guest kernel packet traversals for inter-switch traffic

compared to the first approach. So, we wanted to find a suitable

trade-off between these two approaches.

We partition the switching fabric considering the processing

requirements and inter-partition link bandwidth (Section VII).

After the partitioning phase, we obtain a reduced topology for

the emulation, which is also referred to as the reduced graph in

the text. We place the subgraph of a switching fabric assigned

to one physical host inside a single VM and connect the VMs

using IP tunnels (Fig. 3).

B. Connectivity Establishment

We connect two VSs mapped to the same network partition

using Linux IP Link. We choose tunnel to connect all VM to

VS links and all inter-partition VS to VS links. The choice

of tunnel provides us the desirable unicast forwarding for any

traffic passing through the physical switching fabric.

In order to ensure transparency and hide the segments of

an emulated link, we adopt a similar approach as in [10]. We

create some stub switches, called gateway switches. A gateway

switch encapsulates a packet (adds tunnel header) and unicasts

it to the corresponding destination. When the gateway switch

at the other end of the tunnel receives a packet, it strips out the

header, and forwards it to the respective switch port. The entire

process of encapsulation and decapsulation is kept hidden from

the emulation to ensure transparency.

C. Traffic Forwarding and Isolation

Any two partitions of the network might have several Virtual

Links (VLs), mapped on tunnels. A tunnel is identified by the

IP addresses of the machines where its two end points reside.

In order to uniquely identify the packet of VLs, a unique VL

id is assigned to each inter-partition VLs.

When a gateway switch receives a packet from an inter-

partition VL, it tags the packet with the VL id along with

the encapsulation. At the receiving end, this tag helps the

gateway switch to forward packet to the corresponding VS.

The id and the corresponding forwarding rules are configured

statically during the deployment of the emulation. This feature

enables an emulation to use its own preferable IP address and

hostname.

VI. TIMER MANAGEMENT

A. Per User Time Dilation

Each EASE user is provided with a uniform tdf across all

virtual resources. We were faced with the following challenges

in this regard: (i) time dilate the user’s VMs with user provided

VM images, (ii) tdf synchronization for all virtual resources

running on multiple physical machines.

We modified the hypervisor’s time management subsystem

to provide a dilated view of time to a user’s virtual instances.

We modified kvm hypervisor to emulate the execution of

rdtsc instruction from x86 processors instead of running

the instruction on hardware. To emulate rdtsc instruction we

maintained the following information in a dictionary (indexed

by the process ids of a VM’s vcpus) called tdf_dict: (i)

tdf, (ii) last seen virtual (pvtsc), and (iii) real (prtsc) time

stamp counters of a VM. When a VM issues a rdtsc call and

the current real time stamp counter is crtsc, we return a vir-

tual time stamp counter (cvtsc) to the VM calculated using

the following equation: cvtsc = pvtsc+ (crtsc− prtsc)/tdf

B. Virtual Time Synchronization

The next issue in time dilation is to make sure all the

virtual resources belonging to a user across different physical

machines have the same view of time dilation. Inconsistency in

the view of dilation can arise because all the physical machines

might not execute the time dilation change command at the

same global time. Therefore, all the VMs may not start dilating

time at the same moment.

Distributed global time synchronization has been shown

hard to solve in the literature. In this paper, instead of pro-

viding a full proof solution, we take an engineering approach

to mitigate the impact of asynchrony. When commands are

issued from EASE master to the EASE nodes to change the

tdf of VMs, that command also contains a time in the future,

which tells the EASE node when to execute the command. In

this case, the inconsistent states of a user’s VMs depend on

the time differences between the physical machines.

VII. RESOURCE MANAGEMENT

Our resource management scheme aims to provide guaran-

teed resources for an emulation running on EASE. Addition-

ally, we also bound the emulation turnaround time by allo-

cating enough virtual resources. In what follows, we describe

our embedding process for an emulation request and setting

an initial tdf for an emulation.

The initial mapping phase takes care of a newly arrived

emulation. A user provides EASE the resource requirements

for the infrastructure that he wants to emulate. This request

contains the network topology, hosts and their resources (e.g.,

number of vCPUs, Memory, Disc, etc.), and links with their

bandwidth and propagation delay. The user needs to specify a

lease time which is interpreted as the amount of time needed

to run the emulation. Moreover, user also provides a maximum

tdf value that he is willing to tolerate. From this tdf

value and the lease time, we can deduce the turnaround time

within which the emulation must be finished. Our embedding

algorithm allocates resource and set an initial tdf in presence

of a bound on the turnaround time. However, such resource

allocation problems are typically NP-hard to solve. Therefore,

we propose a heuristic algorithm to solve it.

A. Heuristic Algorithm

Our heuristic solution (Algorithm 1) takes a virtual in-

frastructure topology G = (H,S, L) and maximum tdf T
as input, where H , S, and L are the set of VMs, VSs,

and VLs, respectively. Each node n ∈ N = H ∪ S has

a resource requirement crn for each resource type r ∈ R.

Moreover, each VL l has a bandwidth requirement bl. Our

goal is to find a partition of G, map the virtual instances, and

set the best possible initial tdf for emulation. If a feasible

embedding is not found, we reject the request. This algorithm

uses procedures Partition, and FindMaapping, to embed G.

The Partition procedure (Algorithm 1) groups some VSs

together and forms a reduced graph (Section V) from G. It also

sets the least possible tdf for embedding. This procedure first

sorts the VSs according to the their resource requirements. We

consider the bandwidth of incident VLs as a measure of a VS’s

processing need. We also use an empirical value w to take the

link type and protocol into account. The following equation

provides the maximum processing requirement cs for a VS s
in terms of the fraction of CPU core, where, usl, vsl ∈ {0, 1}
determine if a VS s is endpoint of a VL l = (u, v):

cs = w
∑

∀l∈L

(usl + vsl)bl (1)

Then, we use First Fit heuristic [11] to place a VS to a

partition. The capacity of each partition is considered in terms

of CPU. This approach eventually creates VMs of switches

with less resource requirement and provides more flexibility

to embed these VMs later in the stage. This step only considers

packing efficiency and does not take the VL bandwidth into

account. After this step, the algorithm iterates through all

inter-partition links to minimize inter-partition bandwidth by

collocating their end point VSs.

Algorithm 1: Emulation Embedding

1 function Embedding(G, T)

2 T ←∞, (Tmin, GR)← Partition(G)
3 if Tmin > T or FindMapping(GR, T) = false then

4 Reject Request and return false

5 else

6 T = min. T ∈ [Tmin, T] : FindMapping(GR, T)

= true
7 Set initial tdf to T
8 return true

After the aforementioned step, we get the partition of the

network. However, the bandwidth allocation on some virtual

interfaces might be higher than their capacity. When this

situation occurs, this partitioning will only work when time is

appropriately dilated, i.e., the tdf is above a required value.

The Partition algorithm returns this minimum tdf along with

the reduced graph.

Then the embedding algorithm finds the final mapping

using binary search on tdf (Algorithm 1). FindMapping first

scales CPU and bandwidth with the tdf parameter T . It then

computes the resource demand of a VM as a weighted sum of

Algorithm 2: Partition Emulation Request

1 function Partition(G)

2 bif ← Interface bandwidth of a VM

3 Sort S by (1) in non-increasing order

4 Partition the network using First Fit

5 forall the inter-partition link do

6 move the link if it minimizes the bandwidth and

does not violate resource constraint
7 Generate GR

8 Find max. external bandwidth bmax for each partition

9 Tmin ←
bmax

bif

10 return Tmin, GR

Algorithm 3: Find Embedding

1 function FindMapping(GR, T)

2 Scale all the resources r′ ∈ R′ using T
3 NR ← Sort nodes of GR according to

∑
∀r∈R wrc

r
n

4 repeat

5 Choose the best node i ∈ NR, NR ← NR − {i}
6 Pick the best feasible host h̄
7 if There is no feasible host then return false

8 until NR 6= ∅
9 return true

all of its resource requirements. The weight wr of a resource r
is determined based on the relative scarcity of r. Then it selects

VMs in a non-increasing order of their resource requirement.

The intuition here is that it is easier to accommodate resource

demanding VMs during the earlier stage of embedding.

After VM selection, the physical machine for this VM

is determined. The algorithm first lists all feasible physical

machines that can satisfy its resource requirements. It con-

siders two criteria for this purpose: 1) how many neighbors

of the selected VM it contains, and 2) its residual resources.

Specifically, it ranks a physical machine higher if it already

hosts some neighbors of the VM. This criteria minimizes

the allocation of external link bandwidth. On the other hand,

selecting a physical machine with minimum residual resource

minimizes the fragmentation. Our algorithm selects the phys-

ical machine as a weighted sum of them.

VIII. EVALUATION

EASE is a work in progress. However, we have implemented

some features of EASE in a prototype and demonstrate the im-

pact of time dilation in Section VIII-A and EASEś capability

to provide resource guarantee in Section VIII-B.

A. Impact of Time Dilation

1) Setup: In this scenario, we show the impact of time

dilation on the completion time of an emulation. We also

demonstrate how other load factors in the system affect

completion time of an emulation under different tdfs. Our

setup consists of four VMs, each with a single virtual CPU,

spawned on a physical host with four physical CPU cores.

 24

 28

 32

 36

 1 2 3 4 5 6 7 8

S
o
rt

 C
o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Time Dilation Factor

1:1 over-subscribed

1:2 over-subscribed

1:4 over-subscribed

(a)

 24

 28

 32

 36

 10 20 30 40 50 60 70 80 90 100

S
o
rt

 C
o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Physical CPU Utilization (%)

1:1 over-subscribed

1:2 over-subscribed

1:4 over-subscribed

(b)

Fig. 4. Impact of (a) Time Dilation and (b) CPU Over-subscription on
Emulation Completion Time

As a workload we sort 128MB of randomly generated data

on these VMs. As the performance metric, we measure the

virtual time required to complete the sort. Note that, changing

the tdf changes the view of CPU speed to the VMs. In

order to conduct reproducible experiments, the VMs should

have the same view of CPU speed throughout their lifetime.

Therefore, when we change the tdf we also restrict the

maximum allowed physical CPU utilization for the VMs using

cpulimit [14] tool. cpulimit limits the physical CPU

utilization of a process by sending SIGSTOP and SIGCONT

signals. This has an impact on the performance of a process

as well. To demonstrate cpulimit’s impact we run the

experiment with different over-subscription ratios for physical

to virtual CPUs. A 1 : k over-subscription rations means k
virtual CPUs are pinned to 1 physical CPU.

2) Results: Fig. 4 presents the results on the impact of

tdf. Ideally, for a given over-subscription ratio, the virtual

time required to complete a job should remain almost the

same for different tdfs. Also, the best possible sharing

scenario, i.e.,when each virtual CPU is pinned to a separate

physical CPU, should yield the minimum job completion

time. However, as we can see from Fig. 4(a), the results are

counter-intuitive, i.e.,more over-subscription gives faster job

completions and for a given over-subscription, the completion

time increases with increasing tdf. Such increase is due to the

impact of cpulimit. With increasing tdf, we are lowering

the maximum physical CPU share cap on the virtual CPUs.

As a result, the probability of cpulimit sending SIGSTOP

signal to the virtual CPU is increasing. For example, for a

given over-subscription ratio, a tdf value of 2 puts 50% cap

on the virtual CPUs. However, for the same over-subscription

ratio we need to put 25% cap on the virtual CPUs, therefore

increasing the probability of sending SIGSTOP to the process

corresponding to the virtual CPU.

To better understand the combined impact of

over-subscription and tdf, we represent the results

in Fig. 4(b). Fig. 4(b) presents the job completion time

against different physical CPU utilization for different over-

subscription ratio. Consider a case, when the tdf is 2 with

an over-subscription ratio of 1 : 1. In this case, a physical

CPU hosts one virtual CPU and allows a maximum of 50%
total utilization. If we want to achieve the same level of

physical CPU utilization with an over-subscription ratio of

1 : 2, we have to set tdf to 2 and cap the maximum allowed

physical CPU for each virtual CPU to 25%. Therefore, there

will be higher probability of cpulimit interrupting the

virtual CPUs. Therefore, for a given physical CPU utilization,

higher over-subscription will put lower cap on the utilization

of individual virtual CPUs, thus increasing the overhead due

to cpulimit. For the same reason, we observe a decreased

job completion time for higher over-subscriptions.

B. Resource Guarantee for Emulation

1) Setup: We demonstrate the better resource isolation

capability of EASE compared to state-of-the art emulation

testbeds. We conduct the same experiment as described in Sec-

tion I. We deploy the same topology with 100Mbps link

capacity and play traffic between randomly selected links. We

measure the utilization of a fixed link for different levels of

background traffic.

2) Results: Fig. 5 shows the results on resource isolation.

Compared to Emulab, throughput does not significantly drop

when the same experiment runs on EASE.

 60

 70

 80

 90

 100

 200 400 600 800 1000
T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Background Traffic (Mbps)

Emulab

EASE

Fig. 5. Resource guarantee in the presence of background traffic

IX. CONCLUSION

In this paper, we have presented the design and implemen-

tation of EASE: a distributed virtualized multi-user testbed for

infrastructure emulation. EASE provides features such as per-

formance guarantee, reproducibility and performance isolation.

It is worth mentioning that this is a work in progress. Once

complete, service provides, network operators and researchers

can benefit from EASE to experiment with new services or

ideas that require playing with an infrastructure.

As a future work, we plan to improve the time dilation of

the emulated network. Currently, we observe some overhead

introduced by cpulimit when we are capping the maximum

CPU utilization for time dilated VMs. We plan to investigate

further into this matter. Moreover, we also plan to investigate

the impact of time dilation on latency sensitive emulations. We

also plan to improve the networking performance by running

the emulated network directly on physical machines instead of

on time dilated VMs. Finally, we also plan to study the impact

of time dilation on non-dilated resources.

ACKNOWLEDGMENT

We thank our shepherd Guillaume Doyen and the anony-

mous reviewers of CNSM 2016 for their valuable feedback.

This work was supported by the Natural Science and Engineer-

ing Council of Canada (NSERC) under the Smart Applications

on Virtual Infrastructure (SAVI) Research Network.

REFERENCES

[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental envi-
ronment for distributed systems and networks,” ACM SIGOPS Operating

Systems Review, vol. 36, no. SI, pp. 255–270, 2002.
[2] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-

huri, R. Ricci, and I. Seskar, “Geni: A federated testbed for innovative
network experiments,” Computer Networks, vol. 61, no. 0, pp. 5 – 23,
2014.

[3] M. Suñé, L. Bergesio, H. Woesner, T. Rothe, A. Köpsel, D. Colle,
B. Puype, D. Simeonidou, R. Nejabati, M. Channegowda et al., “Design
and implementation of the ofelia fp7 facility: the european openflow
testbed,” Computer Networks, vol. 61, pp. 132–150, 2014.

[4] “Internet2 Research Network Topology and Traffic Matrix,”
http://www.cs.utexas.edu/˜yzhang/research/AbileneTM/.

[5] “What’s Behind Network Downtime? Proactive Steps to Reduce
Human Error and Improve Availability of Networks,” http://www-
05.ibm.com/uk/juniper/pdf/200249.pdf.

[6] “Open vswitch,” http://openvswitch.org/.
[7] “Quagga routing suite,” http://www.nongnu.org/quagga/.
[8] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M.

Voelker, “To infinity and beyond: time warped network emulation,” in
Proc.of ACM SOSP. ACM, 2005, pp. 1–2.

[9] H. W. Lee, D. Thuente, and M. L. Sichitiu, “Integrated simulation and
emulation using adaptive time dilation,” in Proc. of ACM SIGSIM PADS.
ACM, 2014, pp. 167–178.

[10] A. R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R. Boutaba, “Design
and Management of DOT: A Distributed OpenFlow Testbed,” in Proc.

of IEEE/IFIP NOMS, 2014, pp. 1–9.
[11] D. S. Johnson, “Fast algorithms for bin packing,” Journal of Computer

and System Sciences, vol. 8, no. 3, pp. 272–314, 1974.
[12] P. Bodı́k, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and

I. Stoica, “Surviving failures in bandwidth-constrained datacenters,” in
Proc. of ACM SIGCOMM. ACM, 2012, pp. 431–442.

[13] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable
virtual data center embedding in clouds,” in Proc. of IEEE INFOCOM.
IEEE, 2014, pp. 289–297.

[14] “Cpulimit tool,” https://github.com/opsengine/cpulimit.
[15] “Bro intrusion detection system,” https://www.bro.org/.
[16] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Operational

experiences with high-volume network intrusion detection,” in Proc. of

ACM CCS. ACM, 2004, pp. 2–11.
[17] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-

hyastha, “Flowsense: Monitoring network utilization with zero measure-
ment cost,” in Proc. of PAM’13. Springer, 2013, pp. 31–41.

[18] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

[19] “Reproducable network research.” [Online]. Available:
https://reproducingnetworkresearch.wordpress.com/2014/06/03/
cs-244-14-bro-network-intrusion-detection-system-performance-analysis/

[20] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proc. of HotNets 2010.
ACM.

[21] P. Wette, M. Draxler, and A. Schwabe, “Maxinet: distributed emulation
of software-defined networks,” in Proc. of IFIP Networking, 2014, pp.
1–9.

[22] S.-Y. Wang, C.-L. Chou, and C.-M. Yang, “Estinet openflow network
simulator and emulator,” Communications Magazine, IEEE, vol. 51,
no. 9, pp. 110–117, 2013.

